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PREFACE 

 
This edition of Forecasting and Time Series Analysis Using the SCA Statistical System 

initiates the replacement process of the document entitled The SCA Statistical System:  
Reference Manual for Forecasting and Time Series Analysis (May 1986).  When the 
replacement process is complete, the older manual will have been completely replaced in both 
scope and style by a two volume set. 

This manual is Volume I of the set.  It encompasses topics related to the capabilities of 
the UTS Module and the Extended UTS Module of the SCA Statistical System.  Hence the 
contents of this manual replace Chapters 1, 2, 3, 7, and 8 of the 1986 manual entirely.  
Chapters 4, 5, and 6 of the 1986 manual are still valid until the release of Volume II of the 
new set.  In addition, information related to the spectral analysis capabilities of the SCA 
System may be found in SCA Working Paper 115. 

As noted above, this manual is a complete revision of parts of the 1986 manual.  
Chapter 4, “Linear Regression Analysis”, replaces Chapter 8 of the previous manual.  The 
chapter is a modified version of the regression chapter of the document The SCA Statistical 
System:  Reference Manual for General Statistical Analysis.  Chapters 5 through 8 are a 
detailed replacement of Chapter 3 of the 1986 document.  Information related to the modeling 
and forecasting of univariate time series is divided into chapters on “Box-Jenkins ARIMA 
Modeling and Forecasting” (Chapter 5), “Intervention Analysis” (Chapter 6), “Outlier 
Detection and Adjustment” (Chapter 7), and “Transfer Function Modeling” (Chapter 8).  
Chapter 7 of this manual contains material not present in the 1986 edition.  This new chapter 
includes much of the current information of the burgeoning research and activities associated 
with outlier detection, adjustment and estimation.  Chapter 9, “Forecasting Using General 
Exponential Smoothing”, is an upgrade of Chapter 7 of the earlier manual.  Examples have 
been added to illustrate all supported smoothing methods. 

Almost all material of the above chapters is presented in a “data analysis” form.  That is, 
SCA capabilities, commands, and output are presented within the context of a data analysis.  
Many concepts related to data analysis are reviewed and explained.  Examples have been 
chosen to demonstrate the use of the SCA System, and to provide some insights or guidelines 
for an analysis. 

Within chapters, information regarding specific capabilities and features of the SCA 
System are presented from those most frequently used to those that are less commonly 
employed.  All detailed information regarding the command structure of the SCA System is 
presented at the end of each chapter. 

This manual is designed to be self-contained.  Chapter 1 of this document provides 
complete information on the contents of all available SCA software products and where 
specific information on various SCA System capabilities can be found.  Chapter 2 provides an 
overview of the command language of the SCA System.  Chapter 3 summarizes useful 
plotting features for modeling time series.  Five appendices provide information on the basic 



use of analytic statements; data generation, editing and creation; SCA macro procedures; and 
selected utility commands.  More complete information on SCA commands can be found in 
The SCA Statistical System:  Reference Manual for Fundamental Capabilities. 
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CHAPTER 1 

INTRODUCTION 

 
The Forecasting and Modeling Package of the SCA Statistical System is comprised of 

four products.  These products are: 

UTS: Univariate time series analysis and forecasting using Box-Jenkins ARIMA, 
intervention and transfer function models.  This product also includes 
forecasting capabilities using general exponential smoothing methods. 

Extended UTS: Univariate time series analysis and forecasting with automatic outlier 
detection and adjustment, as well as analysis and forecasting of time series 
containing missing data 

MTS: Multivariate time series analysis and forecasting using vector ARMA 
models 

ECON/M: Econometric modeling and forecasting using simultaneous transfer 
function models.  This module also provides the seasonal adjustment 
procedures X-11, X-11-ARIMA, and a model-based canonical 
decomposition method. 

This manual describes the capabilities of the SCA UTS and Extended UTS products of the 
SCA System.  Capabilities described in this manual (and chapters containing them) include: 
 
 

Plotting data: 
(Chapter 3)  

Plots of one or more variables over time, and scatter 
plots of two or more variables. 
 

Linear regression analysis: 
(Chapter 4)   

Multiple linear regression analysis, the effect of serial 
correlation, and dynamic regression 
 

Box-Jenkins ARIMA 
modeling: (Chapter 10) 

Time series analysis and forecasting of a single series 
using Box-Jenkins ARIMA models.  Data simulation 
is also discussed. 
 

Intervention analysis: 
(Chapter 6) 

Modeling and analysis of the effects of known 
external events on a single time series. 
 

Outlier detection and 
adjustment: 
(Chapter 7) 

Descriptions of outliers and methods for outlier 
detection and adjustment.  Also included are 
forecasting in the presence of outliers and modeling a 
time series that contains missing observations. 
 



 

 

Transfer function 
modeling: 
(Chapter 8) 

Modeling a response variable (series) in the presence of 
one or more explanatory variables and a serially 
correlated disturbance term.  Also presented are special 
cases of transfer function models; applications of 
transfer function modeling for handling the effects of 
trading days and moving holidays; and data simulation. 
 

General exponential 
smoothing forecasting: 
(Chapter 9) 

Forecasting a nonseasonal series using single and 
double exponential smoothing, or Holt's two parameter 
method.  Forecasting a seasonal series using Winters 
additive or multiplicative methods, seasonal indicators 
and harmonic functions.  Relationships to Box-Jenkins 
ARIMA models are also discussed. 
 

Analytic functions and 
matrix operations: 
(Appendix A) 
 

Analytic functions and matrix operations that 
supplement the SCA System's statistical capabilities. 

Data generation: 
(Appendix B) 

User specified data generation, editing and other data 
manipulation of variables that are not necessarily time 
dependent. 
 

Time series data 
generation: (Appendix C) 

User specified data generation and editing of time 
series data. 
 

Macro procedures: 
(Appendix D) 

Creation and use of sequences of SCA statements to 
either perform SCA data analyses or to augment SCA 
capabilities. 
 

Utility information: 
(Appendix E) 

Output saving and review, management of files, 
internal workspace (memory), and other utility related 
tasks of an SCA session. 

Most of the information contained in the Appendices is condensed from that described 
in The SCA Statistical System: Reference Manual for Fundamental Capabilities and The SCA 
Statistical System: Reference Manual for General Statistical Analysis.  Selected information 
regarding the basic use of the SCA System and data entry can be found in Chapter 2.  The 
information in Chapter 2 and the Appendices are designed to provide self-contained 
documentation for the use of the SCA-UTS and Extended UTS products.  

Whenever possible, material in this manual is presented in a “data analysis” form.  That 
is, SCA System capabilities, commands, and output are usually presented within the context 
of a data analysis.  Examples have been chosen to both demonstrate the use of the SCA 
System and to provide some broad guidelines for forecasting and time series analysis.  One 
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key reference and source of examples in this manual is the text Time Series Analysis: 
Forecasting and Control by Box and Jenkins (1970).  This text contains many important 
concepts and properties of forecasting and time series analysis. 

1.1 Forecasting and Time Series Analysis for Business, Industry and the 
 Public Sector 

In recent years, business, industry and the public sector have coped with the two-fold 
problem of providing quality goods and services while contending with limited or shrinking 
resources.  Statistical methods can provide broad and effective means to address this problem.  

In particular, accurate forecasts are necessary for such diverse activities as capital 
budgeting, sales forecasting, market research, financial planning, and inventory planning and 
control.  Statistical modeling and analyses are important for such activities as understanding 
the structure of a process, price analyses, and impact (or regulatory) analyses.  The overall 
decision making process can benefit greatly from accurate forecasting and modeling tools. 

Processes of interest are usually characterized by the response measured for one or more 
process attributes.  In addition to such responses, we may also have recorded the values or 
operating conditions of possibly related (explanatory) variables.  Statistical methods are often 
used to construct models that employ some, or all, of this information.  Box (1979a) has noted 
that “Models ... are never true, but fortunately it is only necessary that they be useful”. 

One key element in statistical model building is how to deal with variation.  Whenever 
we attempt to learn about a process, we are faced with dealing with the natural variation that 
is present in it.  Such variation is confounded with the variation that occurs in simply 
determining (measuring) the values of all variables related to the model.  In the case of data 
that are gathered according to some time order, we also must account for the time related 
correlation that is present in recorded values.  Time series methods have proven useful for the 
characterization and forecasting of such time dependent processes. 

1.2 Iterative Model Building and the SCA Statistical System 

Box has often noted (e.g., 1974, 1976, 1979a, 1979b, and 1983) that statistical analyses 
or model building are most effective when an inductive-deductive approach is used.  
Observation and basic knowledge leads to the postulation of a theory or model.  The theory or 
model is tried and the results are reviewed to provide insight for the modification or 
correction of the theory or model as necessary.  The process continues until a satisfactory 
result is obtained.  Within the model building process, this is realized as the cycle of initial 
model identification (or specification), model estimation, and diagnostic checking. 

With the advent of high-speed computers, model building can be automated by 
incorporating sophisticated rules for decision making.  Box (1984) notes that he and Gwilym 
Jenkins “thought that it was particularly important not to try to make the model-building 
process automatic and entirely controlled by the computer, but to ensure that the human brain 
intervened and controlled, particularly at the identification and the diagnostic checking/model 



modification stages.  Subsequent experience has (he contends) demonstrated the rightness of 
this idea”.  This dynamic inductive-deductive approach to model building and analysis is 
greatly facilitated by the flexibility in the SCA Statistical System allowing its capabilities to 
be blended in any logical order for such purposes.  The SCA System also provides important 
automated capabilities for model estimation and modification. 

1.3   The SCA System  

The Scientific Computing Associates Corporation (SCA) provides several self-
contained modules in its statistical software system.  At present, the SCA Statistical System 
includes the SCA-UTS module for univariate time series analysis and forecasting, the 
Extended UTS module for univariate time series analysis and forecasting with automatic 
outlier detection and adjustment, the SCA-MTS module for multivariate time series analysis 
and forecasting, the SCA-ECON/M module for econometric modeling and forecasting, the 
SCA-GSA module for general statistical analysis, and the SCA-QPI module for industrial 
quality and process improvement.  The capabilities of other modules are discussed in other 
documents.  In addition to its own unique capabilities, each module of the SCA System also 
contains a complete set of SCA fundamental capabilities, including data input and output, 
analytic functions and matrix operations, data manipulation and editing, histograms and plots, 
macro procedures and other utility capabilities.  Details regarding these capabilities are also 
described in The SCA Statistical System: Reference Manual for Fundamental Capabilities.  

The modules described above are available as components in three statistical packages 
offered by SCA.  These packages and their component modules are:  

General Application Package: GSA 

Forecasting and Modeling Package: UTS, Extended UTS, MTS, ECON/M and GSA 

Quality Improvement Package: QPI and GSA 
 

In addition to the statistical modules described above, SCA provides software for 
employing windows and graphics, the SCA Windows/Graphics Package.  This package 
provides an innovative means to integrate the computing power of mainframe computers and 
workstations with the user-friendly features and high-resolution graphics capabilities available 
on personal computers.  The SCA Windows/Graphics Package provides for:  

• A window environment for the SCA System, 
• Menus to access all SCA capabilities, 
• Convenient on-line help for SCA capabilities, and 
• Two-way data transfer between mainframe computers and a PC. 

 
A component of the SCA Windows/Graphics Package is the PC product SCAGRAF.  

SCAGRAF is a Microsoft Windows application product providing such statistical and 
graphical features as: 
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• Single (and multiple) time series plots and scatter plots, 
• Box-Cox transformations, 
• Time series model identification tools, 
• Forecast and outlier plots, 
• Quality control charts, and 
• Contour plots, 

 
Many of the figures in this document were generated using SCAGRAF. 
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CHAPTER 2 

SYSTEM BASICS 

 
Every software system has its own vocabulary and language to put user’s “words” into 

action.  This chapter provides the basics of the SCA command language and the use of the 
SCA System.  In addition, information concerning the entry of data to the SCA System is also 
provided.  More complete information can be found in The SCA Statistical System: Reference 
Manual for Fundamental Capabilities. 

2.1    Getting Started  

The SCA System is a command driven system.  That is, the System responds to user 
instructions (commands) rather than to user chosen options from a menu.  When the SCA 
System is used through the SCA Windows/Graphics Package, a Command Builder creates 
necessary commands from menu selections.  In this manner, the SCA System has the same 
command language at all computing levels.  All command lines must be followed by a 
carriage return.  For easier reading in the remainder of this manual, we shall not explicitly 
display ‘<cr>’ (carriage return) when presenting command lines.  However, all command 
lines of the SCA System are preceded with the symbols ‘-- >’ as a means to indicate a line 
entered by the user.  The symbols ‘-- >’ themselves should not be entered. 

Mainframe and workstation computers 

To access the SCA System on a mainframe computer, we enter  

  SCA       ( or   sca ) 

If this command does not invoke the System, a local computer consultant should be contacted 
regarding the appropriate command.  It is possible a computing center may have installed the 
SCA System under a different command name. 

Personal computers 

The SCA System is also available for use on personal computers having a DOS, OS/2 or 
Macintosh operating system.  Within the DOS or OS/2 environment, we first enter the 
subdirectory in which the SCA System was installed.  The PC SCA System installation guide 
advises that the subdirectory be named SCA for DOS operating systems and OS2-SCA for 
OS/2 operating system.  Thus enter 

 CD  \SCA          (or   CD  \OS2-SCA). 

To invoke the SCA System in this directory, enter 
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  SCA 

To invoke the SCA System on Macintosh, we can simply double click the SCA icon 
from the folder in which it is stored.  The icon should be created when the SCA System is 
installed. 

System heading and prompt 

When the SCA System is appropriately invoked, a set of short descriptive information 
appears.  For example, the heading at an IBM/CMS mainframe site will be something like 

* * * * *  COMPUTER SERIAL NUMBER (   172353 /     12345 )  * * * * * 
 
THE SCA STATISTICAL SYSTEM ( RELEASE IV.3 ) 
SCA PRODUCT IDENTIFICATION: GSA, UTS, MTS, ECON/M & QPI 
HOST COMPUTER OPERATING SYSTEM: IBM/CMS 
COPYRIGHT 1985 - 1990, SCIENTIFIC COMPUTING ASSOCIATES. ALL RIGHTS RESERVED 
RELEASED DATE:  3/ 1/90 
 
SIZE OF WORKSPACE IS   50000   SINGLE PRECISION WORDS 
DATE --  11/30/90             TIME -- 10:10:43 
-- 

 
This set of information includes SCA release version, product names, host computer and 
operating system, and workspace (memory) size.  The heading information is followed by a 
double dash, ‘--‘.  The double dash is a prompt issued by the SCA System.  This indicates we 
can now enter an SCA command. 

When the SCA System on a mainframe or workstation computer is invoked through the 
SCA Windows/Graphics Package (see the related document SCA Windows/Graphics Package 
User's Guide for more information), the following windows appear on the PC screen. 
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The heading information and subsequent SCA output are contained in the output 
wind

Creating a larger workspace environment

ow SCAOUTP.OTP.  SCA commands are entered in the SCA command window, 
SCAHIST.CMD, or are generated from menu selections through the SCA Command Builder.  
The command history (i.e., the set of all SCA commands entered) of the SCA session is 
maintained in this window. 

 

We can designate a larger workspace (memory) size for an SCA session when we 
invok

The designation of a larger workspace varies somewhat between computers and 
opera

  SCA  n 

here n is an integer, will allocate nK words of memory for the session.  The instruction is 

e the SCA System.  This is a useful feature when we are dealing with larger data sets or 
complex computations.  The amount of workspace that can be designated may be restricted 
due to local computer installation constraints or an SCA System constraint, depending on the 
subscription level.  The maximum workspace size for the SCA System on personal computers 
varies between 30K and 35K words (1K words = 1000 words), while the maximum 
workspace for the SCA System on mainframe and workstation computers usually does not 
have a specific limit. 

ting systems.  For most operating systems, invoking the SCA System with 

 
w
different for IBM TSO and CMS operating systems where we must use either 
  SCA  SIZE(n)    (for an IBM TSO operating system) 
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or 
  SCA  SIZE  n    (for an IBM CMS operating system) 

 none of the above instructions affect the workspace size, it is necessary to check with a 

2.2   General Syntax of System Commands  

Once we are in the SCA System, we have begun an SCA session.  All SCA commands 
withi

Each statement is entered after the ‘--‘ prompt.  We can use blanks freely in a statement 
to spa

 
If
local computer consultant to determine what to do. 

n a session are the same across all computer types.  These commands are also called 
“statements”.   

ce words, but blanks cannot be used within names or numbers.  Usually command lines 
are limited to 72 spaces and most commands can be written in one line.  If we need to 
continue to another line, the current line must be ended with the character ‘@’.  We refer to 
the symbol ‘@’ as the continuation character.  It must be the last non-blank character of any 
line being continued.  It cannot be used as a hyphenation character.  That is, words and 
numbers cannot be divided with ‘@’.  The SCA System processes a command whenever a 
line is entered that does not end with ‘@’. 

Analytic statements 

There are two types of statements that we can use during an SCA session, analytic or 
“Eng

  v = e 

where “e” is an expression involving a combination of operators and variable names (the 
labels

  LNY = LN(Y) 

will take the natural logarithm of the data currently being held in the variable Y and 
store 

 TEMP = INV(A) # B 

will multiply the matrix B by the inverse of the matrix A (i.e., ), then store the 
result

A complete list of SCA analytic functions and matrix operators can be found in  
Appe

lish-like”.  Analytic statements are used for most vector and matrix operations or 
manipulations.  These statements have the general form 

 

 used to retain data in the SCA workspace); and “v” is a variable name (label) that will 
be used to hold results.  For example, 

 

the result into the variable LNY.  The statement 

 
1A B−

s into the variable TEMP. 

ndix A.  Some examples are also provided.  A more detailed discussion regarding 
analytic statements can be found in The SCA System: Reference Manual for Fundamental 
Capabilities. 
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English-like statements 

English-like statements (or paragraphs) are used to accomplish most operations in an 
SCA session.  These statements consist of a paragraph name that can be followed by one or 

For example, 

  

ph name is PRINT and the modifying sentence is 
VARIABLE IS GROWTH.  Here the function of the statement is implicit in the paragraph 

a e. odifying sentence is sufficient for the execution 
f the command. 

be ended with a period if another sentence is to follow.  Each line within 
the paragraph, except for the last line, must have the continuation character (‘@’) as its last 
chara

 An optional sentence is used only if we wish to change a default condition.  A 
sentence is required if no default condition (or value) exists.  If we omit any required 
sente

 PLOT   VARIABLES ARE TAX, INCOME 
 

200 data pairs (see Chapter 3 for more 
information on scatter plots).  If we enter 

 PLOT   VARIABLES  ARE  TAX, INCOME.    SPAN IS 1,150 

 using only the first 150 pairs of data.  The 
entences VARIABLES and SPAN must be separated by a period.  If we only enter 

 PLOT   SPAN  IS  1, 150 

BLES is 
 required sentence. 

more modifying sentences.  

PRINT   VARIABLE  IS  GROWTH 
 
is an English-like statement.  The paragra

n m  Information contained in the single m
o

The first word of a paragraph must be a valid paragraph name.  This name is then 
followed by any number of modifying sentences.  Sentences have no specific order of entry.  
A sentence must 

cter.  

Modifying sentences fall into two categories:  required and optional.  A sentence is 
optional if there is a default condition (or value) that can be used during the execution of the 
paragraph. 

nce, the System will issue prompts requesting the information omitted.  

For example, suppose there are two variables in the SCA workspace, TAX and 
INCOME, each containing 200 values.  If we enter 

then the System will produce a scatter plot using all 

 
 
 
then the System will produce a scatter plot
s
 
 
 
then the System will prompt us for the variables to be used in the plot, since VARIA
a

Most frequently used required sentence 

For our convenience, the subject and verb of the ``most frequently used sentence'' of a 
paragraph can be omitted provided the sentence is the first sentence used after the paragraph 
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name.  For example, the VARIABLE sentence is the most frequently used sentence of both 
the PRINT and PLOT paragraphs.  If we desire, we can omit the words VARIABLES ARE in 
these

 
  IS  GROWTH 

 1,150 

 the SCA System in the same fashion as the statement  

.    SPAN  IS 1, 150 

urs.  The System would interpret TAX as the first three letters of a 
ntence name and not

 paragraphs.  That is, the statement 

 PRINT   GROWTH 
 
is equivalent to the statement  

 PRINT   VARIABLE
 
The statement 
 
 PLOT   TAX,  INCOME.    SPAN  IS 
 
is processed by
 
 PLOT   VARIABLES  ARE  TAX, INCOME
 
Note that if the statement  
 
 PLOT    SPAN  IS  1, 150.    TAX,  INCOME 
 
is entered, then an error occ
se  as variable information.  Very often, the “most frequently used 

  The portion of the “most frequently 
sed sentence” that can be omitted is highlighted in the syntax description for every paragraph 

To illustrate the types of commands and using the SCA System, we will examine some 
data taken from the text Statistics for Experimenters by Box, Hunter and Hunter (1978).  The 

h  the growth rate (in coded units) of experimental rats and the amount 
(in grams) of a dietary substance fed to the rats. 

sentence” is the only sentence specified in a paragraph.
u
of the SCA System. 
 

2.3    An Example 

data, s own below, are
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Growth rate Dietary supplement 
   
  73 10 
  78 10 
 85 15 
  90 20 
  91 20 
  87 25 
  86 25 
  91 25 
  75 30 
  65 35 
 
 

We first want to transmit (or enter) data into the System's workspace (memory).  There 
are many ways in which data can be entered.  Complete information on the entry of data into 
the SCA workspace is provided in Chapter 3 of The SCA Statistical System: Reference 
Manual for Fundamental Capabilities.  A summary of some frequently used methods for data 
entry is given in Section 10 of this Chapter.  In this example we will enter both columns of 
data directly from the terminal.  To enter the growth rate data we can enter 

 -->INPUT   GROWTH 
 
Note that the use of ‘-->’ in this document denotes a line we are entering (and should not be 
typed).  We also must press the carriage return key to end our entry.  We have informed the 
System that we will be transmitting data to it and want it retained in the System's workspace 
(memory) under the label GROWTH.  Any valid name (see Section 2.4) can be used as a label 
for a variable.  GROWTH has been chosen since this label is well suited to designate the data.  
The System responds with 
 

READY FOR DATA INPUT 

 
The ‘--‘ prompt is not displayed because the System is not expecting any sort of instruction, 
just data.  We can enter the data on one line by entering:  
 
 -->73 78 85 90 91 87 86 91 75 65 
 
In order to tell the System that we are finished entering data for GROWTH, we now type  
 

 -->END  OF  DATA 
 
The System responds with 
 

GROWTH  , A    10   BY    1 VARIABLE, IS STORED IN THE WORKSPACE 

 
Now we enter the dietary supplement data and retain it in the workspace under the label 

DIET. 
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 -->INPUT   DIET 
 

   READY FOR DATA INPUT  

 -->10  10  15  20  20  25  25  25  30  35 
 -->END  OF  DATA 

 
DIET  , A  10  BY  1 VARIABLE, IS STORED IN THE WORKSPACE 

 
Before we continue, we can display the data that has been transmitted.  We do this by 

entering 

-->PRINT   GROWTH,  DIET 
 

GROWTH   IS  A    10  BY     1  VARIABLE 
DIET     IS  A    10  BY     1  VARIABLE 
 
VARIABLE    GROWTH      DIET      
 COLUMN-->       1         1      
  ROW                                           
    1       73.000    10.000  
    2       78.000    10.000  
    3       85.000    15.000  
    4       90.000    20.000  
    5       91.000    20.000  
    6       87.000    25.000  
    7       86.000    25.000  
    8       91.000    25.000  
    9       75.000    30.000  
   10       65.000    35.000  

 
To get an idea of how growth rate and dietary supplement are related, we display a 

scatter plot (see Chapter 3) by entering 

-->PLOT   GROWTH,  DIET 
 

     91.80 +                *      *  
           I                *         
           I                          
           I                       2  
           I        *                 
     82.80 +                          
           I                          
 G         I    
 R         I *                               
 O         I                              *  
 W   73.80 + *                         
 T         I           
 H         I                            
           I                           
           I                           
     64.80 +                                     *   
           -+---------+---------+---------+---------+  
           9.10     16.10     23.10     30.10     37.10  
 
                                DIET    
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We observe that the effect of the dietary supplement on the growth rate increases to a 
peak level, then falls off.  As a result we may wish to use regression analysis (see Chapter 4) 
to estimate the model. 

   2
0 1 2Y b b X b X error= + + +

 
where Y is the growth rate and X is the amount of dietary supplement.  We do not have the 
quadratic term, X  at present, but we can create it by using an analytic statement (see 
Appendix A).  One means to create X  is to enter 

2

2

 
 -->DIET2  =  DIET**2 
 
The data generated by this command are retained in the workspace under the label DIET2.  
We are now ready for a regression analysis.  We can fit the model above by entering 
 
 -->REGRESS   GROWTH, DIET, DIET2 
 

The output generated from this command is suppressed at this time.  Other options are 
available to us within the REGRESS paragraph, for example diagnostic checking, retaining 
calculated values and methods of fitting (see Chapter 4 for more information). 

2.4    Names and Abbreviations  

All data and models are stored in the SCA workspace (memory).  We are required to 
provide names for all data and models that we place in the workspace.  Other names used in 
an SCA session (i.e., paragraph and sentence names) are a part of the System's command 
language.  

The names we specify for data or models can be of any length, although only the first 
eight characters are interpreted by the System.  The first character of a name (label) must 
be a letter.  The other characters may be letters, numbers or the underscore symbol, ‘_’.   
Blanks cannot be used as part of a name.  Examples of valid names that we may specify 
are:  

 X,  XDATA,  X_DATA,  X1,  SERIES1,  SERIES_1,  DATASET1, 

 XDCDDEA,  S33E45,  F55XX_2,  INFORMATION_FOR_SERIES_1 
 
Examples of some invalid names are:  
 
 1X  (the first character is not a letter)  

 X DATA (blanks are not permitted)  

 X0DATA (the special character ‘-‘, hyphen, is not permitted) 
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Abbreviation rules 

All names used in an SCA session can be abbreviated.  Names and labels that we 
specify are identified by the SCA System by their first eight (8) characters only.  Hence the 
name 

  INFORMATION_FOR_SERIES_1 
 
is interpreted by the SCA System as INFORMAT.  The remaining characters are not 
maintained in memory, but may be used for readability.  Thus, the name 
 
  INFORMATION_FOR_SERIES_2 
 
is also interpreted by the System as INFORMAT.  As a result, if we transmit data sequentially 
using these two names then all data first stored in the workspace under the label INFORMAT 
would be overwritten by the latter. 
 

All sentence names are uniquely defined by their first three characters.  Paragraph 
names are likewise defined, with a few exceptions due to name multiplicity (e.g., CORNER 
and CORRELATION).  These names may be reduced to the first four characters.  For 
example, the System internally interprets the statement   

 -->PLOT   VARIABLES  ARE  WITHHOLDING, INCOME.   @ 
 -->       SPAN  IS  1, 30. 
as 
 -->PLO    VAR  ARE  WITHHOLD, INCOME.    SPA  IS  1, 30. 

2.5    Reserved Words and Symbols 

Certain words and symbols have special meaning to the SCA System.  They are 
summarized below and should only be used in their special context.  More details can be 
found in The SCA Statistical System: Reference Manual for Fundamental Capabilities. 

 (1) FOR, TO, BY and $ are used to specify an implied list of arguments. 
 

(2)  The apostrophe ( ‘) is used in the identification of character strings. 
 

(3)  @   is a continuation symbol.  It can also be used within macro procedures. 
 
 (4)  --   is interpreted as an in-line comment when it is specified by the user. 
 
 (5)  .    specifies either a decimal point or a period. 
 

(6) IS, ARE, IN, and ON are used as verbs within SCA sentences provided they    
immediately follow a sentence name.  Otherwise, they are interpreted as variable 
names. 
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(7) The exclamation mark  !  is used to cancel a statement when it appears as the last          

character of a statement. 

2.6    Obtaining On-Line Help 

The SCA System provides interactive on-line help on the capabilities and syntax of 
statements of the System.  To obtain help information, enter the statement  

 -->HELP 
 
More complete information is then provided.  To obtain information on a specific SCA 
paragraph, enter 
 
 -->HELP   paragraph-name 
 
To terminate a help session on mainframe computers, enter QUIT.  To terminate the help 
session on a PC, press the ESC key.  The System will then display the prompt ‘--‘ and the 
user will be at that position in an SCA session where help was requested.  (If the DOS or 
OS/2 prompt ‘C>’ appears in the PC environment, enter the command QUIT.) 

2.7    Responding to Prompts 

Whenever a required sentence of a paragraph is either omitted or incomplete, the 
System will prompt for information it requires.  When the System issues prompts, it only 
wants a direct response to its inquiries.  For example, if we enter the statement  

 -->PLOT 
 
rather than the statement  
 
 -->PLOT   TAX, INCOME 
 
then the System will issue a prompt for the variable names omitted.  Although the sentence 
that has been omitted is VARIABLES ARE TAX, INCOME, the System does not want the 
entry of the text for this full sentence.  In issuing a prompt, the System “knows” what 
sentence has been omitted, and it only wants the information omitted, i.e., TAX and 
INCOME.  The response we need to provide is simply 
 
 -->TAX, INCOME 
 

Prompts will continue until the System has all the necessary information it requires to 
proceed with the specified paragraph.   If we wish to terminate the prompting session, we can 
do so by entering the instruction QUIT.  In addition to terminating the prompting session, the 
QUIT command will also abort the execution of the paragraph.  
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2.8    Panic Buttons 

Occasionally, we may want to stop what is currently happening and get back to the basic 
command level (‘--‘).  The following are useful “panic” buttons: 

(1) CTRL-C    The execution of any paragraph can be terminated by simultaneously 
holding down the CTRL and C keys (or Break key for IBM MVS and IBM CMS 
operating systems).  Output may not stop immediately as some output may already 
have been sent to a print buffer.  In the IBM MVS and IBM CMS environments, be 
careful not to enter the Break key continuously as three successive entries of the Break 
key will terminate the SCA session. 

 
(2) QUIT    The instruction QUIT will terminate any prompting session.  This will also 

terminate the execution of the specified command. 
 

(3) !    The exclamation mark will cancel any statement, provided it is the last character of 
the statement.  For example, suppose we enter the lines 

 
  -->PLOT   TEX, INCOME.    @ 
  -->       SPAN  IS  1, 30 
 

If we realize we have misspelled TAX as TEX before we transmit the second line, we 
can cancel the entire command by ending the second line with ‘! ‘. 

2.9    Ending an SCA Session  

To exit from an SCA session, enter the command 
 
 -->STOP 

2.10    Entering Data 

There are many ways in which data can be transmitted to the SCA System.  This section 
presents examples of the most common ways to enter data.  The SCA paragraph INPUT may 
be used to transmit any data to the SCA System.  Other paragraphs, BINPUT and FINPUT, 
are also available for special types of data. 

2.10.1  Entering data from the terminal 

We will first demonstrate how to enter data directly from a terminal during an SCA 
session.  We will use the two data sets presented in Section 2.3 of this Chapter, growth rate 
and dietary supplement.  The data sets are small enough that we may consider entering the 
data directly from the keyboard.  Previously, all the data of one variable were entered, then all 
the data of the other were entered.  This is called variable by variable data entry.  
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Alternatively, we could choose to enter both variables at the same time by entering the first 
pair of data, then the second, and so on.  This is called case by case data entry. 

Entering data of a single variable 
 

To enter the data for growth rate in a variable by variable fashion and store the data in 
the SCA workspace under the label GROWTH, enter 

 -->INPUT   GROWTH 
 
This is equivalent to the statement  
 
 -->INPUT   VARIABLE  IS  GROWTH 
 
in which the complete VARIABLE sentence is specified.  The System responds with 
 

READY FOR DATA INPUT 

 
We now can enter data using free format (that is, data are separated by one or more blanks).  
We can enter all data on the same line, for example 
 
 -->73  78  85  90  91  87  86  91  75  65 
 
or 
 
 -->73   78  85    90  91  87  86   91       75     65 
 
We can also enter one data value per line, for example 
 
 -->73 
 -->     78 
 -->  85   
 --> 90 
 -->       91 
 -->87  
 -->  86 
 -->91  
 -->     75  
 --> 65  
 
or we could enter the data on multiple lines 
 
 -->73  78  85  
 -->      90  91    
 -->87 86   91   75  65  
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As soon as we are through entering data, we enter 
 
 -->END OF DATA        (or   -->END) 
 
This completes the data entry for the variable GROWTH.  The System will then respond with 
the message 
 

GROWTH ,  A 10  BY  1 VARIABLE,  IS STORED IN THE WORKSPACE 

 

Entering data for more than one variable 
 

Instead of entering the two data sets in a variable by variable fashion, we could transmit 
both data sets simultaneously (i.e., in a case by case fashion) by entering 

 -->INPUT   GROWTH, DIET  
 
After the System prompt for data, we enter the ten cases of data using free format. Each case 
must be on a new line (record).  This is, we enter 
 
 -->73  10 
 -->78  10 
 -->85  15 
 -->90  20 
 -->91  20 
 -->87  25 
 -->86  25 
 -->91  25 
 -->75  30 
 -->65  35 
 -->END OF DATA 
 
The System will then respond with the message  
 

GROWTH ,  A 10  BY  1 VARIABLE,  IS STORED IN THE WORKSPACE 
DIET   ,  A 10  BY  1 VARIABLE,  IS STORED IN THE WORKSPACE  

 
Each case (or record, or row) is transmitted in free format, so that the alignment shown above 
is arbitrary.  Each line of data can be written in any convenient form. 

2.10.2  Options related to the INPUT paragraph  

When we enter data from the terminal, the only required sentence associated with the 
INPUT paragraph is the VARIABLES sentence.  Unless informed otherwise, the SCA System 
assumes the data of any variable to be in free format, be a single column vector, be of single 
precision, and have no missing values.  If we need to change any of these default conditions 
then an appropriate modifying sentence must be added.   
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Entering a matrix of data 
 

When we transmit a matrix of data to the SCA System, we need to indicate the number 
of columns (NCOL) in the matrix.  The number of rows is determined from the number of 
rows of data entered.  For example, suppose the growth rate data was actually a matrix 
consisting of two columns of data.  The value in the first column is the growth rate in week 1 
and the value in the second column is the growth rate in week 2.  To enter the GROWTH data 
as a 10 x 2 matrix, we may enter 

 -->INPUT   GROWTH.    NCOL  ARE  2. 
 
and now enter data in a case by case fashion after the System prompt, for example 
 
 -->73    70 
 -->78    81 
 -->85    86 
 -->90    87 
 -->91    92 
 -->87    86 
 -->86    87 
 -->91    89 
 -->75    79 
 -->65    62 
 -->END OF DATA 
 

The default value of NCOL for each variable is 1.  If NCOL is changed from 1 for any 
variable, then data must be transmitted in a case by case fashion as above.  For example, if we 
enter 

 -->INPUT XVECTOR, YMATRIX.  NCOL ARE 1, 3. 
 
and enter the following data 
 
 -->1 2 3 4 5 6 7 8 
 -->8 7 6 5 4 3 2 1 
 -->0 1 1 2 2 3 3 3 
 -->END OF DATA 
 
Then XVECTOR will be a 3 x 1 vector consisting of the values 1, 8, and 0; and YMATRIX 
will be the 3 x 3 matrix 
 
 2 3 4 
 7 6 5 
 1 1 2 
 
All values after the 1 + 3 = 4th column of any row are ignored by the System. 
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Entering non-numeric data, the PRECISION sentence 
 

The SCA System assumes that all data transmitted are single precision numeric data.  To 
alter this default, we need to employ the PRECISION sentence.  For example, suppose dietary 
data to be transmitted consist of the type of diet the rat was fed, A, B or C (i.e., character 
data) as well as the above two weeks worth of growth data.  We can enter the statement 

 -->INPUT   GROWTH, DIET.   NCOLS  ARE  2, 1.     @ 
 -->        PRECISIONS  ARE  SINGLE,  CHARACTER 
 
Here two modifying sentences, NCOL and PRECISIONS, are used.  NCOL specifies that the 
variable GROWTH has two columns of data and that DIET has one column of data.  The 
PRECISION sentence is used to specify that DIET consists of character information.  Since 
the default condition of the PRECISION sentence was changed for one variable (DIET), we 
need to specify the appropriate modifier for all variables of the sentence.  Also note that since 
we were unable to write the INPUT statement entirely on one line, we used the continuation 
symbol, ‘@’. 
 

2.10.3   Entering data from a file  

In practice, we do not always enter data directly from a terminal.  Often data exists on 
an external “flat file”.  A “flat file” is one that can be created or edited by a text editor.  Flat 
files generally contain only one data set, or one set of case by case data records.  When we 
enter data from an external file, we need to include the modifying sentence FILE in the 
INPUT paragraph to inform the SCA System that the data exists on a file as well as providing 
the file's name.  If the FILE sentence is omitted, the System will assume that the data will be 
entered directly from the keyboard.  Specification of the FILE sentence does not affect other 
default conditions of the INPUT paragraph (e.g., free format, single precision, no missing 
data).  The line END OF DATA is not necessary in the external file, as the System will 
understand when it encounters the physical end of the file.  For example, to enter the single 
variable GROWTH from file, we enter 

 -->INPUT   GROWTH.    FILE  IS  ‘file-name’ 
 
where “file-name” represents the appropriate name of the file containing the data.  The actual 
name will be dependent on the conventions of the computer environment we are in.  Note the 
file name must be enclosed within a pair of single quotes. 
 

Other modifying sentences, such as FORMAT, NCOL, and PRECISION can be 
included as in the case that data are transmitted from a keyboard.  The FORMAT sentence is 
one that could be used if the data have been written onto the external file according to a 
specific format. 
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File name conventions 
 

The convention used to name files varies according to the type of the computer and 
operating system.  For example GROWTH.DAT is a valid file name on VAX VMS 
computers, GROWTH  DATA  A1  is a valid file name on IBM CMS computers, and 
U01234.GROWTH.DAT is a valid file name on IBM MVS computers.  The file name  
GROWTH.DAT is also valid on IBM PC's and compatibles operating under DOS.  On PC 
DOS computers, a drive may be added to a file name (e.g., A:GROWTH.DAT).  If we are on 
a VAX with a VMS operating system and our data are stored in the file GROWTH.DAT, we 
would enter 

 -->INPUT   GROWTH.   FILE  IS   ‘GROWTH.DAT’ 
 
If we are on a PC with  GROWTH.DAT  in drive A, we would enter 
 
 -->INPUT   GROWTH.   FILE  IS  ‘A:GROWTH.DAT’ 
 
Note that the file name must be enclosed within the pair of single quotes (‘).  In the remainder 
of this document, we will employ data set names appropriate in a VAX VMS or PC DOS 
setting, unless otherwise noted. 
 

2.10.4   More examples of data entry  

This section provides more examples on data entry using the INPUT paragraph.  In 
addition to the INPUT paragraph, the FINPUT and BINPUT paragraphs can be used to access 
data that are stored on external files containing internal documentation specific for SCA 
usage.  Information on SCA files and related paragraphs can be found in The SCA Statistical 
System: Reference Manual for Fundamental Capabilities. 

In the following examples, we do not provide specific data.   Instead data are only 
described and illustrated when necessary. 

(1) Entry of character and numeric data from a terminal 
Three variables will be entered from the terminal in a case by case fashion.  The first 
variable is a list of names (last name and first name).  The second and third are 
mathematics and English scores.   We need to alter both the defaults for PRECISION and 
NCOL as the first variable is character data and has two columns of data.  An appropriate 
statement is 

 
 -->INPUT   NAMES, MATH, ENGLISH.   NCOLS   ARE  2, 1, 1.   @ 
 -->         PRECISIONS  ARE  CHARACTER, SINGLE, SINGLE 
 
(2) Entry of character and numeric data from a file 

 Same data as in (1), but the data is on an IBM CMS file TESTDATA DATA A1.  An 
appropriate statement is 
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 -->INPUT   NAMES, MATH, ENGLISH.    NCOL  ARE  2, 1, 1.    @ 
-->        FILE  IS  ‘TESTDATA DATA A1’.                   @ 

 -->        PRECISIONS  ARE  CHARACTER, SINGLE, SINGLE 
 
(3) Specifying a format for data 
 Some sales data have been downloaded from a mainframe computer to a PC.  The name of 

the file on PC is SALES.DAT.  The data are of one variable.  There are 15 years of data, 
with each record having the sales totals (in thousands of dollars) for each month of the 
year.  The data have been compressed so that a typical record on the file looks like 

 
95.3 88.2 87.1 90.2 88.1 91.4101.3 87.2 88.6 91.6 95.8100.4 

 
 That is, the sales for January were $95,300, the sales for February $88,200, and so on.  We 

need to include a FORMAT statement indicating that every record has 12 sets of numbers, 
each number is in a field of 5 characters of the form “xxx.x”.  An appropriate statement 
for this data is 

 
  -->INPUT   SALES.    FILE  IS  ‘SALES.DAT’.    @ 

 -->        FORMAT  IS  ‘12F5.1’ 
 
(4) Data having missing data code as values 
 We will transmit the same data as in (3), but some months had missing sales figures.  In 

those cases the missing data code   *****   appears in the five character string for the 
month.  For example, suppose the third value of the “typical record” is missing.  Then this 
record is 

 95.3 88.2***** 90.2 88.1 91.4101.3 87.2 88.6 91.6 95.8100.4 

 
 In this case the statement given in (3) is still appropriate for data entry. 
 
(5) Data having a numeric substitute for missing values 

 Same data as in (4), except those missing entries are recorded as -99.9.  We can either use 
the INPUT statement of (3) above and work with the value -99.9, or we  

 can redefine -99.9 to an internal missing data code.  In the latter case, we can employ the 
statement 

 
  -->INPUT   SALES.   FILE IS 'SALES.DAT'.    @ 
  -->        FORMAT IS '12F5.1'.    REDEFINE -99.9 
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CHAPTER 3 

PLOTTING DATA 

 
Data displays in various forms are essential tools in the analyses of a data set.  Often the 

best way to comprehend data comes from visual depictions, rather than from extensive 
statistical analyses.  We can immediately realize the need to account for trend or the seasonal 
behavior of time series data through a time plot, a plot of the data over time.   Relationships 
that may exist between variables can be discerned through scatter plots, plots of one variable 
against another.  Moreover, we may be able to determine the basic functional form of 
relationships (e.g., linear, quadratic) with these plots.  We may discover that it may be more 
appropriate statistically to analyze the data in a metric other than the one in which the data are 
recorded.  For example, a logarithmic, square root, or other type of transformation, may be 
appropriate.  Spurious observations, or typographical errors in data entry, may be quickly 
spotted in a data plot.  For such reasons, it is important that we should always view data first 
instead of relying on statistical summaries alone. 

The SCA System provides a number of paragraphs useful in the display of data.  Time 
plots and scatter plots are discussed in this Chapter.  Plots specific to experimental design and 
analysis or statistical control are found in the SCA reference manual Quality and Productivity 
Improvement Using the SCA Statistical System.  Histograms dispersion plots and probability 
plots are explained in the SCA reference manual The SCA Statistical System: Reference 
Manual for Fundamental Capabilities. 

 3.1    Plotting Data Over Time  

Data collected over time usually embody some time dependent characteristics.  The 
exact nature of these characteristics are not always obvious.  Some may be suspected or 
assumed, such as a trend or seasonal behavior, as occur often in business data.  Others may be 
hidden.  For example, an experiment may be conducted in which the cutting precision of a 
tool on metals of various alloy compositions is measured.  It may be the case that the tool is 
subject to wear regardless of the metal being cut, hence it may be necessary to include time as 
a factor in the analysis.  In general, if data are gathered or recorded in any sort of time 
dependent order, it is a good practice to plot the data against time.   

3.1.1   Plots of a single variable over time  

A set of data from the Commodity Year Book (1986) will be used to illustrate plots over 
time.  The data, listed in Table 3.1, are comprised of monthly observations, from January 
1980 through December 1986, of the following prices:  

(1)  The average wholesale price of gasoline (regular grade, leaded)  
(2)  The average price of crude petroleum at wells  
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The data are stored in the SCA workspace under the names PGAS and PCRUDE, 
respectively.  A more complete description and analysis of these data can be found in 
Chapters 4 and 5. 
 

Table 3.1   Gasoline data 
 

Obs. Month 
Gasoline 

Price 
PGAS 

Crude oil 
Price 

PCRUDE 
Obs. Month 

Gasoline 
Price 
PGAS 

Crude oil 
Price 

PCRUDE 
 

1 1/80 481.1 447.8 37 1/83 576.7 627.5 
2 2/80 517.5 449.1 38 2/83 551.4 604.1 
3 3/80 560.4 455.8 39 3/83 533.5 591.1 
4 4/80 585.4 465.5 40 4/83 515.3 591.1 
5 5/80 595.5 470.9 41 5/83 537.2 591.1 
6 6/80 598.6 478.6 42 6/83 559.5 591.0 
7 7/80 601.1 480.7 43 7/83 566.6 589.1 
8 8/80 602.9 494.2 44 8/83 571.2 588.6 
9 9/80 599.6 498.1 45 9/83 566.3 589.1 

10 10/80 591.5 505.3 46 10/83 559.2 589.1 
11 11/80 590.8 523.6 47 11/83 548.2 589.0 
12 12/80 596.1 551.7 48 12/83 535.8 588.0 
13 1/81 607.5 614.1 49 1/84 518.3 589.0 
14 2/81 632.9 734.7 50 2/84 512.4 589.0 
15 3/81 683.2 734.8 51 3/84 517.9 589.0 
16 4/81 694.7 734.5 52 4/84 520.5 587.5 
17 5/81 690.4 732.3 53 5/84 532.6 587.5 
18 6/81 685.6 711.3 54 6/84 531.0 587.0 
19 7/81 677.4 696.5 55 7/84 520.9 586.4 
20 8/81 668.4 694.7 56 8/84 504.6 585.1 
21 9/81 666.4 694.7 57 9/84 500.3 584.7 
22 10/81 666.1 687.2 58 10/84 509.8 584.0 
23 11/81 661.7 685.2 59 11/84 511.3 571.8 
24 12/81 657.7 686.3 60 12/84 502.0 566.2 
25 1/82 651.7 686.3 61 1/85 480.5 550.3 
26 2/82 642.3 671.6 62 2/85 458.4 536.3 
27 3/82 621.1 649.3 63 3/85 467.2 536.6 
28 4/82 578.6 625.9 64 4/85 493.9 538.4 
29 5/82 555.7 625.8 65 5/85 522.5 541.3 
30 6/82 582.7 626.2 66 6/85 535.7 540.6 
31 7/82 628.8 626.3 67 7/85 539.3 539.6 
32 8/82 636.3 626.3 68 8/85 526.7 535.4 
33 9/82 628.4 626.7 69 9/85 513.6 536.6 
34 10/82 617.2 641.1 70 10/85 506.1 539.2 
35 11/82 611.0 640.0 71 11/85 520.1 541.8 
36 12/82 600.7 628.1 72 12/85 523.0 544.3 

        
 

Since these data are collected on a monthly basis, we would like to indicate the end of 
each year of data.  We will plot the PGAS data using the TSPLOT (Time Series PLOT) 
paragraph. 
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-->TSPLOT  PGAS.  SEASONALITY IS 12.  SYMBOL IS  ‘*’. 
 

TIME SERIES PLOT FOR THE VARIABLE PGAS                                                    
                                                                                           

------------+-----------+-----------+-----------+-----------+-----------+-------- 
690.00  +              ****                                                             + 

I                  **                                                           I 
I                    ****                                                       I 
I                        **                                                     I 

630.00  +             *                ***                                              + 
I            *             *      **                                            I 
I    *****  *                       *                                           I 
I   *     **                * *                                                 I 

570.00  +                                    *     ***                                  + 
I  *                         *        *   *   **                                I 
I                                      * *      *    *            **            I 
I *                                              * ** **         *  *  **       I 

510.00  +                                       *         *     * **         **         + 
I                                                        *  *   *               I 
I*                                                           *                  I 
I                                                             **                I 

450.00  +                                                                               + 
------------+-----------+-----------+-----------+-----------+-----------+-------- 

           12          24          36          48          60          72  

 
We see the data are plotted against a horizontal time axis.  Marks along the axis are at 

multiples of 12, that specified in the SEASONALITY sentence.  The use of the SYMBOLS 
sentence is explained in detail in Section 3.3, but its purpose is evident. 

Remark:  The SEASONALITY sentence is a replacement of the sentence, TIC-MARK.  In 
the event your version of the SCA System does not recognize the SEASONALITY sentence, 
it is likely you have an older version of the System.  In such a case, please substitute TIC-
MARK for SEASONALITY. 
 

The display provided by the TSPLOT paragraph is dependent on the output width 
available to the SCA System.  The SCA System automatically scales the plot to fit within the 
space available for display, and the TSPLOT paragraph will uniquely represent any data point 
displayed.  Consequently, if the SCA System does not have “enough space” available to 
present the complete time plot, it will truncate the data displayed.  Since the last data points 
are often the most influential in forecasting a time series, the SCA System plots all data it can 
from the end of the series forward.  Any truncation of data occurs at the beginning of the 
series. 

The display of the above plot was generated on a “wide screen”.  The default output 
width assumed by the SCA System is 80 characters.  This value is appropriate for virtually all 
output devices (terminals, printers, files).  This output width can be altered by the PROFILE 
paragraph (see The SCA Statistical System: Reference Manual For Fundamental 
Capabilities).  We can increase the output width to 132 characters (i.e., that of “large” 
computer paper) by entering 

 PROFILE   OWIDTH  IS  132 
 
If we are limited to 80 characters of output width, the following display occurs 
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-->TSPLOT  PGAS.  SEASONALITY IS 12.  SYMBOL IS  ‘*’. 
 

TIME SERIES PLOT FOR THE VARIABLE PGAS 
                                                                                 
         -------+-----------+-----------+-----------+-----------+-----------+--- 
  690.00 +         ****                                                        + 
         I             **                                                      I 
         I               ****                                                  I 
         I                   **                                                I 
  630.00 +        *                ***                                         + 
         I       *             *      **                                       I 
         I****  *                       *                                      I 
         I    **                * *                                            I 
  570.00 +                               *     ***                             + 
         I                       *        *   *   **                           I 
         I                                 * *      *    *            **       I 
         I                                           * ** **         *  *  **  I 
  510.00 +                                  *         *     * **         **    + 
         I                                                   *  *   *          I 
         I                                                       *             I 
         I                                                        **           I 
  450.00 +                                                                     + 
         -------+-----------+-----------+-----------+-----------+-----------+--- 
               12          24          36          48          60          72    

 
If we are confined to a limited output space yet desire a plot of the complete series, there 

are two things we may do.  One is to plot the series vertically rather than horizontally.  This 
may be done using the TPLOT paragraph (shown later).  The second option is to split the plot 
into pieces using the SPAN sentence.  We will do this here, by displaying the first 36 
observations then the last 36 observations.  Since the range of values may be different in the 
two plots, we will impose a range of 450 to 700.  This appears reasonable given the values of 
the above plot. 

-->TSPLOT   PGAS.   SPAN IS 1, 36.   SEASONALITY  IS  12.   @ 
-->         SYMBOL IS ‘*’.    RANGE IS 450, 700. 

 
TIME SERIES PLOT FOR THE VARIABLE PGAS                                          

                                                                                 
         ------------+-----------+-----------+-----------                        
  690.00 +              ****                            +                        
         I                  **                          I                        
         I                    ****                      I                        
         I                        **                    I                        
  630.00 +             *                ***             +                        
         I            *             *      **           I                        
         I    *****  *                       *          I                        
         I   *     **                * *                I                        
  570.00 +                                              +                        
         I  *                         *                 I                        
         I                                              I                        
         I *                                            I                        
  510.00 +                                              +                        
         I                                              I                        
         I*                                             I                        
         I                                              I                        
  450.00 +                                              +                        
         ------------+-----------+-----------+-----------                        
                    12          24          36                                 
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-->TSPLOT   PGAS.   SPAN IS 37,72.    SYMBOL IS  ‘*’.      @ 
-->         SEASONALITY IS 12, 37.   RANGE IS 450, 700.   

 
TIME SERIES PLOT FOR THE VARIABLE PGAS                                          

                                                                                 
         ------------+-----------+-----------+-----------                        
  690.00 +                                              +                        
         I                                              I                        
         I                                              I                        
         I                                              I                        
  630.00 +                                              +                        
         I                                              I                        
         I                                              I                        
         I                                              I                        
  570.00 +*     ***                                     +                        
         I *   *   **                                   I                        
         I  * *      *    *            **               I                        
         I            * ** **         *  *  **          I                        
  510.00 +   *         *     * **         **            +                        
         I                    *  *   *                  I                        
         I                        *                     I                        
         I                         **                   I                        
  450.00 +                                              +                        
         ------------+-----------+-----------+-----------                        
                    48          60          72                                 

 

3.1.2   Plots of more than one variable over time  

We have several options available if we wish to display the plots of more than one 
variable over time.  One option is to use the TSPLOT separately for each variable.  We can 
also specify more than one variable in the TSPLOT paragraph.  For example, suppose both 
PGAS and PCRUDE are specified in TSPLOT.  We have 

-->TSPLOT   PGAS, PCRUDE.   SEASONALITY IS 12.   SYMBOL IS  '*'.  
 

TIME SERIES PLOT FOR THE VARIABLE PGAS                                                    
                                                                                           

------------+-----------+-----------+-----------+-----------+-----------+-------- 
720.00  +                                                                               + 

I               *                                                               I 
I              * ***                                                            I 
I                   *****                                                       I 

648.00  +                        **                                                     + 
I             *            *   ***                                              I 
I            *                    **                                            I 
I   *********                       *                                           I 

576.00  +                           * *      *      *                                   + 
I  *                         *        *   ** **                                 I 
I                                      * *     **    **           **            I 
I *                                     *        * **  *         *  ** **       I 

504.00  +                                                 *     *****         *         + 
I*                                                           *  *               I 
I                                                              *                I 
I                                                             *                 I 

432.00  +                                                                               + 
------------+-----------+-----------+-----------+-----------+-----------+-------- 

           12          24          36          48          60          72         
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TIME SERIES PLOT FOR THE VARIABLE PCRUDE                                                  
                                                                                           

------------+-----------+-----------+-----------+-----------+-----------+-------- 
720.00  +             *****                                                             + 

I                  ***                                                          I 
I                     ****                                                      I 
I                         *                                                     I 

648.00  +                          *      **                                            + 
I                           ******  **                                          I 
I            *                        *                                         I 
I                                      ******************                       I 

576.00  +                                                        ***                    + 
I           *                                               **                  I 
I                                                             ***********       I 
I          *                                                                    I 

504.00  +        **                                                                     + 
I     ***                                                                       I 
I   **                                                                          I 
I***                                                                            I 

432.00  +                                                                               + 
------------+-----------+-----------+-----------+-----------+-----------+-------- 

           12          24          36          48          60          72         

 
We obtain two separate time series plots, but the same range of values is used as the Y axis of 
both plots.  The SCA System automatically determines a range appropriate for all variables 
involved. 
 

We may wish to view the variables in the same display frame.  This can be useful in 
determining if the values assumed by one variable may be influenced by the values of 
another.  Perhaps one series “leads” another in some way.  For example, a low value for one 
series may indicate a low (or high) value of another series in a future time period.  Similarly, a 
turn in one series (e.g., a decreasing set of values that change to increasing) may indicate a 
subsequent turn in another series. 

The MTSPLOT (Multiple Time Series PLOT) paragraph may be used to display the 
plots of two or more series, or variables, over time on the same frame.  Data are distinguished 
by letters.  Unless we specify our own set of symbols, the symbol ‘A’ is used to represent the 
first variable specified, ‘B’ for the second, and so on.  The symbol ‘*’ is used if any displayed 
values are coincident.  We can specify our own symbols by including the SYMBOLS 
sentence in the paragraph. 

We will display the time plots of PGAS and PCRUDE in the same frame to illustrate the 
use of the MTSPLOT paragraph.  We will use the symbol ‘X’ to represent PGAS data and ‘+’ 
for PCRUDE data.  As before, we will also include the SEASONALITY sentence.  We have 
increased the display width to assure plots of the complete data sets. 
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-->MTSPLOT   PGAS, PCRUDE.    SEASONALITY IS 12.    SYMBOLS ARE  ‘X’,  ‘+’. 
 

 TIME SERIES PLOT FOR VARIABLES     PGAS   AND   PCRUDE                                    
                                                                                           

------------+-----------+-----------+-----------+-----------+-----------+-------- 
720.00  +             +++++                                                             + 

I               X  +++                                                          I 
I              X XXX  ++++                                                      I 
I                   XXXXX +                                                     I 

648.00  +                        XX+      ++                                            + 
I             X            X+++***  ++                                          I 
I            *                    XX  +                                         I 
I   XXXXXXXXX                       X  ++++++++++++++++++                       I 

576.00  +                           X X      X      X            +++                    + 
I  X        +                X        X   XX XX             ++                  I 
I                                      X X     XX    XX       ++++**+++++       I 
I X        +                            X        X XX  X         X  XX XX       I 

504.00  +        ++                                       X     XXXXX         X         + 
IX    +++                                                    X  X               I 
I   ++                                                         X                I 
I+++                                                          X                 I 

432.00  +                                                                               + 
------------+-----------+-----------+-----------+-----------+-----------+-------- 

           12          24          36          48          60          72 

 
The MTSPLOT paragraph can be a useful visual tool if two variables are slightly “out of 

synch”, or if we wish to display the actual values of a series together with forecasted values 
(and standard errors).  For more information on the latter, see Chapter 5.  However, it is 
possible that the overlap of the two or more plots presents a more confusing pattern than we 
may like.  Even less useful information may be obtained when either the range of values of 
one variable dwarf those of another, or if the combined ranges of all variables are extreme. 

3.1.3   Vertical time plots  

The time axis for all plots above has been horizontal.  This can be convenient for the 
visual display of a relatively short series of data, but it can be limiting if a data set is lengthy.  
As an alternative, we can choose to have a vertical time axis.  This will permit the time plot of 
a data set of any length, but the display will usually run over several pages, or screens.  It is 
advised that when a vertical time axis is used, the plot should be routed to a printer or to a file. 

Two paragraphs are provided for plotting data over a vertical time axis, TPLOT and 
MTPLOT.  We can plot one or more data sets using TPLOT, and we can display multiple 
plots on the same time frame using MTPLOT.  MTPLOT offers more clarity than MTSPLOT 
in its display of multiple plots since more “space” is available to it.  Options for these 
paragraphs are the same as for TSPLOT and MTSPLOT. 

TPLOT provides us with an additional means to display more than one series.  If more 
than one variable is specified, then all variables will be shown in parallel to one another on 
the display device.  For example, consider a time plot of PGAS and PCRUDE in the same 
TPLOT paragraph (the display has been edited for presentation purposes). 
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-->TPLOT   PGAS, PCRUDE.   SEASONALITY IS 12.   SYMBOL IS  ‘X’. 
 
                   PGAS                                 PCRUDE                    
                                                                                  
       450.000   550.000   650.000                  540.000   660.000   780.000   
            500.000   600.000   700.000        480.000   600.000   720.000        
         .+----+----+----+----+----+---       .---+----+----+----+----+----+      
         I   X                                IX                                  
         I       X                            IX                                  
         I           X                        I X                                 
         I              X                     I  X                                
         I               X                    I  X                                
         I               X                    I   X                               
         I               X                    I   X                               
         I               X                    I    X                              
         I               X                    I     X                             
         I              X                     I     X                             
         I              X                     I       X                           
      12 +               X                 12 +         X                         
         I                X                   I              X                    
         I                  X                 I                        X          
         I                       X            I                        X          
         I                        X           I                        X          
         I                        X           I                        X          
         I                        X           I                      X            
         I                       X            I                     X             
         I                      X             I                     X             
         I                      X             I                     X             
         I                      X             I                    X              
         I                     X              I                    X              
      24 +                     X           24 +                    X              
         I                    X               I                    X              
         I                   X                I                   X               
         I                 X                  I                 X                 
         I             X                      I               X                   
         I           X                        I               X                   
         I             X                      I               X                   
         I                  X                 I               X                   
         I                   X                I               X                   
         I                  X                 I               X                   
         I                 X                  I                X                  
         I                X                   I                X                  
      36 +               X                 36 +               X                   
         I             X                      I               X                   
         I          X                         I             X                     
         I        X                           I            X                      
         I       X                            I            X                      
         I         X                          I            X                      
         I           X                        I            X                      
         I            X                       I            X                      
         I            X                       I            X                      
         I            X                       I            X                      
         I           X                        I            X                      
         I          X                         I            X                      
      48 +         X                       48 +            X                      
         I       X                            I            X                      
         I      X                             I            X                      
         I       X                            I            X                      
         I       X                            I            X                      
         I        X                           I            X                      
         I        X                           I            X                      
         I       X                            I            X                      
         I     X                              I            X                      
         I     X                              I            X                      
         I      X                             I            X                      
         I      X                             I           X                       
      60 +     X                           60 +          X                        
         I   X                                I         X                         
         I X                                  I        X                          
         I  X                                 I        X                          
         I    X                               I        X                          
         I       X                            I        X                          
         I         X                          I        X                          
         I         X                          I        X                          
         I        X                           I        X                          
         I      X                             I        X                          
         I      X                             I        X                          
         I       X                            I        X                          
      72 +       X                         72 +        X         
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The advantage in this sort of display is that concurrent observations are aligned for 

variables that may be related, but the individual pattern of each series is still separate from all 
others.  A disadvantage is that the width of the display device will diminish the resolution for 
each series as more series are plotted in parallel.  As with TSPLOT, we can increase the 
display width through the PROFILE paragraph.  Alternatively, we can limit the number of 
series that are displayed.  It is recommended that no more than three or four variables be 
displayed at one time, depending on the width of the display device.  There is a caution that 
accompanies this recommendation.  Since the width of any plot is a function of the number of 
plots being displayed, the width and resolution of the display of the time plot of the same 
series will be different if it is plotted alone, with one other series, or with more series.  This 
problem can be resolved easily. 

Suppose we find that the resolution associated with the parallel display of three series is 
what we want, but we need to plot five different series.  The easiest “solution” to this problem 
is to use TPLOT with any three of the series, then use TPLOT again with the remaining two 
series and one of the first three plotted.  By artificially “padding” the total number of series, 
we have achieved the desired resolution for all plots that are displayed. 

3.2    Scatter Plots  

To illustrate plots of one or more variables against another, we will consider a data set 
analyzed in Neter, Wasserman, and Kutner (1983, Chapters 8 and 11).  The data came from a 
study of the relation of bodyfat to triceps skinfold thickness and thigh circumference of 20 
subjects.  The data are shown in Table 3.2 and are stored in the SCA workspace under the 
labels, BODYFAT, TRICEPTS, and THIGH, respectively. 

Table 3.2   Bodyfat study data 

Subject Triceps Skinfold 
Thickness TRICEPS 

Thigh Circumfrence 
THIGH 

Body Fat 
BODYFAT 

1 19.5 43.1 11.9 
2 24.7 49.8 22.8 
3 30.7 51.9 18.7 
4 29.8 54.3 20.1 
5 19.1 42.2 12.9 
6 25.6 53.9 21.7 
7 31.4 58.5 27.1 
8 27.9 52.1 25.4 
9 22.1 49.9 21.3 
10 25.5 53.5 19.3 
11 31.1 56.6 25.4 
12 30.4 56.7 27.2 
13 18.7 46.5 11.7 
14 19.7 44.2 17.8 
15 14.6 42.7 12.8 
16 29.5 54.4 23.9 
17 27.7 55.3 22.6 
18 30.2 58.6 25.4 
19 22.7 48.2 14.8 
20 25.2 51.0 21.1 
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We wish to discover the relationships, if any, that exist between BODYFAT and the 

variables TRICEPS and THIGH.  One set of visual representations are the individual plots of 
the values of the BODYFAT variable with the associated values of both the TRICEPS and 
THIGH variables.  These scatter plots may be obtained using the PLOT paragraph as follows.  

-->PLOT   BODYFAT, TRICEPS 
 

     28.80 +                                                                     
           I                                  * *                                
           I                                                                     
           I                             *   * *                                 
           I                                *                                    
     22.80 +                      *     *                                        
           I                 *     **                                            
 B         I                                 *                                   
 O         I                        *         *                                  
 D         I            *                                                        
 Y   16.80 +                                                                     
 F         I                                                                     
 A         I                  *                                                  
 T         I  *        *                                                         
           I          * *                                                        
     10.80 +                                                                     
           -+---------+---------+---------+---------+                            
          13.50     18.50     23.50     28.50     33.50                          

 
                           TRICEPS 

 
-->PLOT   BODYFAT, THIGH 

 
     28.80 +                                                                     
           I                               *   *                                 
           I                                                                     
           I                      *        *   *                                 
           I                           *                                         
     22.80 +                  *          *                                       
           I                  * *     *                                          
 B         I                           *                                         
 O         I                      *  *                                           
 D         I      *                                                              
 Y   16.80 +                                                                     
 F         I                                                                     
 A         I              *                                                      
 T         I  **                                                                 
           I    *      *                                                         
     10.80 +                                                                     
           -+---------+---------+---------+---------+                            
          41.00     46.00     51.00     56.00     61.00                          
 
                               THIGH 

 
The PLOT paragraph provides us with a display of symbols on an L-shaped frame.  The 

frame is composed of a vertical Y-axis for the first variable specified, BODYFAT, and a 
horizontal X-axis for the second variable specified, TRICEPS or THIGH.  The symbol ‘*’ is 
used to indicate a data point; that is, one of the (x,y) pairs displayed. 

The SCA System automatically chooses suitable intervals for the values of the axes 
based on the range of values assumed by the ‘X’ and ‘Y’ variables and the amount of space 
available for the display.  In the plots above, the range for the Y-axis is the same for both 
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plots, since the same variable is used; but the ranges for the X-axes are different.  The values 
of TRICEPS range between 13.50 and 33.50, and those of THIGH range between 41.00 and 
60.00. 

We observe what appears to be a linear relationship between BODYFAT and TRICEPS 
as well as between BODYFAT and THIGH.  For illustrative purposes, we can re-scale the 
plots so that the ranges for the axes are the same in both plots.  We can see from the plots, and 
from Table 3.2, that the largest value of BODYFAT, the Y variable, is under 30, and the 
largest value of either TRICEPS or THIGH, the X variables, is less than 60.  We can construct 
plots in which 0.0 is used as the lower end-point of both axes and 30.0 or 60.0 is used as the 
upper end-point of the Y or X axis, respectively.  We can accomplish this by including the 
RANGE sentence as follows: 

-->PLOT   BODYFAT, TRICEPS.   RANGE  IS  Y(0.0,30.0),  X(0.0,60.0) 
 

     30.00 +                                                                     
           I                    **                                               
           I                   ***                                               
           I                    *                                                
           I               **2*                                                  
     20.00 +                 *  *                                                
           I             *      *                                                
 B         I                                                                     
 O         I               *                                                     
 D         I          * *2                                                       
 Y   10.00 +                                                                     
 F         I                                                                     
 A         I                                                                     
 T         I                                                                     
           I                                                                     
       .00 +                                                                     
           -+---------+---------+---------+---------+                            
            .00     15.00     30.00     45.00     60.00                          

 
                               TRICEPS 

 
-->PLOT   BODYFAT, THIGH.   RANGE  IS  Y(0.0,30.0),  X(0.0,60.0) 

 
     30.00 +                                                
           I                                      **        
           I                                   *  **        
           I                                    *           
           I                                 2* **          
     20.00 +                                    2           
           I                             *     *            
 B         I                                                
 O         I                                *               
 D         I                            2* *                
 Y   10.00 +                                                
 F         I                                                
 A         I                                                
 T         I                                                
           I                                                
       .00 +                                                
           -+---------+---------+---------+---------+       
            .00     15.00     30.00     45.00     60.00     
 
                               THIGH 
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Now we can observe the data on the same scales for all variable involved.  In the above 
two plots the symbol ‘2’ appears several times.  The symbol ‘2’ indicates there are two data 
points so close together that they cannot be shown uniquely.  The reason for this is immediate.  
Since we have imposed an arbitrary scale for the X-axis, the resultant data points are 
“bunched” together a little more than before.  As a result, all data pairs cannot be displayed 
distinctly.  The same inference can be made for the symbols ‘3’, ‘4’, . . . , ‘9’ should any 
appear.  ‘A’ through ‘Z’ represent 10 through 35 data points, and ‘#’ is used for 36 or more.  
Other “tagging” of points is possible (see Section 3.3.3).  

In the plots above, we have plotted exactly one Y variable against one X variable in the 
same frame.  If we wished to display other scatter plots, we must use separate frames.  
However, we can display multiple plots on the same frame through the MPLOT paragraph.  
To display the scatter plots of BODYFAT against TRICEPS and BODYFAT against THIGH 
on the same frame, we can enter the following. 

 -->MPLOT   Y-VARIABLES ARE BODYFAT, BODYFAT.  @ 
 -->        X-VARIABLES ARE THIGH, TRICEPS.      @ 
 -->        SYMBOLS ARE  ‘T’, ‘R’. 

 
     28.80 +                                                                     
           I             RR                    T T                               
           I                                                                     
           I           R RR                T   T T                               
           I             R                   T                                   
     22.80 +         R R                 T    T                                  
           I      R  2                    2  T                                   
 B         I             R                   T                                   
 O         I         R    R                T T                                   
 D         I    R                    T                                           
 Y   16.80 +                                                                     
 F         I                                                                     
 A         I       R                    T                                        
 T         IR   R                  TT                                            
           I    2                   T  T                                         
     10.80 +                                                                     
           -+---------+---------+---------+---------+                            
          14.40     26.40     38.40     50.40     62.40                          
 
                               TRICEPS 

 
Note the values of the axes have been determined automatically by the SCA System.  In 

addition, we have “distinguished” the two scatter plots by using the symbol ‘T’ for the data 
points of the first plot (X-variable is THIGH and Y-variable is BODYFAT), and `R' for the 
second plot (TRICEPS and BODYFAT). 

It may appear redundant that we specified the Y-VARIABLES above as BODYFAT 
and BODYFAT, but it was necessary.  The MPLOT paragraph does not place any limitation 
on the X or Y variables that can appear on the same frame.  For example, we can display the 
scatter plots of two distinct Y variables against two distinct X variables on the same frame.  
For the purpose of illustration, we will display the scatter plots of BODYFAT against 
TRICEPS and TRICEPS against THIGH on the same frame.  Here TRICEPS is used as both 
an X and a Y variable.  the symbols ‘B’ and ‘T’ will be used to distinguish the Y variable.  
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We will also force the ranges for the X-axis and Y-axis to be 0.0 to 60.0 and 0.0 to 40.0, 
respectively.  

 -->MPLOT   Y-VARIABLES  ARE  TRICEPS, BODYFAT.       @ 
 -->        X-VARIABLES  ARE  THIGH, TRICEPS.         @ 
 -->        SYMBOLS ARE ‘T’, ‘B’.   RANGES ARE Y(0.0, 40.0), X(0.0, 60.0) 

 
     37.50 +                                                                      
           I                                                                      
           I                                       T                              
           I                                   T2 2T                              
           I                    BB             T T                                
     25.00 +                   B2B           TT 2                                 
           I               BBBB             TT                                    
 B         I                 2  B       T2                                        
 O         I             B      B          T                                      
 D         I               B            T                                         
 Y   12.50 +          B B2                                                        
 F         I                                                                      
 A         I                                                                      
 T         I                                                                      
           I                                                                      
       .00 +                                                                      
           -+---------+---------+---------+---------+                             
            .00     15.00     30.00     45.00     60.00                           
                                                                                  
                               TRICEPS                        

 
The SCA System will use the names of the last X and Y variables specified for axes labels. 

3.3   Altering Basic Displays 

The plotting paragraphs of the SCA System are designed so that we only need to specify 
the names of the variables involved in order to generate a plot.  While the default options 
taken by a paragraph are sufficient in most situations, other features are available for specific 
needs.  This section explains and illustrates many of these features.  

3.3.1   Symbols for plots over time  

The SCA System displays a symbol to represent a data point.  In the case of a time plot, 
a data point is the value of a series at a time index.  Symbols are not connected to others in 
any way.  Specific symbols used are dependent upon the paragraph or those defined by the 
user.  

 
TSPLOT and TPLOT paragraphs 
 

The default set of symbols used for data in the TSPLOT paragraph is ‘1’, ‘2’, . . . , ‘9’, 
‘0’.  This set is repeated as needed.  The default symbol to designate a data point in the 
TPLOT paragraph is ‘X’.  If we desire, we can provide an alternative set of symbols.  
Symbols we provide for time plots are usually for the purpose of highlighting the periodic 
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occurrences of data.  As a result, we only provide a sequence of symbols for the number of 
points that comprise a period.  The symbol set is then repeated over and over until the data set 
to be plotted is exhausted.  For example, if the data in a series represent daily observations 
recorded on a weekly basis, then we may specify seven distinct symbols.  As a consequence, 
when the plots are displayed all “Mondays” will have the same symbol, all “Tuesdays” will 
have the same symbol, and so on.  Symbols are limited to 0 to 9 and A to Z, hence a 
maximum period of 36.  

For our convenience a default set of symbols is generated automatically in the TSPLOT 
paragraph that corresponds to the value specified in the SEASONALITY sentence.  The 
default symbol set generated is the first i symbols from  

 ‘1’, ‘2’, . . . , ‘9’, ‘0’, ‘A’, ‘B’, . . . , ‘Z’  
 
where i is the value in “SEASONALITY IS i”.  Hence the default set generated for the 
examples of TSPLOT presented in Section 3.1 should be  
 
 ‘1’, ‘2’, . . . , ‘9’, ‘0’, ‘A’, ‘B’.  
 
This sequence of symbols would be repeated in the display.  However, this default symbol set 
as overridden by our inclusion of the sentence  
 
 SYMBOL  IS  ‘*’  
 
The plot of PGAS over time is now shown with the System generated default set of symbols. 
 

-->TSPLOT   PGAS.    SEASONALITY IS 12.  
 

 TIME SERIES PLOT FOR THE VARIABLE PGAS                                                    
                                                                                           

------------+-----------+-----------+-----------+-----------+-----------+-------- 
690.00  +              3456                                                             + 

I                  78                                                           I 
I                    90AB                                                       I 
I                        12                                                     I 

630.00  +             2                789                                              + 
I            1             3      0A                                            I 
I    56789  B                       B                                           I 
I   4     0A                4 6                                                 I 

570.00  +                                    1     789                                  + 
I  3                         5        2   6   0A                                I 
I                                      3 5      B    5            67            I 
I 2                                              1 34 67         5  8  AB       I 

510.00  +                                       4         2     8 0A         90         + 
I                                                        9  B   4               I 
I1                                                           1                  I 
I                                                             23                I 

450.00  +                                                                               + 
------------+-----------+-----------+-----------+-----------+-----------+-------- 

           12          24          36          48          60          72         
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MTSPLOT and MTPLOT paragraphs 
 

When multiple time plots are displayed on the same frame, the symbol ‘A’ is used for 
all data points from the first series, ‘B’ for the second series, and so on unless we otherwise 
specify.  When a symbol set is specified, the symbols replace ‘A’, ‘B’, and so on; but cannot 
be used to indicate observations of the same period (e.g., day or month) as in the TSPLOT 
and TPLOT paragraphs.  

3.3.2   Tic marks, seasonality  

Tic marks appear along the time axis at specific multiples.  The default multiple for the 
TSPLOT and MTSPLOT paragraphs is 10; that is at 10, 20, 30, . . . .  The default multiple for 
the TPLOT and MTPLOT paragraphs is 5. 

It is also assumed that the index for the first observation of a series is 1.  However, we 
may wish to specify a different multiple for the tic mark, as well as a beginning index value.  
The former is useful when plotting periodic data such as hourly (24), weekly (7), or monthly 
(12) observations (as we did in Section 3.3.1 and above).  The SEASONALITY sentence 
provides a new multiple for the tic marks.  

The latter specification is useful in those cases when the data set being plotted does not 
begin at the start of a period.  For example, if a series is of monthly observations, we may 
want tic marks every December.  If the data actually begins in March, then we want to 
associate the first observation with the number 3.  In such a case the initial index for the data 
to be plotted may be specified as a second value in the SEASONALITY sentence.  For 
example, 

 SEASONALITY  IS  12,  3.  
 
indicates a periodicity of 12, but the first data point is the 3rd observation in a period (e.g., 
March).  If the SPAN sentence is used in conjunction with the SEASONALITY sentence, the 
System will determine tic-marks and symbols as if the entire data set is to be plotted, but only 
display the plot of the specified span.  This was evident in the TSPLOT of PGAS on page 3.6.  
For example, if we had entered 
 
 -->TSPLOT  PGAS.  SEASONALITY  IS  12.  SPAN  IS  39,  65. 
 
then the plot displayed would have tic-marks at 48 and 60, and the symbol for the first 
observation plotted would be ‘3’. 
 
Remark:   The SEASONALITY sentence is a replacement of the older sentence, TIC-
MARK.  In the event your version of the SCA System does not recognize the  
SEASONALITY sentence, it is likely you have an older version of the System.  In such a 
case, please substitute TIC-MARK for SEASONALITY. 
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3.3.3   Symbols for scatter plots  

As noted previously, the SCA System displays a symbol to represent a data point.  For a 
scatter plot, data point is a specific realization of a coordinate pair of values.  Symbols are not 
connected to others in any way.  Specific symbols used are dependent upon the paragraph or 
those defined by the user.  

PLOT paragraph 
 

When a single pair of variables is plotted in a frame, the default symbol displayed at any 
coordinate is ‘*’.  If two or more data points are required to be displayed at the coordinate, the 
following symbol is used:  

  2, 3, . . . , 9 occurrences  :  ‘2’, ‘3’, . . . , ‘9’, respectively;  

  10, . . . , 35 occurrences  :  ‘A’, . . . , ‘Z’, respectively;  

  36 or more  occurrences  :  ‘#’  
 

In lieu of the symbol ‘*’, we can define a variable of of symbolic “tags” that are to be 
used in the display for each data pair.  This “tagging” information can be useful to keep track 
of occurrences that share some common trait.  For example, in our plots of BODYFAT 
against TRICEPS and THIGHS, we may wish to distinguish individuals based on age (under 
20, over 20) or race.  We may also wish to “tag” data recorded according to, or otherwise 
follow, a periodic pattern.   

The number of symbols contained in the “tagging” variable must be the same as the 
number of data points displayed.  The coordinate pair is represented by the first symbol of the 
tagging variable, the second pair by the second symbol, and so on.  The distinct “tags” that are 
available are the symbol ‘*’, the values 2-9, and the letters A-Z.  The SCA System makes the 
following association between the value in the tagging variable and the symbol that is 
displayed:  

 If the value of tagging variable is  the symbol displayed is 
 
  1            * 
  2, 3, ..., 9     2, 3, ..., 9 
  10, 11, ..., 35     A, B, ..., Z 
 

Values may be repeated within the tagging variable.  This variable must be created 
outside of the PLOT paragraph, either by using the INPUT paragraph (see Chapter 2) or by 
the GENERATE or other data editing paragraphs (see Appendix B). 

To illustrate the creation and use of tags, the scatter plot of BODYFAT against 
TRICEPS of Section 3.2 will be displayed.  The symbol ‘A’ will be used to represent the first 
10 cases, and the symbol ‘B’ will be used to represent the last 10 cases.  First, we will 
generate a variable of tags, TAGS, using the GENERATE paragraph.  The number 10 
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(associated with ‘A’) is assigned to the first 10 values and 11 (associated with ‘B’) is assigned 
to the next 10 values. 

 -->GENERATE  TAGS.   NROWS ARE 20.   VALUES ARE 10 FOR 10, 11 FOR 10. 
 THE SINGLE PRECISION VARIABLE  TAGS  IS GENERATED        

 
We now use the TAGSET sentence within the PLOT paragraph. 

 -->PLOT   BODYFAT, TRICEPS.   TAGSET IS TAGS. 
 

     28.80 +                                                                     
           I                                  B A                                
           I                                                                     
           I                             A   B B                                 
           I                                B                                    
     22.80 +                      A     B                                        
           I                 A     BA                                            
 B         I                                 A                                   
 O         I                        A         A                                  
 D         I            B                                                        
 Y   16.80 +                                                                     
 F         I                                                                     
 A         I                  B                                                  
 T         I  B        A                                                         
           I          B A                                                        
     10.80 +                                                                     
           -+---------+---------+---------+---------+                            
          13.50     18.50     23.50     28.50     33.50                          
                                                                                 
                               TRICEPS                                         

 
The tags show that the levels of bodyfat and triceps do not seem to be affected by the 

order in which measurements were taken (or recorded). 

MPLOT paragraph 
 

When multiple pairs of variables are displayed on the same frame, the symbol ‘A’ 
represents the coordinate of a value from the first pair of variables, ‘B’ represents the 
coordinate of a value from the second pair of variables, and so on.  The symbol ‘*’ is used to 
represent any overlapped data points.  No distinctions are made regarding which data points 
overlap.  For example, the ‘*’ symbol will be displayed if two coordinates of values from the 
first pair of variables are the same, if two coordinates of values from the second pair of 
variables are the same, or if the coordinate of a value from the first pair of variables is the 
same as the coordinate of a value from the second pair of variables.  Hence we may need to 
employ some caution in interpreting the ‘*’ symbol should it appear.  

We can designate a specific symbol for each pair of variables, as we did in the MPLOT 
examples of Section 3.2.  The SYMBOLS sentence is used for this purpose.  
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3.3.4   Scatter plot displays  

Scatter plots are displayed with a horizontal X-axis and vertical Y-axis.  The name of 
the variable of each axis is also displayed.  In the case of multiple plots on the same frame, the 
names of the last X and Y variables are displayed.  

 
Display layouts 
 

Three types of display layouts are available.  The type of layout may be changed by 
using the LAYOUT sentence.  Available layouts (and associated keywords) are:  

L-shape (L) -- Axes form to resemble the letter ‘L’.  This is the default. 
Box-type (BOX) -- ‘L’ above is “completed” to resemble a rectangle. 
Grid-type (GRID) -- Cross hatch markings are included in a box-type layout.   

 Markings occur at tic-marks. 
 
Titles for plots 
 

A title can be included with any plot.  The TITLE sentence is included in the paragraph 
with the desired title.  The title may be 72 characters or less and must be enclosed in a pair of 
apostrophes (‘),  

To illustrate a box-type and grid-type layout, and the use of titles, the scatter plot 
BODYFAT against TRICEPS will be shown in both forms. 

 -->PLOT  BODYFAT, TRICEPS.  LAYOUT IS BOX.  TITLE IS       @ 
 --> ‘ SCATTER PLOT OF BODYFAT VS TRICEPS WITH A BOX-TYPE LAYOUT ‘. 

 
         SCATTER PLOT OF BODYFAT VS TRICEPS WITH A BOX-TYPE LAYOUT  
 
          13.50     18.50     23.50     28.50     33.50   
           -+---------+---------+---------+---------+-    
     28.80 +                                         +    
           I                                  * *    I                           
           I                                         I                           
           I                             *   * *     I                           
           I                                *        I                           
     22.80 +                      *     *            +                           
           I                 *     **                I                           
 B         I                                 *       I                           
 O         I                        *         *      I                           
 D         I            *                            I                           
 Y   16.80 +                                         +                           
 F         I                                         I                           
 A         I                  *                      I                           
 T         I  *        *                             I                           
           I          * *                            I                           
     10.80 +                                         +                           
           -+---------+---------+---------+---------+-                           
          13.50     18.50     23.50     28.50     33.50                          
                                                                                 
                               TRICEPS    
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 -->PLOT   BODYFAT, TRICEPS.  LAYOUT IS GRID.    TITLE IS    @ 
 --> ‘SCATTER PLOT OF BODYFAT VS TRICEPS WITH A GRID-TYPE LAYOUT ‘.  

 
         SCATTER PLOT OF BODYFAT VS TRICEPS WITH A GRID-TYPE LAYOUT  
 
 
          13.50     18.50     23.50     28.50     33.50  
           -+---------+---------+---------+---------+-   
     28.80 +          I         I         I          +   
           I          I         I         I   * *    I   
           I          I         I         I          I   
           I          I         I        *I  * *     I   
           I          I         I         I *        I   
     22.80 +----------I---------I-*-----*-I----------+   
           I          I      *  I  **     I          I   
 B         I          I         I         I  *       I   
 O         I          I         I   *     I   *      I   
 D         I          I *       I         I          I   
 Y   16.80 +----------I---------I---------I----------+   
 F         I          I         I         I          I   
 A         I          I       * I         I          I   
 T         I  *       I*        I         I          I   
           I          * *       I         I          I   
     10.80 +          I         I         I          +   
           -+---------+---------+---------+---------+-   
          13.50     18.50     23.50     28.50     33.50  
 
                               TRICEPS       
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SUMMARY OF THE SCA PARAGRAPHS IN CHAPTER 3 

 
This section provides a summary of those SCA paragraphs employed in this chapter.  

The syntax for each paragraph is presented in both a brief and full form.  The brief display of 
the syntax contains the most frequently used sentences of a paragraph, while the full display 
presents all possible modifying sentences of a paragraph.  In addition, special remarks related 
to a paragraph may also be presented with the description.   

Each SCA paragraph begins with a paragraph name and is followed by modifying 
sentences.  Sentences that may be used as modifiers for a paragraph are shown below and the 
types of arguments used in each sentence are also specified.  Sentences not designated 
required may be omitted as default conditions (or values) exist.  The most frequently used 
required sentence is given as the first sentence of the paragraph.  The portion of this sentence 
that may be omitted is underlined.  This portion may be omitted only if this sentence appears 
as the first sentence in a paragraph.  Otherwise, all portions of the sentence must be used.  The 
last character of each line except the last line must be the continuation character, ‘@’. 

The paragraphs to be explained in this summary are TSPLOT, MTSPLOT, TPLOT, 
MTPLOT, PLOT, and MPLOT. 

 
 Legend (see Chapter 2 for further explanation) 
 
 v : variable name 
 i : integer 
 r : real value 
 w : keyword 
 ‘c’ : character data (must be enclosed within single apostrophes) 
 
 
 
TSPLOT, TPLOT Paragraphs 
 

The TSPLOT paragraph is used to specify the horizontal time plot of one or more series 
in separate frames.  The TPLOT paragraph is used to display the vertical time plot of one or 
more series in separate, parallel frames on the display device. 
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Syntax of the TSPLOT or TPLOT Paragraph 
 
Brief syntax 

 
Full syntax 

TSPLOT VARIABLES  ARE  v1, v2, --- . 
 
        or 
 
TPLOT  VARIABLES  ARE  v1, v2, --- . 

TSPLOT VARIABLES  ARE  v1, v2, --- . @ 
(or TPLOT) SEASONALITY  IS  i1, i2.  @ 
  SPAN  IS  i1, i2.   @ 

 TITLE  IS  ‘c’.    @ 
  SYMBOLS  ARE  ‘c1’,  ‘c2’, --- . @ 

 RANGE  IS  r1, r2. 
 
Required sentence:  VARIABLE(S) 

 
 
Sentences Used in the TSPLOT or TPLOT Paragraph 

VA
The VARIABLES sentence is used to specify the names of the series to be plotted. 

SE

EASONALITY replaces the sentence TIC-MARK of older versions 
of the SCA System. 

SPA
hich 

values will be plotted.  The default is that all observations in the series will be used. 

TIT

rophes and have no more than 72 characters.  The default is that 
no title will be displayed. 

 
RIABLES sentence 

ASONALITY sentence 
The SEASONALITY sentence is used to specify the multiple (i1) at which a tic-mark is 
printed along the time axis and the value of the index (i2) of the first observation.  The 
default value of i1 is 10 and of i2 is 1 (or the lower limit of the SPAN sentence if this 
sentence is specified).  Specification of a seasonality will also generate a default set of 
symbols (unless overwritten by the SYMBOLS sentence).  See Section 3.3 for a further 
explanation.  Note S

N sentence 
The SPAN sentence is used to specify the span of time indices, from i1 to i2, for w

LE sentence 
The TITLE sentence is used to specify the title for the plot(s).  The specified title must be 
enclosed in a pair of apost
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SYMBOLS sentence 
The SYMBOLS sentence is used to specify a sequence of symbols repeated in the plot. 
The default symbols used are the first i characters of the set ‘1’, ‘2’, ... ‘9’, ‘0’, ‘A’, ‘B’, 
..., ‘Z’ where i is the distance between axis tic-marks.  The value of i corresponds to the 
SEASONALITY specified (default is i=10).  Specification of the SYMBOLS sentence 
overrides this default set of symbols. 

RANGES sentence 
The RANGES sentence is used to specify the upper and lower limits for the series to be 
plotted.  The default are limits determined automatically by the SCA System. 

 
 
MTSPLOT, MTPLOT Paragraphs 
 

The MTSPLOT paragraph is used to display the time plot of more than one series on the 
same horizontal frame.  The MTPLOT paragraph is used to display the time plot of more than 
one series on the same vertical time frame. 

 
Syntax for the MTSPLOT or MTPLOT Paragraph 
 
Brief syntax 

 
Full syntax 

 
 

MTSPLOT VARIABLES  ARE  v1, v2, --- . 
 
        or 
 
MTPLOT VARIABLES  ARE  v1, v2, --- . 

MTSPLOT VARIABLES  ARE  v1, v2, --- . @ 
(or MTPLOT) SEASONALITY  IS  i1, i2.  @ 
  SPAN  IS  i1, i2.   @ 
  TITLE  IS  'c'.    @ 

 SYMBOLS  ARE  'c1', 'c2', --- .  @ 
 SPAN  IS  i1, i2.   @ 

  RANGE  IS  r1, r2. 
 
 Required sentence:  VARIABLES 
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Sentences Used in the MTSPLOT or MTPLOT Paragraph 
 
VARIABLES sentence 

The VARIABLES sentence is used to specify the names of the series to be plotted. 

SEASONALITY sentence 
The SEASONALITY sentence is used to specify the multiple (i1) at which a tic-mark is 
printed along the time axis and the value of the index (i2) of the first observation.  The 
default value of i1 is 10 and of i2 is 1 (or the lower limit of the SPAN sentence if this 
sentence is specified).  See Section 3.3 for a further explanation.  Note SEASONALITY 
replaces the sentence TIC-MARK of older versions of the SCA System. 

SPAN sentence 
The SPAN sentence is used to specify the span of time indices, from i1 to i2, for which 
values will be plotted.  The default is that all observations in the series will be used. 

TITLE sentence 
The TITLE sentence is used to specify the title for the plot(s).  The specified title must be 
enclosed in a pair of apostrophes and have no more than 72 characters.  The default is that 
no title will be displayed. 

SYMBOLS sentence 
The SYMBOLS sentence is used to specify the SYMBOLS for distinguishing different 
series.  If this sentence is omitted, `A' represents the first series, `B' the second, etc. 

RANGES sentence 
The RANGES sentence is used to specify the upper and lower limits for the series to be 
plotted.  The default are limits determined automatically by the SCA System. 
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PLOT Paragraph 
 

The PLOT paragraph is used to construct and display the scatter plot of a single pair of 
variables or the plots of multiple pairs of variables on separate frames, each frame having the 
same X and Y scaling. 

Syntax for the PLOT Paragraph 
 
Brief syntax 

 
Full syntax 

PLOT Paragraph

PLOT    VARIABLES  ARE   v1, v2 

PLOT VARIABLES  ARE  v1, v2.  @ 
 X-VARIABLES  ARE  v1, v2, --- . @ 
 Y-VARIABLES  ARE  v1, v2, --- . @ 
 TITLE  IS  ‘c’.    @ 
 SPAN  IS  i1, i2.   @ 
 TAGSETS  ARE  v1, v2, --- .  @  
 RANGES  ARE  X(r1,r2), Y(r3,r4) @ 
 LAYOUT  IS  w.   @ 
 SIZE  IS  X(i1), Y(i2).   @ 
 TIC-MARK  IS  X(i1), Y(i2).  @ 
 GRID  IS  X(i1), Y(I2). 
 
Required sentences:  VARIABLES, or X-VARIABLES and Y-VARIABLES 

 
 
Sentences Used in the  
 
VA

.  Note that when this sentence is used, the X-
VARIABLE and Y-VARIABLE sentences are ignored.  It is invalid to specify more than 

es in this sentence. 

X-V
ify the names of the variables to be plotted 

along the horizontal axis.  The number of variables specified in this sentence must be the 
same as that in the Y-VARIABLE sentence. 

RIABLES sentence 
The VARIABLES sentence is used to specify the names (labels) of the Y (vertical) 
variable, v1, and X (horizontal) variable, v2

one pair of variable nam

ARIABLE sentence 
The X-VARIABLE sentence is used to spec
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Y-VARIABLE sentence 
The Y-VARIABLE sentence is used to specify the names of the variables to be plotted 
along the vertical axis.  The number of variables specified in this sentence must be the 
same as that in the X-VARIABLE sentence. 

TITLE sentence 
The TITLE sentence is used to specify the title for the plot(s).  The specified title must be 
enclosed in a pair of apostrophes and have no more than 72 characters.  The default is that 
no title will be displayed. 

SPAN sentence 
The SPAN sentence is used to specify the span of indices, from i1 to i2, for which the 
values of the co-ordinates will be plotted.  The default is to plot all cases. 

TAGSETS sentence 
The TAGSETS sentence is used to specify the name(s) of variable(s) containing the “tags” 
to be used in plotting data.  The default is none.  See Section 3.3.3 for the way the values 
of the TAGSET variable(s) are converted to symbols.  If the TAGSET sentence is used, 
one variable must be specified for each Y-VARIABLE specified. 

RANGES sentence 
The RANGES sentence is used to specify the upper and lower limits for the X and Y 
variable values to be plotted.  The default are limits determined automatically by the SCA 
System. 

LAYOUT sentence 
The LAYOUT sentence is used to specify the layout type for the axes of the plot.  The 
valid keywords are L for L-shape layout, BOX for box-type layout, and GRID for grid-
type layout.  The default layout is L-shape. 

SIZE sentence 
The SIZE sentence is used to specify the number of character units for the width of the X-
axis and Y-axis.  The default is 50 characters for the X-axis and 30 characters for the Y-
axis. 

TIC-MARK sentence 
The TIC-MARK sentence is used to specify the intervals (in number of character units) 
for the printing of tic-marks on the X and Y axes.  The default is 10 units for the X-axis 
and 5 units for the Y-axis. 

GRID sentence 
The GRID sentence is used to specify the number of tic-marks on each axis within a grid 
for hatch markings.  This sentence can be specified only if the plot layout is GRID.  The 
default is 1 for both X and Y. 
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MPLOT Paragraph 
 

The MPLOT paragraph is used to display the scatter plot(s) as one or more pair(s) of 
variables on the same frame. 

Syntax for the MPLOT Paragraph 
 
Brief syntax 

 
Full syntax 

PLOT Paragraph

MPLOT X-VARIABLES  ARE  v1, v2, --- . @ 
  Y-VARIABLES  ARE  v1, v2, --- . 

MPLOT X-VARIABLES  ARE  v1, v2, --- . @ 
  Y-VARIABLES  ARE  v1, v2, --- . @ 
  TITLE  IS  ‘c’.    @ 

 SPAN  IS  i1, i2.   @ 
  RANGES  ARE  X(r1,r2), Y(r3,r4). @ 

 SYMBOLS  ARE  ‘c1’, ‘c2’, --- . @ 
  LAYOUT  IS  w.   @ 

 SIZE  IS  X(i1), Y(i2).   @ 
  TIC-MARK  IS  X(i1), Y(i2).  @ 

 GRID  IS  X(i1), Y(i2). 
 
Required sentences:  X-VARIABLES  and  Y-VARIABLES 

 
Sentences Used in the M  
 
X-V

ify the names of the variables to be plotted 
along the horizontal axis.  The number of variables specified in this sentence must be the 

ARIABLE sentence. 

Y-V
ify the names of the variables to be plotted 

along the vertical axis.  The number of variables specified in this sentence must be the 
 the X-VARIABLE sentence. 

TIT
d to specify the title for the plot(s).  The specified title must be 

enclosed in a pair of apostrophes and have no more than 72 characters.  The default is that 
no title will be displayed. 

ARIABLE sentence 
The X-VARIABLE sentence is used to spec

same as that in the Y-V

ARIABLE sentence 
The Y-VARIABLE sentence is used to spec

same as that in

LE sentence 
The TITLE sentence is use
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SPAN sentence 
The SPAN sentence is used to specify the span of indices, from i1 to i2, for which the 
values of the co-ordinates will be plotted.  The default is all cases. 

RANGES sentence 
The RANGES sentence is used to specify the upper and lower limits for the X and Y 
variable values to be plotted.  The default is all the values. 

SYMBOLS sentence 
The SYMBOLS sentence is used to specify the SYMBOLS that will represent co-
ordinates of different pairs of variables.  If no set of symbols is specified, ‘A’ represents 
co-ordinates of the first pair of variables, and ‘B’ represents co-ordinates of the second 
pair, etc.  

LAYOUT sentence 
The LAYOUT sentence is used to specify the layout type for the axes of the plot.  The 
valid keywords are L for L-shape layout, BOX for box-type layout, and GRID for grid-
type layout.  The default layout is L-shape. 

SIZE sentence 
The SIZE sentence is used to specify the number of character units for the width of the X-
axis and Y-axis.  The default is 50 characters for the X-axis and 30 characters for the Y-
axis. 

TIC-MARK sentence 
The TIC-MARK sentence is used to specify the intervals (in number of character units) 
for the printing of tic-marks on the X and Y axes.  The default is 10 units for the X-axis 
and 5 units for the Y-axis. 

GRID sentence 
The GRID sentence is used to specify the number of tic-marks on each axis within a grid 
for hatch markings.  This sentence can be specified only if the plot layout is GRID.  The 
default is 1 for both X and Y. 
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CHAPTER 4 

LINEAR REGRESSION ANALYSIS 

  
Regression analysis is a statistical method used in modeling relationships that may exist 

between variables.  In a regression analysis, we relate the response of a dependent variable to 
the values of potential explanatory variables.  We have great flexibility in the choice of such 
explanatory variables.  We may use variables whose values are recorded concurrently with the 
dependent variable, as well as variables provided from other sources (e.g., government 
statistics, stock prices, interest rate data, etc.).  Regression models can also be used to 
incorporate such time entities as trends and seasonal indicators into a model, but it is more 
appropriate to use time series models in such cases.  Once a model is established, it may be 
used to make inferences about the formulated relationships, or to make predictions for future 
responses when the explanatory variables are at designated levels. 

Regression methods provide us with modeling tools that: (1) are easily understandable 
and presentable; (2) are flexible enough to include various types of information; and (3) 
produce results (e.g., estimates, forecasts) that are quantified.  The latter is important as it 
permits us to statistically assess the validity of the model and/or its predicted values, as well 
as the relative “importance” of components of the model.  As a result, regression models are 
popular tools for analysis and forecasting. 

Traditional uses of regression have a number of drawbacks.  One problem is the blind 
incorporation of a flood of explanatory variables in a model.   The inclusion of too many 
variables within a model can obscure the information that may be obtained from a more 
meaningful subset.  The explanatory variables may be highly correlated, which may cause 
problems in the estimation of model parameters.  However, the most serious problem in the 
use of regression models occurs with time dependent data (i.e., data collected over time).  
Serial correlation in the error component of a regression model can result in a model that is 
ineffectual (Granger and Newbold, 1974) or, more likely, incorrect (Box and Newbold, 1971). 

A brief overview of the linear regression model and the regression analysis capabilities 
of the SCA System is presented in this chapter.  A more detailed presentation of topics related 
to the SCA implementation of the linear regression model (including computational methods 
used) may be found in Chapter 9 of The SCA Statistical System:  Reference Manual for 
General Statistical Analysis.  More information on the properties of linear models and 
regression analysis can be found in such texts as Draper and Smith (1981), Neter, Wasserman, 
and Kutner (1983), Daniel and Wood (1980), Graybill (1961), and Seber (1977).  

 
 



4.2 LINEAR REGRESSION ANALYSIS 

4.1    A Brief Overview of Linear Regression Analysis 

The linear regression model is part of a more general class of linear models.  Properties 
of linear models and regression analysis have been considered by many authors including 
Draper and Smith (1981), Seber (1977), Neter and Wasserman (1974), Neter, Wasserman, and 
Kutner (1983), Searle (1971), Daniel and Wood (1980), Graybill (1961), Rao (1973) and 
references contained therein.  This section briefly reviews the linear regression model.  
Information regarding various diagnostic checks for a fitted regression model is found in 
Section 4.4.2. 

The simplest type of relationships between variables occurs when the responses for the 
dependent variable appear to nearly follow a straight line when plotted against the values of a 
single explanatory variable.  In such a relationship, the predicted value of the dependent 
variable, , can be obtained from the linear equation Ŷ

Ŷ a b X= +  (4.1) 

where X is an explanatory variable and a and b are estimated values.  We can extend this 
linear relation to include more than one explanatory variables with the equation 
 

0 1 1 2 2 mŶ b b  X b  X b X= + + + ⋅⋅⋅ m    (4.2) 

 The general form of the linear regression model can be written as 
 

j 0 1 1j 2 2 j m mj jY X X X ,    j 1, 2,..., n;= β +β +β + ⋅⋅⋅+β + ε =    (4.3) 

where 
 
   is the  observation (trial, case) of a response, or dependent, variable; jY thj
 
  is the  observation of the i  explanatory, or independent, variable (i.e., ijX thj th

                 a variable whose values are known); 
 
 are parameters to be estimated, and 0 1 2 m, , ,....,β β β β
 
  is an error term. jε
 
The error terms are assumed to be uncorrelated random variables with mean zero and 
unknown variance, σ .  The estimates for parameters in the above equation, β β , are 
chosen to minimize the sum of the squared errors, i.e., 

2
0 1 m

ˆ ˆ ˆ, ,...,β

 

  
n
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j j
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ˆSSE (Y Y )
=
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where     (4.4) j 0 1 1j 2 2 j m
ˆ ˆ ˆ ˆŶ X X= β +β +β + ⋅⋅⋅β mjX

 
The estimates obtained in the above manner are referred to as the least squares estimates of 
the regression model.  When we use a regression model with time dependent data, the index t 
will be used in lieu of the index j.  In this way, we more explicitly emphasize the presence of 
time, or any time dependent relationships, in the model. 
 

We may observe that equations (4.2) and (4.4) are the same (with the index j omitted).  
A usual assumption is that the error terms follow a normal distribution (i.e., N(0, 2σ )).  In 
such a case, the least squares estimates for the parameters are also the maximum likelihood 
estimates.  Note that in this chapter we use p to indicate the number of parameters to be 
estimated.  We observe that p=m+1 if a constant is included in the model (i.e.,  is included 
in the model) and p=m otherwise. 

0β

4.2   A Regression Example 

The specification and estimation of a linear regression model is easily accomplished 
using the REGRESS paragraph.  To illustrate the use of regression analysis, we will analyze a 
set of data pertaining to beer distribution (Montgomery, 1991, page 501).  In an effort to 
analyze the delivery system of a beer distributor, in particular, the time required to service a 
retail outlet, the following data and factors are studied: 

 (1)  The delivery time (in minutes) to service an outlet, 
 (2)  The number of cases of beer delivered to the outlet, and 
 (3)  The maximum distance the delivery man must travel. 
  
The data are shown in Table 4.1 and are stored in the SCA workspace under the labels 
DELIVERY, CASES, and DISTANCE, respectively. 
 

Table 4.1    Beer delivery time data 

Observation 
Number 

Number of Cases 
CASES 

Distance 
DISTANCE 

Delivery Time 
(minutes) 

DELIVERY 

1 10 30 24 
2 15 25 27 
3 10 40 29 
4 20 18 31 
5 25 22 25 
6 18 31 33 
7 12 26 26 
8 14 34 28 
9 16 29 31 
10 22 37 39 
11 24 20 33 
12 17 25 30 
13 13 27 25 
14 30 23 42 
15 24 33 40 
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We first plot DELIVERY against both CASES and DISTANCE to check if there are 
any obvious relationships or unusual occurrences in the data. 

 -->PLOT   DELIVERY, CASES 
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 -->PLOT   DELIVERY, DISTANCE 
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In the scatter plot between DELIVERY and CASES, we observe a strong linear 

relationship between the number of cases delivered and delivery time.  However, there 
appears to be an aberration from linearity for the delivery time when 25 cases are delivered.  
This corresponds to observation number 5.  No clear patterns are seen in the scatter plot 
between DELIVERY and DISTANCE. 

We now will regress DELIVERY on CASES and DISTANCE.  That is, we will use the 
REGRESS paragraph to obtain the fitted equation (omitting the “hat”) 
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  0 1 2DELIVERY b b  CASES b  DISTANCE= + +
 
To obtain this fit, we specify the dependent and explanatory variables as 
 
 REGRESS   DELIVERY, CASES, DISTANCE 
 

The actual REGRESS command is shown below together with other modifying (or 
optional) sentences that will be explained later.  The continuation character (@) is used to 
continue our commands to a second line. 

 -->REGRESS   DELIVERY, CASES, DISTANCE.  DIAGNOSTICS ARE FULL.     @ 
 -->          HOLD  RESIDUALS(RESID), FITTED(FIT) 

 
We obtain the following: 
 

 REGRESSION ANALYSIS FOR THE VARIABLE     DELIVERY                                    
                                                                                  
 PREDICTOR       COEFFICIENT    STD. ERROR     T-VALUE                            
 INTERCEPT          2.31120       5.85730         .39                             
    CASES            .87720        .15303        5.73                             
 DISTANCE            .45592        .14676        3.11                             
                                                                                  
 CORRELATION MATRIX OF REGRESSION COEFFICIENTS                                    
                                                                                  
    CASES      1.00                                                               
 DISTANCE       .41     1.00                                                      
              CASES DISTANCE                                                      
                                                                                  
 S =        3.1408      R**2 =  73.7%      R**2(ADJ) =  69.3%  
 
 ---------------------------                                                      
 ANALYSIS OF VARIANCE TABLE                                                       
 ---------------------------                                                      
                                                                                  
   SOURCE     SUM OF SQUARES    DF    MEAN SQUARE     F-RATIO                     
 REGRESSION          331.359     2        165.679      16.795                     
  RESIDUAL           118.375    12          9.865                                 
 ADJ. TOTAL          449.733    14                                                
                                                                                  
   SOURCE      SEQUENTIAL SS    DF    MEAN SQUARE     F-RATIO                     
   CASES             236.161     1        236.161      23.940                     
   DISTANCE           95.198     1         95.198       9.650                     
 
 
 DIAGNOSTIC STATISTICS:                                                           
                                        STUDENTIZED                               
  CASE   OBSERVED           STANDARDIZED  DELETED    COOK'S                       
   NO.     VALUE    RESIDUAL  RESIDUAL   RESIDUAL   DISTANCE   LEVERAGE           
    1    24.0000     -.7609      -.27      -.26       .006       .198             
    2    27.0000      .1327       .05       .04       .000       .124             
    3    29.0000     -.3201      -.13      -.12       .003       .356             
    4    31.0000     2.9381      1.09      1.09       .136       .258             
    5    25.0000    -9.2716     -3.27 *   -9.44 *     .803       .184             
    6    33.0000      .7656       .26       .24       .002       .086             
    7    26.0000     1.3084       .46       .45       .016       .183             
    8    28.0000    -2.0934      -.72      -.70       .028       .139             
    9    31.0000     1.4318       .47       .46       .006       .075             
   10    39.0000      .5212       .21       .20       .008       .348             
   11    33.0000      .5175       .18       .18       .003       .203             
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   12    30.0000     1.3783       .46       .45       .007       .094             
   13    25.0000    -1.0247      -.35      -.34       .007       .137             
   14    42.0000     2.8865      1.14      1.16       .237       .352             
   15    40.0000     1.5905       .59       .57       .041       .262             
                                                                                  
 "*" DENOTES AN OBSERVATION WITH A LARGE RESIDUAL   

 
A discussion of SCA output and regression diagnostic statistics is given in Section 4.4.  

The fitted equation from the above regression can be obtained from the first few lines of 
output as 

 DELIVERY = 2.31 + .88 CASES + .46 DISTANCE. 
 
The estimates associated with CASES and DISTANCE are statistically significant as their 
absolute t-values are greater than 2.15 (the approximate 5% critical level for the sample size).  
The small t-value associated with the intercept term, 0.39, implies that this estimate cannot be 
distinguished statistically from zero.  Hence we may wish to exclude this term from our 
model (see Section 4.2.3).  However, before we employ this equation, we need to check the 
models's validity. 
 

4.2.1   Some diagnostic checks of the model 

A regression analysis is not complete without diagnostic checks of the fit.  A more 
complete discussion of diagnostic checking is given in Section 4.4.2.  In an effort to assess the 
above model's validity, we requested a display of a set of diagnostic statistics by including the 
DIAGNOSTICS sentence in the paragraph.  By asking for a FULL display, we obtain the 
values of these diagnostic statistics for all cases.  These statistics are meaningful provided 
there is no serial correlation in the data (see Section 4.3.1) and the sample size is not very 
large.  The value of the standardized residual, studentized deleted residual and Cook’s 
distance (see Section 4.4.2) for case number 5 mark it as a potential outlier. 

The values obtained using the fitted equation have been retained under the label FIT.  
The residuals of the fit (i.e., DELIVERY - FIT) are stored in the variable RESID.  The 
residuals should approximate values that are randomly drawn from a standard normal 
distribution.  We can observe the spurious nature of this observation (case number 5) in the 
probability plot of the residuals and in the plots of the residual series RESID against the 
explanatory variables CASES and DISTANCE (see Section 4.4.2).  In each case there is only 
one observation that leads us to question the adequacy of the fitted model, observation 5. 

 -->PPLOT   RESID 
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 NORMAL  
 PROBABILITY  
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-->PLOT   RESID, CASES 
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-->PLOT  RESID, DISTANCE 
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4.2.2   Observing the effect of a spurious observation 

Montgomery (1991, page 504) suggests that a data recording error could have been 
made at observation 5 (DELIVERY entered as 25 instead of 35).  However, there was no way 
to verify this.  To observe the effect of a possible recording error, we will recode the value to 
35 and re-run the regression analysis.  We can recode the value directly using an analytic 
assignment statement (see Appendix A). 

 -->DELIVERY(5) = 35 
 
 -->REGRESS  DELIVERY, CASES, DISTANCE.   DIAGNOSTICS ARE FULL.    @ 
 -->         HOLD RESIDUALS (RESID),  FITTED (FIT) 
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 REGRESSION ANALYSIS FOR THE VARIABLE     DELIVERY 
 
 PREDICTOR       COEFFICIENT    STD. ERROR     T-VALUE  
 INTERCEPT          2.84270       2.05241        1.39   
    CASES            .98803        .05362       18.43   
 DISTANCE            .38951        .05143        7.57   
 
 CORRELATION MATRIX OF REGRESSION COEFFICIENTS  
 
    CASES      1.00                  
 DISTANCE       .41     1.00         
              CASES DISTANCE         
 
 S =        1.1005      R**2 =  96.6%      R**2(ADJ) =  96.0%  

                             
 ---------------------------                                                      
 ANALYSIS OF VARIANCE TABLE                                                       
 ---------------------------                                                      
                                                                                  
   SOURCE     SUM OF SQUARES    DF    MEAN SQUARE     F-RATIO                     
 REGRESSION          411.199     2        205.600     169.750                     
  RESIDUAL            14.534    12          1.211                                 
 ADJ. TOTAL          425.733    14                                                
 
   SOURCE      SEQUENTIAL SS    DF    MEAN SQUARE     F-RATIO  
   CASES             341.716     1        341.716     282.133  
   DISTANCE           69.483     1         69.483      57.368  
 
 
 DIAGNOSTIC STATISTICS:                                   
                                        STUDENTIZED       
  CASE   OBSERVED           STANDARDIZED  DELETED    COOK'S        
   NO.     VALUE    RESIDUAL  RESIDUAL   RESIDUAL   DISTANCE   LEVERAGE   
    1    24.0000     -.4081      -.41      -.40       .014       .198     
    2    27.0000     -.4007      -.39      -.37       .007       .124 
    3    29.0000      .6968       .79       .78       .115       .356  
    4    31.0000     1.3857      1.46      1.54       .247       .258  
    5    35.0000    -1.1125     -1.12     -1.13       .094       .184  
    6    33.0000      .2981       .28       .27       .003       .086  
    7    26.0000     1.1738      1.18      1.20       .104       .183  
    8    28.0000    -1.9183     -1.88     -2.14 *     .190       .139  
    9    31.0000     1.0532       .99       .99       .027       .075  
   10    39.0000      .0090       .01       .01       .000       .348  
   11    33.0000    -1.3454     -1.37     -1.43       .160       .203  
   12    30.0000      .6232       .60       .58       .012       .094  
   13    25.0000    -1.2037     -1.18     -1.20       .074       .137  
   14    42.0000      .5579       .63       .61       .072       .352  
   15    40.0000      .5910       .63       .61       .046       .262  
 
 "*" DENOTES AN OBSERVATION WITH A LARGE RESIDUAL  

 
We observe that the fitted equation is only slightly changed from  
 
 TIME = 2.31 + .88 CASES + .46 DISTANCE 
to 
 TIME = 2.84 + .99 CASES + .39 DISTANCE 
 
However, recoding the single point has an appreciable effect on variance.  We see: 
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(1)  Standard errors of coefficients for CASES and DISTANCE are 1/3 of what they were 
previously (resulting in a dramatic change in the t-values of the coefficients); 

 
(2)  A substantial change in the amount of the REGRESSION sum of squares in the 

ANOVA table (from 331.359 to 411.199); and hence a 
 
(3)  Change in  from 73.7% to 96.6%.  (Please see Section 4.4.1 for a more complete 

discussion on the interpretation of .) 

2R
2R

 
The probability plot of the residuals reveals no apparent model inadequacy. 
 

 -->PPLOT   RESID 
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Similarly, as would be expected, the plots of RESID against the explanatory variables 

CASES and DISTANCE now show no evidence of model inadequacy.  Hence it is possible a 
simple recording error has affected the results of the analysis dramatically.  This indicates the 
need for a careful diagnostic check of a model (see Section 4.4.2). 

4.2.3   An overview of model specification in the REGRESS paragraph 

The SCA System provides a number of ways to specify information regarding a 
regression or a fit of a linear model.  This section describes the most frequently used 
information. 
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Specifying dependent and independent variables 
 

The basic information required for a regression analysis are the names of the dependent 
and independent variables.  In the above example, DELIVERY was regressed on CASE and 
DISTANCE.  These variables are easily specified by listing their names immediately after the 
REGRESS command.  The first variable specified is used as the dependent variable.  All other 
variables are used as regressors in the model.  Hence 

 REGRESS    VARIABLES  ARE  DELIVERY,  CASES,  DISTANCE. 
 
or, as we used in abbreviated form, 
 
 REGRESS   DELIVERY,  CASES,  DISTANCE. 
 
is interpreted as a regression specification of DELIVERY on CASES and DISTANCE. 
 
Including a constant term 
 

Whenever we list the variables involved in a regression, a constant term is also included.  
This is the default formulation used by the SCA System.  The constant term is usually 
important in a regression analysis as we try to determine if more information than mean level 
alone can be obtained from the dependent variable.  If we do not want a constant term in the 
regression, we need to add the logical sentence NO CONSTANT after the variable 
specification.  For example, if we do not want a constant in a regression for the beer data, we 
need to state 

 REGRESS   DELIVERY, CASES, DISTANCE.    NO CONSTANT. 

4.3   A Regression Analysis of Financial Data 

To illustrate the use of regression analysis for business or financial data, we consider 
some data sets related to the stock market.  The data consist of the following monthly series, 
each from January 1976 through June 1990 inclusive:  

(1)  The monthly average of the Standard and Poor’s 500 stock index, 

(2)  The monthly average of long term government security interest rates (from the 
Federal Reserve Bulletin), and  

(3) The monthly composite index of leading indicators (from Business Conditions 
Digest). 

 
The data are listed in Table 4.2 and are plotted in Figure 4.1 (The plots were created using the 
SCAGRAF program).  The data are stored in the SCA workspace under the labels SP500, 
LONGTERM and LINDCTR, respectively. 
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Table 4.2   Stock market data 
 
 
Year               Monthly Average of Standard and Poor's 500 Index (SP500)
 
1976   96.87 100.64 101.08 101.93 101.16 101.77 104.20 103.29 105.45 101.89 101.19 104.66 
1977  103.81 100.96 100.57  99.05  98.76  99.29 100.18  97.75  96.23  93.74  94.28  93.82 
1978   90.25  88.98  88.82  92.71  97.41  97.66  97.19 103.92 103.86 100.58  94.71  96.11 
1979   99.71  98.23 100.11 102.07  99.73 101.73 102.71 107.36 108.60 104.47 103.66 107.78 
1980  110.87 115.34 104.69 102.97 107.69 114.55 119.83 123.50 126.51 130.22 135.65 133.48 
1981  132.97 128.40 133.19 134.43 131.73 132.28 129.13 129.63 118.27 119.80 122.92 123.79 
1982  117.28 114.50 110.84 116.31 116.35 109.70 109.38 109.65 122.43 132.66 138.10 139.37 
1983  144.27 146.80 151.88 157.71 164.10 166.39 166.96 162.42 167.16 167.65 165.23 164.36 
1984  166.39 157.25 157.44 157.60 156.55 153.12 151.08 164.42 166.11 164.82 166.27 164.48 
1985  171.61 180.88 179.42 180.62 184.90 188.89 192.54 188.31 184.06 186.18 197.45 207.26 
1986  208.19 219.37 232.33 237.98 238.46 245.30 240.18 245.00 238.27 237.36 245.09 248.61 
1987  264.51 280.93 292.47 289.32 289.12 301.38 310.09 329.36 318.66 280.16 245.01 240.96 
1988  250.48 258.13 265.74 262.61 256.12 270.68 269.05 263.73 267.97 277.40 271.02 276.51 
1989  285.41 294.01 292.71 302.25 313.93 323.73 331.93 346.61 347.33 347.40 340.22 348.57 
1990  339.97 330.45 338.47 338.18 350.25 360.39 

 
 
Year                Monthly Average of Longterm Interest Rates (LONGTERM) 
 
1976    6.94   6.92   6.87   6.73   6.99   6.92   6.85   6.79   6.70   6.65   6.62   6.39 
1977    6.68   7.15   7.20   7.14   7.17   6.99   6.97   7.00   6.94   7.08   7.14   7.23 
1978    7.50   7.60   7.63   7.74   7.87   7.94   8.09   7.87   7.82   8.07   8.16   8.36 
1979    8.43   8.43   8.45   8.44   8.55   8.32   8.35   8.42   8.68   9.44   9.80   9.59 
1980   10.03  11.55  11.87  10.83   9.82   9.40   9.83  10.53  10.94  11.20  11.83  11.89 
1981   11.65  12.23  12.15  12.62  12.96  12.39  13.05  13.61  14.14  14.13  12.68  12.88 
1982   13.73  13.63  12.98  12.84  12.67  13.32  12.97  12.15  11.48  10.51  10.18  10.33 
1983   10.37  10.60  10.34  10.19  10.21  10.64  11.10  11.42  11.26  11.21  11.32  11.44 
1984   11.29  11.44  11.90  12.17  12.89  13.00  12.82  12.23  11.97  11.66  11.25  11.21 
1985   11.15  11.35  11.78  11.42  10.96  10.36  10.51  10.59  10.67  10.56  10.08   9.60 
1986    9.51   9.07   8.13   7.59   8.02   8.23   7.86   7.72   8.08   8.04   7.81   7.67 
1987    7.60   7.69   7.62   8.31   8.79   8.63   8.70   8.97   9.58   9.61   8.99   9.12 
1988    8.82   8.41   8.61   8.91   9.24   9.04   9.20   9.33   9.06   8.89   9.07   9.13 
1989    9.07   9.16   9.33   9.18   8.95   8.40   8.19   8.26   8.31   8.15   8.03   8.02 
1990    8.39   8.66   8.74   8.92   8.90   8.62 

 
 
Year               Monthly Composite Index of Leading Indicators (LINDCTR) 
 
1976  121.20 122.00 123.20 123.00 124.50 125.60 125.70 125.60 125.30 126.10 127.00 127.70 
1977  126.30 127.30 130.00 130.40 129.90 129.70 129.40 131.40 132.50 133.80 134.20 135.40 
1978  139.10 140.30 140.30 141.50 141.80 142.50 141.20 142.00 142.90 143.60 142.80 143.00 
1979  142.60 142.30 143.20 140.30 141.40 141.60 141.20 140.10 140.10 137.80 135.60 135.20 
1980  134.70 134.10 131.50 126.20 123.00 123.90 128.10 130.70 134.40 135.00 136.50 136.40 
1981  135.20 134.20 135.80 137.30 136.00 135.20 134.80 134.10 130.70 128.30 128.20 127.10 
1982  135.10 135.70 134.70 136.00 136.20 135.50 136.20 136.10 137.50 138.60 139.40 140.90 
1983  145.20 147.40 150.20 152.50 154.40 157.30 158.20 158.90 160.00 162.40 162.50 163.40 
1984  164.50 166.50 167.20 168.10 168.20 166.70 163.90 164.40 165.70 164.20 165.10 164.10 
1985  166.30 167.10 167.40 166.70 167.10 167.70 169.20 169.80 170.60 171.60 171.60 173.60 
1986  174.10 175.00 176.40 178.10 178.50 178.30 179.90 180.30 179.90 181.20 182.70 186.70 
1987  185.36 186.45 187.13 187.40 188.62 190.51 192.41 194.17 193.63 192.82 190.11 189.29 
1988  188.75 191.06 191.60 192.41 192.14 195.12 193.76 195.26 194.71 195.12 195.26 196.61 
1989  197.83 197.29 196.07 197.56 195.39 195.12 195.26 196.20 196.48 195.66 195.93 196.88 
1990  197.02 195.26 197.02 196.75 197.83 198.10 
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Figure 4.1   Time Series Plots of Stock Market Data 

 
We see that SP500 increases steadily until observation 142, at which time it plummets 

for three consecutive periods.  This period corresponds to the stock market crash in October-
December 1987.  Since special modeling considerations are necessary to handle this period 
appropriately (see Chapters 6 and 7), we will restrict our regression analysis to the first 141 
observations.  A time series analysis for the data over the same data span is provided in 
Chapter 8.  

We will also analyze the natural logarithms of all time series.  The logarithmic 
transformation is frequently used to achieve a more homogeneous variance in a data set.  In 
the case of economic data, it is also employed so that the parameters in the model can be 
interpreted in terms of elasticity.  In this way, we can assess the percent change in the 
response for a 1% change in an explanatory variable.  We can modify the data using the 
following sequence of commands: 

 -->LNSP500 = LN(SP500) 
 -->LNLONG = LN(LONGTERM) 
 -->LNLEAD = LN(LINDCTR) 
 -->SELECT  LNSP500, LNLONG, LNLEAD.  SPAN IS (1,141). 
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The plots of LNSP500, LNLONG and LNLEAD are shown in Figure 4.2.  We 
anticipate the effect of long term interest rates on the stock index to be negative, since as the 
long term rate increases, investors tend to purchase bonds rather than stocks.  We also expect 
that the stock index should reflect the current state of the leading indicators.  The latter may 
be true based on these plots. 

To explore possible relationships, a common practice is to regress the dependent 
variable on the explanatory variables.  Hence, we will regress LNSP500 on both LNLONG 
and LNLEAD.  That is, we will obtain the fitted equation  

0 1 2LNSP500 b b  LNLONG b  LNLEAD= + +   

 -->REGRESS  LNSP500, LNLONG, LNLEAD.  DW.  HOLD RESIDUALS(RES). 
 

 REGRESSION ANALYSIS FOR THE VARIABLE  LNSP500 
 
 PREDICTOR       COEFFICIENT    STD. ERROR     T-VALUE  
 INTERCEPT         -7.06436        .45610      -15.49 
   LNLONG            .10307        .05376        1.92 
   LNLEAD           2.35479        .09067       25.97 
 
 CORRELATION MATRIX OF REGRESSION COEFFICIENTS 
 
   LNLONG      1.00 
   LNLEAD      -.11     1.00 
             LNLONG   LNLEAD 
 
 S =         .1405      R**2 =  83.5%      R**2(ADJ) =  83.2% 
 
 --------------------------- 
 ANALYSIS OF VARIANCE TABLE  
 --------------------------- 
   SOURCE     SUM OF SQUARES    DF    MEAN SQUARE     F-RATIO 
 REGRESSION           13.763     2          6.881     348.590 
  RESIDUAL             2.724   138           .020 
 ADJ. TOTAL           16.487   140 
 
   SOURCE      SEQUENTIAL SS    DF    MEAN SQUARE     F-RATIO 
   LNLONG               .448     1           .448      22.678 
   LNLEAD             13.315     1         13.315     674.502 
 
 DURBIN-WATSON STATISTIC =  .08 
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Figure 4.2    Logged Stock Market Data 
    (January 1976 through September 1987) 

 

 
 The fitted equation from the above regression is  
 
 LNSP500 = -7.06 + 0.10 LNLONG + 2.35 LNLEAD.  
 
The above estimates (except that for LNLONG) are significant at about the 5% level.  The 

 value (see Section 4.4.1) is over 83% and the F-value of the regression is highly 
significant.  If we rely on this information alone, we may conclude that we have a good fit.  
However, a closer inspection of the fitted model will show this is 

2R

not the case. 
 

One concern we may have regarding the fitted model is the sign of the parameter 
estimate associated with LNLONG.  As noted previously, we expect it to be negative, and it is 
not in this fit.  Another problem is seen in the value of the Durbin-Watson statistic (see 
Section 4.4.2 and Section 4.3.1 below for more information on this statistic).  The statistic 
was requested with the inclusion of the logical sentence DW in the above paragraph.  Its 
value, 0.08, is a clear indication of first-order serial correlation in the residual series. 
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The residual series (i.e., the difference between the observed values and those from the 
fitted equation) is a crucial series for diagnostic checks of the model.  The series, maintained 
here in the SCA workspace under the label RES, should approximate values that are drawn 
randomly from a normal distribution.  Such a series is also known as a white noise process.  
White noise displays no pattern when plotted over time.  However, a distinct pattern is still 
observable in a time plot of the residual series RES (see Figure 4.3). 

Figure 4.3    Time Plot of the Residuals of the Regression of 
 LNSP500 on LNLONG and LNLEAD 

 

4.3.1   Serial correlation 

The error terms of our linear model (see Section 4.1) are usually assumed to be serially 
uncorrelated in a regression analysis.  That is, the value of the error associated with one 
observation should not be related to the value of the error of another observation.  If we 
analyze data that have been recorded over time, it is often the case that this assumption is not 
true.  This is particularly true of business data (as in this example) and of data from industrial 
experiments that have not been randomized. 
 If we do not detect the presence of serial correlation and correct for it, the model 
estimates are inefficient and our analysis can be flawed seriously.  For a discussion of the 
problems that can arise, see Box and Newbold (1971) and Neter, Wasserman, and Kutner 
(1983, Chapter 13). 

We can check for serial correlation in a residual series by using the ACF paragraph (see 
Chapter 5).  The ACF paragraph calculates a statistic measuring the correlation present 
between residual at time t (i.e., e ) and the residual that occurred  time periods prior to it 
(i.e., ).   The value l  is known as the 

t l

te −l lag.  The ACF paragraph can be used to calculate 
and display a sequence of autocorrelations in the residual series.  It is useful to observe the 
values of the autocorrelations for a sequence of lags.  Autocorrelations of higher lags may 
provide us with meaningful information (e.g., a seasonal period).  The ACF paragraph will 
graphically display the calculated values together with a set of 95% confidence intervals.  To 
obtain the autocorrelations of the above residual series RES for the first 12 lags, we can 
simply enter 

 -->ACF   RES.    MAXLAG IS 12. 
 
We obtain 
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 TIME PERIOD ANALYZED . . . . . . . . .  1  TO   141 
 NAME OF THE SERIES . . . . . . . . . .          RES 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          141 
 STANDARD DEVIATION OF THE SERIES . . .        .1390 
 MEAN OF THE (DIFFERENCED) SERIES . . .        .0000 
 STANDARD DEVIATION OF THE MEAN . . . .        .0117 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .        .0000 
 
 
 AUTOCORRELATIONS  
 
   1- 12     .95  .88  .81  .76  .70  .63  .56  .49  .44  .39  .33  .26 
   ST.E.     .08  .14  .18  .20  .22  .24  .25  .26  .26  .27  .27  .27 
    Q        130  241  337  422  496  556  603  639  668  691  708  718 
 
 
           -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
             +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
   1    .95                       +   IXXX+XXXXXXXXXXXXXXXXXXXX  
   2    .88                    +      IXXXXXX+XXXXXXXXXXXXXXX    
   3    .81                  +        IXXXXXXXX+XXXXXXXXXXX      
   4    .76                 +         IXXXXXXXXX+XXXXXXXXX       
   5    .70                +          IXXXXXXXXXX+XXXXXXX        
   6    .63               +           IXXXXXXXXXXX+XXXX          
   7    .56               +           IXXXXXXXXXXX+XX            
   8    .49              +            IXXXXXXXXXXXX+             
   9    .44              +            IXXXXXXXXXXX +             
  10    .39              +            IXXXXXXXXXX  +             
  11    .33              +            IXXXXXXXX    +             
  12    .26              +            IXXXXXXX     +             

 
A frequently used statistic to assess serial correlation is the Durbin-Watson (DW) 

statistic.  The DW statistic can be used in a test for the presence of a first order auto- 
correlation in the residual series.  Inclusion of the sentence DW will lead to a display of the 
DW statistic.  As noted before, the value of the Durbin-Watson statistic above is .08. 

An exact test based on the DW statistic is not always possible.  However, tabulated 
upper and lower bounds for the statistic can be used in one or two tailed tests (see Section 
3.11 of Draper and Smith, 1981, or Section 13.3 of Neter, Wasserman and Kutner, 1983).  
The DW statistic above is significant at the 1% level.  This indicates the presence of serial 
correlation in the residual series.  This conclusion is more apparent by observing the ACF of 
the residual series.  It is worth noting that for large samples the DW statistic is approximately 
equal to 2 , where r  is the lag 1 autocorrelation of the residual series.  In the above 
example  = .95 and 2-2(.95) = .10; the DW value displayed is .08. 

12r−
1r

1

The ACF of the residuals adds important information that is missed by the Durbin-
Watson statistic.  In some situations, the DW statistic may imply there is no correlation 
present in the residuals.  This can be misleading as the DW statistic is only used to check for 
first-order serial correlation in the residuals.  Instead, the ACF provides us with a sequence of 
autocorrelations.  This is particularly important when seasonality is present in the data.  
Because of the relationship between  and the DW statistic, and the fact that more 
informative statistics can be obtained from the ACF paragraph, it is not recommended that the 
DW statistic be used as the only check for serial correlation. 

1r
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4.3.2   Adjustments for serial correlation 

If serial correlation is present, then we need to make appropriate accommodations in our 
model.  There are a number of options available to us within the linear regression framework.  
For example, if the correlation is the result of the presence of a linear, quadratic, or seasonal 
trend in the series, then we may be able to incorporate specific time dependent variables as 
explanatory variables in our model (see Section 3.3 of Cryer,  1986).  Such remedies are 
usually not satisfactory. 

A more effective adjustment for serial correlation may be to alter the model itself.  For 
example, one such method is to model the change in a series, rather than the series itself.  That 
is, instead of using the recorded (or transformed) values of the dependent variable (i.e., 

), we use the change from one period to the next (i.e., 
).  We replace the original series with one consisting of 

differences, or differenced data.  We also use the differenced series for each of the 
explanatory variables. 

1 2 3Y ,Y ,Y ,...
2 1Y Y ,Y− −3 2 4 3Y ,Y Y ,....−

We can use the DIFFERENCE paragraph (see Appendix C) to create these differenced 
series.  We then can use the REGRESS paragraph to regress the differenced values of 
LNSP500 on the differenced values of LNLONG and LNLEAD (the SCA output below is 
edited for presentation purposes). 

-->DIFFERENCE LNSP500,LNLONG,LNLEAD. NEW ARE DLNSP500, DLNLONG, DLNLEAD. 
 

-->REGRESS  DLNSP500, DLNLONG, DLNLEAD.  DW.  HOLD RESIDUALS(RES).  
 

 REGRESSION ANALYSIS FOR THE VARIABLE    DLNSP 
 
 PREDICTOR       COEFFICIENT    STD. ERROR     T-VALUE  
 INTERCEPT           .00695        .00259        2.69 
  DLNLONG           -.34222        .06512       -5.26 
  DLNLEAD            .69946        .21660        3.23 
 
 CORRELATION MATRIX OF REGRESSION COEFFICIENTS 
 
  DLNLONG      1.00 
  DLNLEAD      -.12     1.00 
            DLNLONG  DLNLEAD 
 
 S =         .0294      R**2 =  20.1%      R**2(ADJ) =  18.9% 
 
 --------------------------- 
 ANALYSIS OF VARIANCE TABLE  
 --------------------------- 
 
   SOURCE     SUM OF SQUARES    DF    MEAN SQUARE     F-RATIO 
 REGRESSION             .030     2           .015      17.246 
  RESIDUAL              .119   137           .001 
 ADJ. TOTAL             .148   139 
 
   SOURCE      SEQUENTIAL SS    DF    MEAN SQUARE     F-RATIO 
   DLNLONG              .021     1           .021      24.063 
   DLNLEAD              .009     1           .009      10.428 
 
 DURBIN-WATSON STATISTIC = 1.70 
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The fitted equation for this model is  

DLNSP500 = .007 - .342 DLNLONG + .699 DLNLEAD.   (4.4) 

All parameter estimates and the F-ratios for the regression are significant.  Moreover, the 
signs of the regression coefficients have the sense we expect and the Durbin-Watson statistic 
does not indicate serial correlation. 
 

Other diagnostic checks of this model support its validity.  One check, the time series 
plot of the residuals (see Figure 4.4), reveals no apparent pattern in the residual series.  Note 
that the R  value for this model is only about 20%, yet the model seems to fit well.  This is 
an indication of why we should not rely on the  value as a measure of the adequacy of a 
model.  We will examine the R  value for this example in more detail in the next section and 
in Chapter 8. 

2

2R
2

Figure 4.4   Time plot of the Residual of the Regression 
  of DLNSP500 on DLNLONG and DLNLEAD 

 
 

4.3.3   Lagged regression 

In the previous section, we illustrated one effective method for dealing with serial 
correlation, altering the variables used in the regression model.  A better change may be to 
include a serially correlated error term in the model.  Such a change is within the framework 
of transfer function modeling, and is discussed in more detail in Chapter 8.  Another 
possibility is to consider a lagged regression. 

In a lagged regression, we broaden the explanatory variables of a model by including 
lagged values of one or more variables within the model.  To illustrate this concept, consider 
the fitted equation used in Section 4.3.1 

0 1 2LNSP500 b b  LNLONG b LNLEAD= + +    (4.5) 

This fitted equation considers only the contemporaneous values of the variables involved (that 
is, observations recorded at the same time period).  We can show this by explicitly including 
time subscripts in (4.5) to obtain  
 

t 0 1 t 2LNSP500 b b  LNLONG b  LNLEAD= + + t    (4.6) 
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It is possible that an explanatory variable may “lead” the dependent variable.  That is, the 
value of the dependent variable may be related to values of the explanatory variable that occur 
earlier.  To allow for such leading relationships, we could consider regressing the dependent 
variable on both contemporaneous and prior observations of a variable; in effect “creating” 
new explanatory variables by shifting existing ones in time.  For example, we may consider 
relating LNSP500 to both the current (monthly) value of LNLONG and the value of 
LNLONG observed one period (month) ago.  We may also do the same for LNLEAD.  In 
such a case, the fitted equation (4.6) becomes 
 

t 0 1 t 2 t

3 t 4

LNSP500 b b  LNLONG b  LNLONG
b  LNLEAD b  LNLEAD

1

t 1

−

−

= + +
+ +

   (4.7) 

 
We can also allow for other system dynamics by using previously observed values of the 
dependent variable as one or more explanatory variables.  For example, if we add the prior 
(monthly) value of LNSP500 as an explanatory variable in (4.7) we have  
 
 

t 0 1 t 2 t 1

3 t 4 t 1 5

LNSP500 b b  LNLONG b  LNLONG

t 1b  LNLEAD b  LNLEAD b  LNSP500
−

− −

= + +
+ + +

   (4.8) 

 
Since lagged regression models can display a level of system dynamics, they are sometimes 
referred to as dynamic regression models. 
 

We can obtain the above fit by using the LAG paragraph to create the “lagged” series 
(see Appendix C) and the REGRESS paragraph.  The above model is discussed in more detail 
in Chapter 8. 

In Section 4.3.2, we fit a regression model using differenced data for all series.  The 
differenced series can be represented in terms of current and lagged series.  Specifically, for 
the series used in Section 4.3.2 we have 

 t tDLNSP500 LNSP500 LNSP500t 1−= −  , 
 t tDLNLONG LNLONG LNLONGt 1−= −  ,  and 
 t tDLNLEAD LNLEAD LNLEADt 1−= +  , 
 
for t=2, 3, ... (the value for t=1 is undefined).  If we employ the time index, t, in the fitted 
equation obtained in Section 4.3.2, we have 
 

t tDLNSP500 .007 .342DLNLONG .699DLNLEAD= − + t

t 1

.    (4.9) 

 
We can re-write this in terms of a lagged regression as 
 
 

t t 1 t

t t 1

(LNSP500 LNSP500 ) .007 .342(LNLONG LNLONG )
.699(LNLEAD LNLEAD )
− −

−

− = − −
+ −

 (4.10) 
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The equation given in (4.10) is equivalent to the lagged regression of (4.8) above with 
1 2b b .342= = − ; 3 4b b .69= = 9 ; and 5b 1.0= .  An unrestricted fit of (4.8) (shown in Chapter 

8) results in approximately these estimates. 
 

A final note on the  value corresponding to the fitted equation (4.9) and the  value 
for the fitted equation (4.8).  The  value associated with (4.9) is about 20%.  However, the 

 value for the equivalent model (4.8) is almost 100%.  The difference in the  value is 
due to variation in the dependent series (DLNSP500 versus LNSP500) and 

2R 2R

2

2R
2R R

not the variation in 
the residual series (as the residual series for each fitted model are virtually identical to one 
another).  Hence the  value can be a very misleading statistic. 2R

4.3.4   Interpretation of transformations 

In Section 4.3.1, the logarithmic transformation of all data was used in the analysis, 
while the difference of logged values was used in the model of Section 4.3.2.  As noted 
briefly in Section 4.3.1, the logarithmic transformation was used more for how the parameters 
of the model could be interpreted, than for any need to achieve a homogeneity in the variance 
of the errors (Box and Cox, 1964).  Neter, Wasserman and Kutner (1983, page 137) note that 
such a use of the logarithmic transformation is often preferred by economists to linearize the 
relationship between the input variables and the output.  In this way, the parameters can be 
interpreted as the elasticity between the variables. 

The use of the differences of logged data in Section 4.3.2 also has a physical 
interpretation.  Mathematically, the analysis of the difference of logged values is essentially 
the same as the analysis of the percent change of the original series (i.e., not differenced and 
not logged).  This can be confirmed by comparing the first-order Taylor series approximation 
of each representation (see page 90 of Abraham and Ledolter, 1983). 

4.4    Other Regression Topics 

This section provides an overview of some topics related to the SCA REGRESS 
paragraph and to regression analysis.  This material may be skipped, and selected information 
be referenced as needed.  The material presented, and the section containing it, are: 

 Section Topic 
 
 4.4.1  Interpreting SCA output 

 4.4.2  Diagnostic checks in regression analysis 

 4.4.3  Statistical measures for spurious and influential observations 
 
Information on other special regression related topics can be found in Section 9.6 of The SCA 
Statistical System: Reference Manual for General Statistical Analysis. 
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4.4.1   Interpreting SCA output 

The SCA System generates and displays important information regarding a regression.  
This information can be used in several contexts, including inference and prediction.  It is 
important to note that the validity of the estimates of the regression equation, and any 
inference or prediction made from a regression, is based on the data at hand and the validity 
of the model being fit.  Hence it is important to carefully check any model for outliers or 
spurious observations and for deviations from the assumptions of the model. 

To illustrate the use of SCA output for inference and prediction, we will consider the 
output of the initial regression of the beer data (without an adjustment of observation 5).  We 
will reproduce the output in a more complete form. 

 -->REGRESS   DELIVERY, CASES, DISTANCE.     DIAGNOSTICS ARE FULL.   @ 
           FIT.   HOLD RESIDUALS (RESID), FITTED(FIT). 

 
 REGRESSION ANALYSIS FOR THE VARIABLE     DELIVERY                                    
                                                                                  
 PREDICTOR       COEFFICIENT    STD. ERROR     T-VALUE                            
 INTERCEPT          2.31120       5.85730         .39                             
    CASES            .87720        .15303        5.73                             
 DISTANCE            .45592        .14676        3.11                             
                                                                                  
 CORRELATION MATRIX OF REGRESSION COEFFICIENTS                                    
                                                                                  
    CASES      1.00                                                               
 DISTANCE       .41     1.00                                                      
              CASES DISTANCE                                                      
                                                                                  
 S =        3.1408      R**2 =  73.7%      R**2(ADJ) =  69.3%  
 
 ---------------------------                                                      
 ANALYSIS OF VARIANCE TABLE                                                       
 ---------------------------                                                      
                                                                                  
   SOURCE     SUM OF SQUARES    DF    MEAN SQUARE     F-RATIO                     
 REGRESSION          331.359     2        165.679      16.795                     
  RESIDUAL           118.375    12          9.865                                 
 ADJ. TOTAL          449.733    14                                                
                                                                                  
   SOURCE      SEQUENTIAL SS    DF    MEAN SQUARE     F-RATIO                     
   CASES             236.161     1        236.161      23.940                     
   DISTANCE           95.198     1         95.198       9.650                     
 
 DIAGNOSTIC STATISTICS:                                                           
                                        STUDENTIZED                               
  CASE   OBSERVED           STANDARDIZED  DELETED    COOK'S                       
   NO.     VALUE    RESIDUAL  RESIDUAL   RESIDUAL   DISTANCE   LEVERAGE           
    1    24.0000     -.7609      -.27      -.26       .006       .198             
    2    27.0000      .1327       .05       .04       .000       .124             
    3    29.0000     -.3201      -.13      -.12       .003       .356             
    4    31.0000     2.9381      1.09      1.09       .136       .258             
    5    25.0000    -9.2716     -3.27 *   -9.44 *     .803       .184             
    6    33.0000      .7656       .26       .24       .002       .086             
    7    26.0000     1.3084       .46       .45       .016       .183             
    8    28.0000    -2.0934      -.72      -.70       .028       .139             
    9    31.0000     1.4318       .47       .46       .006       .075             
   10    39.0000      .5212       .21       .20       .008       .348             
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   11    33.0000      .5175       .18       .18       .003       .203             
   12    30.0000     1.3783       .46       .45       .007       .094             
   13    25.0000    -1.0247      -.35      -.34       .007       .137             
   14    42.0000     2.8865      1.14      1.16       .237       .352             
   15    40.0000     1.5905       .59       .57       .041       .262             

                                                                                  
 "*" DENOTES AN OBSERVATION WITH A LARGE RESIDUAL   
 
 FITTED VALUES AND THEIR STANDARD ERRORS:                                        
                                                                                
  CASE  OBSERVED    FITTED    STD ERR OF                                         
   NO.    VALUE      VALUE   FITTED VALUE  LEVERAGE                              
    1    24.0000    24.7609     1.3969       .1978                               
    2    27.0000    26.8673     1.1073       .1243                               
    3    29.0000    29.3201     1.8736       .3559                               
    4    31.0000    28.0619     1.5941       .2576                               
    5    25.0000    34.2716     1.3476       .1841                               
    6    33.0000    32.2344      .9228       .0863                               
    7    26.0000    24.6916     1.3436       .1830                               
    8    28.0000    30.0934     1.1708       .1390                               
    9    31.0000    29.5682      .8582       .0747                               
   10    39.0000    38.4788     1.8527       .3480                               
   11    33.0000    32.4825     1.4161       .2033                               
   12    30.0000    28.6217      .9641       .0942                               
   13    25.0000    26.0247     1.1643       .1374                               
   14    42.0000    39.1135     1.8645       .3524                               
   15    40.0000    38.4095     1.6079       .2621 

 
 
Estimate of the variation of the error terms 
 

Inferences or predictions drawn from this regression are based on the sample that is 
drawn, or the “information at hand”.  For example, if we obtain another sample of 15 
observations for the beer data, it is likely the fitted equation will change.  A key is how much 
it may change.  Hence it is important to have some measure of uncertainty (or variation).  In 
examining the linear regression model, we see a key uncertainty is the variability of what is 
still unexplained after fitting the model, that is, the error term.  The smaller , in relation to 
the unit of measurement of Y, the more precise our prediction of Y for values of 

. 

2σ

1 2X ,X ,...,Xm

An estimate of , the standard deviation of the error terms, is calculated from the data.  
This value, denoted by s, is computed according to 

σ

 SSEs
n p

=
−

 

 
where SSE is the sum of squared errors, n is the number of observations, and p is the number 
of parameters estimated.  SSE and (n - p) are displayed in the analysis of variance table on the 
line labeled RESIDUAL.  We see in the initial fit of the beer data 
 
  = mean square error = 118.375/12 = 9.865 , 2s
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so that s =  = 3.1408.  This value is displayed just above the analysis of various 
table. 

1/ 2(9.865)

Parameter inference, tests of significance 
 

We can construct tests of significance of the parameters of our model.  The test statistic 
that is used is 

 (estimate) (hypothesized value)t
(estimated standard deviation of estimate) 

−
=  

 
This statistic is then compared with a critical value of the t-distribution with (n-p) degrees of 
freedom. 
 

The t-value displayed by the SCA System is the value associated with a test of 
“parameter = 0”.  In the beer data example, the t-values for both of the estimates associated 
with CASES and DISTANCE are significant at the 1% level.  Hence these estimates are 
statistically different from zero.  However, the hypothesis that the intercept is zero cannot be 
rejected at the 5% level, since the t-value is 0.39. 

We can also use displayed information for tests of other specific values.  For example, 
to test the hypothesis that the coefficient of DISTANCE is .5 against the alternative it is not, 
we compute 

 

 .45592 .5t .3004
.14676

−
= = −  

 
|t| = .3004 is not significant at the 5% significance level, so the hypothesis cannot be rejected 
at this level. 
 

Amount of variation explained 
 

A measure of how well a regression model “explains” a response variable is in the 
amount of the variability of the response variable that can be attributed to the linear model.  
This value, , can be calculated as 2R

 2 (sum of squares due to regression)R
(total sum of squares, adjusted for the mean)

=  

 
These quantities are all displayed by the SCA System.  In the first regression of the beer 
example, we had 
 
  = 331.359/449.733 = .7368 = 73.7% 2R
 



4.24 LINEAR REGRESSION ANALYSIS 

The  value is sometimes used as a criterion in choosing the most appropriate regression 
model from among subsets of possible explanatory variables.  Since the  value above does 
not account for the number of parameters present in a model, it is useful to adjust the value for 
the number of parameters.  This value, , is calculated as 

2R
2R

2
aR

 

 2
a

n 1 sum of squares due to errorR 1
n p adjusted total sum of squares
  −

= −   −  





 

 
In the beer example we have 
 
  = 1 - [(15 - 1)/(15 - 3)][118.375/449.733] = .6929 = 69.3% 2

aR
 
This value is displayed as R**2(ADJ). 
 

Predicted values from a regression 
 

The fitted equation from the beer regression is 

DELIVERY = 2.311 + .877 CASES + .456 DISTANCE 

To predict the value of DELIVERY for observation number 1 (CASES = 10, DISTANCE = 
30), we would use the above equation and obtain, approximately, 
 

DELIVERY = 2.311 + .877(10) + .456(30) = 24.76 . 

By including the logical sentence FIT in the REGRESS paragraph, we obtain fitted values for 
all cases in our sample.  We may also wish to predict the value of DELIVERY at other 
plausible combinations of values for CASES and DISTANCE that are not part of our sample.  
For example, if we wish to predict a value of DELIVERY for CASES = 20 and DISTANCE = 
30, we would use the fitted equation and obtain 
 

DELIVERY = 2.311 + .877(20) + .456(30) = 33.53 

 
Deviation of a fitted value 
 

When the FIT sentence is included in the REGRESS paragraph, an estimate of the 
standard error of fit is provided for each fitted value.  For each case we can also obtain a 
confidence interval for the average value of the response.  This interval is calculated using the 
fitted value, Y , the estimated standard error of fit, and a value taken from a t-table for (n - p) 
degrees of freedom and the size of the confidence interval desired.  The end points of the 
interval are 

ˆ

  ± (estimated standard error of fit) x (tabled t-value) Ŷ
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For the beer data, the tabled t-value for a 95% confidence interval is 2.179.  The end points of 
confidence interval for the average value of TIME for the specific realization CASES = 10, 
DISTANCE = 30 (observation 1) are 
 24.761 ± (1.397)(2.179) 
or 
 21.717  and  27.805 
 
Hence, given the data, we have a 95% level of confidence that the average time of delivery for 
all situations in which 10 cases are delivered to a maximum distance of 30 miles is between 
21.717 and 27.805 minutes. 
 

Prediction interval for a single fitted value 
 

The fitted value at a point as calculated above gives us an indication of the average 
value we could observe for a given realization of values of the explanatory variables.  We can 
also construct a prediction (confidence) interval for the specific values that can occur.  The 
interval is calculated in the same manner as above, except the estimate of standard error is 
larger.  It can be shown this standard error is 

  2 2estimate of standard error of fitted value) s( +  

Using this standard error, the end points for a 95% prediction (confidence) interval for 
the first observation are 

 24.761 ± 2.179 2 2(1.397) (3.141)+  
or 
 17.270   and   32.252. 

We can also obtain prediction (confidence) intervals for points not in our sample.  This 
can be done by including additional observations in all explanatory variables of the regression 
and giving the response variable the missing value code.  For example, suppose we add a 16th 
observation to the beer sample with CASES = 20 and DISTANCE = 30.  If we now use the 
REGRESS command as before including the FIT sentence, we will obtain the same results as 
before with the following change in the fitted information. 

 FITTED VALUES AND THEIR STANDARD ERRORS: 
 
  CASE  OBSERVED    FITTED    STD ERR OF              
   NO.    VALUE      VALUE   FITTED VALUE  LEVERAGE   
    1    24.0000    24.7609     1.3969       .1978    
    2    27.0000    26.8673     1.1073       .1243    
    3    29.0000    29.3201     1.8736       .3559    
    4    31.0000    28.0619     1.5941       .2576    
    5    25.0000    34.2716     1.3476       .1841    
    6    33.0000    32.2344      .9228       .0863    
    7    26.0000    24.6916     1.3436       .1830    
    8    28.0000    30.0934     1.1708       .1390    
    9    31.0000    29.5682      .8582       .0747    
   10    39.0000    38.4788     1.8527       .3480    
   11    33.0000    32.4825     1.4161       .2033    
   12    30.0000    28.6217      .9641       .0942    
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   13    25.0000    26.0247     1.1643       .1374    
   14    42.0000    39.1135     1.8645       .3524    
   15    40.0000    38.4095     1.6079       .2621    
   16      *****    33.5329      .9541       .0923 

 
We see the fitted value listed for the 16  observation is 33.53, as we calculated before.  

The end points of 95% prediction interval for this fitted value are 
th

 33.53 ± 2.179 2 2(.954) (3.141)+  
or 
 26.38   and   40.68 
 

Although a prediction and prediction interval can be obtained for any set of values for 
the explanatory variables, it is important to realize the validity of a prediction is less reliable 
the further removed we are from the range of values the explanatory variables assume in the 
regression.  That is, although it may be reasonable to predict  DELIVERY  for  CASES = 10 
and  DISTANCE = 30, it is unreasonable to try to extend a prediction for CASES = 100 or 
DISTANCE = 75 as these values are far removed from the range of values used to obtain the 
fitted equation. 

4.4.2   Diagnostic checks of a fitted model 

A careful regression analysis includes more than the specification and estimation of a 
regression model.  A model should be checked carefully to determine if there are any model 
inadequacies or deviations from the assumptions of the model.  The REGRESS paragraph can 
calculate and display several statistics that are useful in a diagnostic check of a model.  In 
addition, the residuals from a fit, that is, the variable consisting of the values 

 . j j j
ˆe Y Y j 1,2,..., n= − =

 
can be retained in the SCA workspace for further analysis.  The analysis of residuals includes, 
but is not limited to, various plots of residuals and the examination of statistics of the 
residuals to ascertain if they are consonant with postulated assumptions of the error structure.  
This section reviews useful diagnostic checks that are readily available within the SCA 
System.  A more complete discussion of these checks can be found in Draper and Smith 
(1981, Chapter 3) and Neter, Wasserman and Kutner (1983, Chapter 4). 
 

Many diagnostic checks are discussed in the section.  It is worth noting that not all 
possible diagnostic checks are discussed here, nor is it recommended that all checks discussed 
here be used in every analysis.  Clearly some checks are more relevant than others and often 
the context of a problem will dictate those checks that are worth consideration. 

Diagnostic checks can usually be classified as either being a check of how well a model 
fits (i.e., checks for lack of it) or a check of the assumptions of the model.  Checks on model 
assumptions include examination for the presence of serial correlation, checks for a zero mean 
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and constant variance in the residuals, and checks on the assumption of normality.  When 
possible, we will indicate the purpose of the diagnostic check discussed. 

Plots of residuals 
 

Listed below are some useful plots of residuals.  These plots should be considered, when 
appropriate, in a regression analysis.  Also included below are the names of the SCA 
paragraph(s) that can be used to generate the plot. 

(A) Plots to detect lack of fit 
 
Plot against explanatory variables (PLOT):  The plots here can help to reveal any model 

inadequacy and indicate if any extra terms are needed in the model (e.g., X2 in addition 
to X to account for a curvilinear relationship) 

 
Plots against variables not used in model (PLOT):  Plotting residuals against variables 

excluded from a model could reveal the presence of important explanatory variables that 
should be included in the analysis (see Neter, Wasserman and Kutner, 1983, page 120). 

 
Time series plots: See (B) below 
 
 
(B) Plots to detect serial correlation 
 
Time series plot (TSPLOT):  Whenever observations are recorded in time order, it is 

important to plot data over time.  This can reveal outliers, a variance that is not constant 
over time, or the presence of linear or quadratic trend that should have been included in 
the model.  A plot over time is also useful in observing “runs” of positive or negative 
residual terms, and thus indicating if serial correlation is present in the residual series. 

 
Plot of the autocorrelation function (ACF):  The ACF can be used to detect those lag orders at 

which there is significant serial correlation.  The ACF is a more powerful tool than the 
Durbin-Watson statistic (see Section 4.3.1).  The ACF can also be used to detect 
nonstationarity in the original series (see Chapter 5). 

 
(C) Plots to check on mean and variance 
 
Plot against fitted values, Ŷ  (PLOT):  A plot of the residuals against  can help reveal 

outliers (large residuals) or non-homogenous variance (a variance that increases with the 
level of ). 

Ŷ

Ŷ
 
Plot against explanatory variables:  The plots here can help reveal similar anomalies as a plot 

against fitted values.  In addition, these may be useful in determining specific 
explanatory variables that could be involved. 
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(D) Checks on normality 
 
Probability plot of residuals (PPLOT):  This is a useful visual check of the residuals.  If the 

assumption of normality is valid, a normal or half-normal plot of residuals should yield 
an approximate straight line with no point too far apart from the rest. 

 
Simple plot of residuals (HISTOGRAM or DPLOT):  This is useful as a visual check of the 

normality assumption and to spot potential outlying or spurious observations. 
 
Statistics of residuals or fit 
 

The SCA System can also calculate and display useful diagnostic statistics of a 
regression or the residuals of a regression.  Listed below is a summary of useful diagnostic 
statistics and how they may be obtained in the SCA System: 

(a) Leverage, Cook's distance, standardized residuals, studentized deleted residuals 
(DIAGNOSTICS sentence):  These are useful in the identification of spurious and 
influential observations.  See Section 4.4.3 below for a discussion. 

 
(b) Checks on randomness (DW sentence, ACF and NPAR paragraphs):  The Durbin-

Watson statistic (DW) can be used to assess the randomness of residuals.  The DW 
statistic and the autocorrelation function (ACF) are discussed in Section 4.3.1.  The 
nonparametric RUNS test can also be employed to test the randomness of the residuals.  
(See Chapter 11 of The SCA Statistical System: Reference Manual for General 
Statistical Analysis for information on nonparametric tests.) 

 
(c) Tests for normality (NPAR paragraph):  The residuals of the fit can be examined by 

many nonparametric test statistics to check on “goodness of fit”.  Possible tests are the 
Kolmogorov-Smirnov or chi-square test.  (See Chapter 11 of The SCA Statistical 
System: Reference Manual for General Statistical Analysis for information on 
nonparametric tests.) 

4.4.3   Statistical measures for spurious and influential observations 

In Section 4.1, we saw the need to diagnostically check a model to discover a spurious 
observation.  In this section we summarize the diagnostic statistics computed in the SCA 
System that may be used to help highlight spurious and influential observations.  These 
statistics are only appropriate when the sample size is not large and when there is no serial 
correlation in the data.  Discussions related to the identification of such observations, and 
remedial measures, can be found in Neter, Wasserman, and Kutner (1983, Sections 11.5 and 
11.6). 

The inclusion of the DIAGNOSTICS sentence in the REGRESS paragraph provides us 
with a number of useful statistical measures for the identification of both spurious and 
influential observations.  The computational measures used to calculate these statistics can be 
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found in Section 9.6 of The SCA Statistical System: Reference Manual for General Statistical 
Analysis. 

 
Leverage 
 

An outlying or spurious observation may have little influence on the fitted regression 
equation.  However, any point can be very influential based on its relative position to the 
other observations used in the fit.  These observations should be studied to see if, in addition, 
they are outliers.  One measure of the “importance” of a single observation is the leverage it 
has on a fit.  A large leverage indicates the observation is distant from the center of the 
remaining observations.  As a result the mass of other observations act as a fulcrum for the 
leverage applied by the single point. 

In order to establish the “significance” of the leverage value, we may check to see if it is 
greater than 2p/n where n is the number of observations in the regression and p is the total 
number of parameters calculated.  This rule of thumb is useful in spotting influential points 
(Neter, Wasserman and Kutner, 1983, page 403). 

In the beer example, 2p/n = 2(3/15) = .40.  No case of this example has a leverage value 
greater than this “cut off” value.  Although an observation with a high leverage is important in 
an analysis, an outlier does not need to have great leverage.  The outlier that was found in this 
example did not have statistically significant leverage, but it affected fitted results greatly.  In 
any event, we need to be aware of observations with great leverage. 

Cook’s distance 
 

An overall measure of the impact of a single observation on the fit of a regression 
equation is given by Cook’s distance.  If an observation has a substantial effect on a fit and is 
determined to be spurious or an outlier, then a decision regarding possible remedial measures 
is required (see page 409 of Neter, Wasserman and Kutner, 1983, for a discussion).  The value 
of Cook's distance should be compared with percentage points of the F(p, n-p)  distribution (n 
and p are the same as defined above) to determine its significance. 

The Cook’s distance associated with observation 5 of the beer data is also not significant 
at the 5% level of the F(3,12) distribution.  On the basis of this statistic alone, we may 
conclude that no remedial measures are required.  However, we have seen the consequence of 
one such measure (that is, recoding the value of the response from 25 to 35). 

 
Standardized residual 
 

The residuals of the fitted equation, i
ˆY Yi−  , are usually assumed to approximate a 

normal or t distribution with a zero mean.  If these values are divided by their standard error, 
they should then be consonant with the standard normal or t distribution. 



4.30 LINEAR REGRESSION ANALYSIS 

For each observation, the REGRESS paragraph can display the observed value, , the 
residual, and the standardized value of the residual.  In the REGRESS paragraph, each 
residual is standardized using an estimate of the standard error based on its leverage and the 
value .  Residuals standardized in this manner are also known as 

iY

2s studentized residuals.  
These values can be compared with percentage points of the standard normal or t distribution. 

The value of the standardized residual of observation 5 of the beer data, -3.27, is clearly 
significant.  This indicates the observation merits further study, or some remedial measure. 

Studentized deleted residual 
 

As a refinement to the standardized (studentized) residual, we can also calculate the 
residual at the  observation when the fitted regression is based on all observations thj except 
the  observation.  In this manner the individual observation cannot influence the regression.  
Residual values obtained are appropriately standardized and are known as deleted studentized 
residuals.  Values are compared with the t(n-p-1) distribution, with n and p as before. 

thj

In the beer data example, the t(11) distribution is used.  The 5  observation is a clear 
aberration (the value -9.44 is significant at almost all levels) and warrants study.   It should be 
noted if two or more outliers are almost coincident, this measure may fail to be useful.  Hence 
it is always important to plot the residuals. 

th
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SUMMARY OF THE SCA PARAGRAPH IN CHAPTER 4 

 This section provides a summary of the SCA paragraph employed in this chapter.  The 
syntax is presented in both a brief and full form.  The brief display of the syntax contains the 
most frequently used sentences of the paragraph, while the full display presents all possible 
modifying sentences of the paragraph.  In addition, special remarks related to the paragraph 
may also be presented with the description.   

 Each SCA paragraph begins with a paragraph name and is followed by modifying 
sentences.  Sentences that may be used as modifiers for a paragraph are shown below and the 
types of arguments used in each sentence are also specified.  Sentences not designated 
required may be omitted as default conditions (or values) exist.  The most frequently used 
required sentence is given as the first sentence of the paragraph.  The portion of this sentence 
that may be omitted is underlined.  This portion may be omitted only if this sentence appears 
as the first sentence in a paragraph.  Otherwise, all portions of the sentence must be used.  The 
last character of each line except the last line must be the continuation character, ‘@’. 

 In this section, we provide a summary of the REGRESS paragraph. 
 
 Legend (see Chapter 2 for further explanation) 
 
  v : variable name 
  i : integer 
  r : real value 
  w : keyword 
 
 
REGRESS Paragraph 
 

The REGRESS paragraph is used either 

(1)  to specify and estimate the parameters of a linear model by listing the 
response (dependent) and explanatory (independent) variables of the model, 
or 

 
(2)  to modify and estimate the parameters of an existing model. 
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Syntax of the REGRESS Paragraph 
 
Brief syntax 

 
Full syntax 

 

Sen
 

tences Used in the REGRESS Paragraph 

RIABLES sentence 
A list of variables or the VARIABLES sentence is used to list the dependent and 
explanatory variables of the regression model.  The first variable specified is 

 
VA

used as the 
dependent variable and all other specified variables are used as explanatory variables. 

NA
odel.  This is an 

ME sentence 
The NAME sentence is used to specify a name for the regression m
optional sentence when variables (i.e., the VARIABLES sentence) are specified.  If a 

REGRESS VARIABLES  ARE  v1, v2, ---.   @ 
  DIAGNOSTICS  ARE  w.   @ 
  DW. / NO DW.     @ 
  FIT. / NO FIT.     @ 
  HOLD RESIDUALS(v1), FITTED(v1). 
 
Required: List of variables (i.e., VARIABLES sentence) 

REGRESS VARIABLES  ARE  v1, v2, ---.   @ 
  NAME  IS  v.     @ 
  NO CONSTANT. / CONSTANT.  @ 
  DIAGNOSTICS  ARE  w.   @ 

 DW. / NO DW.     @ 
  FIT. / NO FIT.      @ 

 HOLD RESIDUALS (v1,v2,---),  @ 
       FITTED(v1,v2,---), ESTIMATE(v),  @ 

      INVXPX(v), MSE(v), ---.    @ 
  SPAN  IS  i1, i2.     @ 

 WEIGHT  IS  v.     @ 
v1, v2, --- .     @ 

 EXCLUDE v1, v2, --- .     @ 
  ANOVA  IS  w.     @ 

 RIDGE  IS  v.      @ 
  @ 

               PRINT(w1, w2, ---), NOPRINT(w). 

  INCLUDE 

  OUTPUT  IS  LEVEL(w), 

 
Required: List of variables (i.e., VARIABLES sentence) 
  or NAME sentence 
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name is specified, the regression model and related information will be stored under the 
specified model name and can be used in subsequent analyses.  When an existing model is 
being modified, variable (i.e., the VARIABLES sentence) should not be used. 

 CONSTANT sentence NO
The NO CONSTANT sentence is used to exclude a constant term from an analysis.  The 

 include a constant term in the analysis). 

DIA
The DIAGNOSTICS sentence is used to specify that diagnostic statistics should be 

d keywords are FULL and BRIEF.  If FULL is specified 

DW
 that the Durbin-Watson statistic be computed for the 

residuals of the model.  The default is NO DW, that is, no computation of the statistic. 

FIT

r points not 
in the sample can be computed by including additional value(s) in all explanatory 
var
display of fitted valu

HOLD sentence 
The HOLD senten
be retained in the  be retained need be named.  

al laced t no values are 
ta

LS    

sed on the estimated model.  
r of 

  

ated variance-covariance matrix of the parameter estimates.) 
 MSE  : the mean square error (matrix) of the model 

GE : the leverage of each observation 

 SDR  : the studentized deleted residual for each observation 

default is CONSTANT (that is,

GNOSTICS sentence  (see Section 4.4.3) 

computed and displayed.  Vali
then the residual, standardized residual, studentized deleted residual, Cook's distance and 
leverage are computed and displayed for all data points.  If BRIEF is specified then the 
above statistics are displayed for significant values only. 

 sentence  (see Section 4.3.1) 
The DW sentence is used to specify

 sentence  (see Section 4.4.1) 
The FIT sentence is used to specify the display of fitted values of the response variable, 
and associated statistics, for all observations.  Also displayed are the standard error of the 
fitted value and the leverage of the observation.  A fitted (predicted) value fo

iables and the missing value code in the response variable.  The default is NO FIT, no 
e information. 

ce is used to specify those values computed for particular functions to 
workspace.  Only those statistics desired to

V ues are p  in the variable named in parentheses.  The default is tha
re ined after the paragraph is executed.  The values that may be retained are: 

RESIDUA : the residuals of the fitted model.  The number of variable names   
 dependent variable   specified must be the same as the number of

 columns in the model. 
 FITTED : the value for each response variable ba

 The number of variables specified must be the same as the numbe
 response variable columns in the model. 

 SEFIT  : the estimated standard error of fit for each fitted value
 ESTIMATES : the complete set of parameter estimates 

INVXPX : the inverse of X’X (The product of INVXPX and MSE yields the 
 estim

 LEVERA
 COOK  : the Cook's distance for each observation 
 SRESID : the standardized (studentized) residual value for each observation 



4.34 LINEAR REGRESSION ANALYSIS 

The
the eference Manual for 
General Statistical Analysis. 

SPA

y variables to be used in the analysis.  The sentence 
 for the piecewise fitting of a model.  The default is all observations.  

WE
ponse 

efault is 1.0 for each observation.  The WEIGHT sentence cannot be 

INC
those 

xplanatory variables to be included in the analysis.  Note that the 

EX

AN
is used to obtain different analysis of variance tables.  The 

keyword may be PARTIAL (for partial sum of squares), SEQUENTIAL (for sequential 
), BOTH, or NONE.  The default is SEQUENTIAL.  The partial sum of 

RID
The RIDGE sentence is used to specify the name of a vector of q values containing the 

r a ridge regression analysis, where q is the order of the corrected X’X 

odel does not have a constant term).  The default is 
nts. 

UTPUT sentence 
e amount of output displayed for selected 

a basic LEVEL of output 

 following are infrequently used sentences of the paragraph.  More information regarding 
ir use may be found in Section 9.6 of The SCA Statistical System: R

 
N sentence 

The SPAN sentence is used to specify the span of cases, from i1 to i2, of the response 
variable and corresponding explanator
may be employed
The SPAN sentence cannot be used if a model is being re-estimated. 

IGHT sentence 
The WEIGHT sentence is used to specify a variable containing a weight for each res
observation.  The d
used if a model is being re-estimated. 

LUDE sentence 
The INCLUDE sentence is used to modify a previously defined model by specifying 
response and e
INCLUDE and EXCLUDE sentence are mutually exclusive in the same paragraph. 

CLUDE sentence 
The EXCLUDE sentence is used to modify a previously defined model by specifying 
those response or explanatory variables to be excluded from the analysis.  Note that the 
INCLUDE and EXCLUDE sentences are mutually exclusive in the same paragraph. 

OVA sentence 
The ANOVA sentence 

sum of squares
squares table shows how each explanatory variable of a regression contributes to the total 
sum of squares if all other factors in the model are included.  The sequential sum of 
squares table shows the contribution to the total sum of squares of each factor in the 
regression model, assuming each factor is fitted in the sequential order specified in the 
VARIABLES sentence. 

GE sentence 

ridge constants fo
matrix (that is the matrix derived using deviations from sample means as entries in the X 
matrix.  The corrected X’X matrix does not contain elements related to the constant term 
as each element is subtracted by a mean correction value.  Note that q = p-1 if the model 
has a constant term, and q = p if the m
0.0 for all ridge constants, that is, no ridge constrai

O
The OUTPUT sentence is used to control th
statistics.  Control is achieved in a two stage procedure.  First, 
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(default NORMAL) is designated.  Output may then be increased (decreased) from this 

 
: 

L : 
D  : 

 

SUMMARY hich include sample 
 mean, standard deviation, and coefficient of variation 

RCORR : the correlation matrix for the estimates of the regression coefficients 
CORR : the correlation ma  in the regression analysis 
COVAR : the covariance matrix for the estimates of the regression coefficients 

AIC : Akaike's Information Criterion and Schwarz' Information Criterion (for 

level by use of PRINT (NOPRINT). 

The keywords for LEVEL and output printed are: 

BRIEF  SUMMARY and ESTIMATES 
NORMA SUMMARY, ESTIMATES, and RCORR 
DETAILE SUMMARY, ESTIMATES, RCORR, CORR, COVAR, and AIC 

where the reserved words (and keywords for PRINT, NOPRINT) on the right denote: 

: the summary of all variables in regression analysis w

trix for all variables

ESTIMATES : the estimates of the regression coefficients 

 more information, please see Section 9.6 of The SCA Statistical System: 
 Reference Manual for General Statistical Analysis) 
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CHAPTER 5 

BOX-JENKINS ARIMA MODELING 
AND FORECASTING 

 
 

In the previous chapter, we observed the inadequacy of regression models in the 
presence of serial correlation.  That is, when a variable maintains a “memory” of its past, any 
model of the data must incorporate this “memory”.  This phenomenon is likely to occur 
whenever data are collected in a time sequence.  A set of data generated or obtained 
sequentially over time is known as a time series. 

Modern time series analyses and applications are usually model based.  There are many 
different types of models used for time series analysis.  One popular class of models has 
become known as Box-Jenkins ARIMA (autoregressive-integrated moving average) models.  
These models are popular for many reasons including: 

(1)  their adaptive ability to represent a wide range of processes with a 
parsimonious model; 

(2)  their ability to be extended to permit modeling in the presence of external 
events (interventions) or multiple exogenous stochastic variables (i.e., transfer 
function models); and 

(3)  a well established procedure for modeling has been developed. 
 
Some of the texts and reference sources for these models include Box and Jenkins (1970), 
Abraham and Ledolter (1983), Pankratz (1983), Vandaele (1983), Granger and Newbold 
(1987), Cryer (1986), Wei (1990), and references contained therein. 

5.1   Box-Jenkins Modeling 

ARIMA models employ a combination of linear operators for the representation of a 
time series.  This type of representation has a long history, and may be traced to Yule (1921, 
1927), Slutsky (1937) and Wold (1938).  The landmark contribution of Box and Jenkins 
(1970) was to both consolidate the models and methodologies that had existed and, more 
importantly, provide a cohesive framework for model building.  As a result, these models are 
often referred to as Box-Jenkins ARIMA models, or even Box-Jenkins models. 

  Box and Jenkins (1970) proposed an iterative procedure for modeling a time series.  
This iterative modeling approach encompasses three phases:  
 



5.2 ARIMA MODELING AND FORECASTING 

(1)  Identification, in which we examine characteristics and statistics of a time 
series and attempt to relate them to those of specific models; 

(2)  Estimation, in which we estimate the parameters of the tentatively identified 
model(s) using the data at hand; and 

(3)  Diagnostic checking, in which we examine the estimated model(s), and 
residuals of the fitted model(s), to see if the model(s) make sense and are 
consonant with our assumptions. 

  
After an appropriate model is determined, we may use it for forecasting, control or 

simply to better understand the structure of the time series.  We will first consider two 
examples using non-seasonal series to better understand the Box-Jenkins modeling procedure 
and ARIMA models.  A seasonal example is provided in Section 5.3.  The ARIMA model can 
be extended to incorporate deterministic impacts (interventions) on a series; to create an 
effective procedure to detect outliers and adjust for their effects; and to model a dependent 
series in the presence of exogenous explanatory variables and a serially correlated error term.  
These topics are discussed in Chapters 6 - 8, respectively. 

5.1.1   Example: Series A of Box and Jenkins (1970)  

As an illustration of the Box-Jenkins modeling procedure, we will consider a data set of 
Box and Jenkins (1970).  The data, Series A, consist of 197 concentration readings (one every 
two hours) of an “uncontrolled” chemical process.  The data are listed in Table 5.1, and are 
stored in the SCA workspace under the name SERIESA.  

 
Table 5.1   Series A of Box and Jenkins (1970): Concentration readings 

of a chemical process (Data read across the line) 
   

17.0  16.6  16.3  16.1  17.1  16.9  16.8  17.4  17.1  17.0 
16.7  17.4  17.2  17.4  17.4  17.0  17.3  17.2  17.4  16.8 
17.1  17.4  17.4  17.5  17.4  17.6  17.4  17.3  17.0  17.8 
17.5  18.1  17.5  17.4  17.4  17.1  17.6  17.7  17.4  17.8 
17.6  17.5  16.5  17.8  17.3  17.3  17.1  17.4  16.9  17.3 
17.6  16.9  16.7  16.8  16.8  17.2  16.8  17.6  17.2  16.6 
17.1  16.9  16.6  18.0  17.2  17.3  17.0  16.9  17.3  16.8 
17.3  17.4  17.7  16.8  16.9  17.0  16.9  17.0  16.6  16.7 
16.8  16.7  16.4  16.5  16.4  16.6  16.5  16.7  16.4  16.4 
16.2  16.4  16.3  16.4  17.0  16.9  17.1  17.1  16.7  16.9 
16.5  17.2  16.4  17.0  17.0  16.7  16.2  16.6  16.9  16.5 
16.6  16.6  17.0  17.1  17.1  16.7  16.8  16.3  16.6  16.8 
16.9  17.1  16.8  17.0  17.2  17.3  17.2  17.3  17.2  17.2 
17.5  16.9  16.9  16.9  17.0  16.5  16.7  16.8  16.7  16.7 
16.6  16.5  17.0  16.7  16.7  16.9  17.4  17.1  17.0  16.8 
17.2  17.2  17.4  17.2  16.9  16.8  17.0  17.4  17.2  17.2 
17.1  17.1  17.1  17.4  17.2  16.9  16.9  17.0  16.7  16.9 
17.3  17.8  17.8  17.6  17.5  17.0  16.9  17.1  17.2  17.4 
17.5  17.9  17.0  17.0  17.0  17.2  17.3  17.4  17.4  17.0 

   18.0  18.2  17.6  17.8  17.7  17.2  17.4 
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The first aspect of a time series analysis, and almost all statistical analyses, is to plot the 
data.  Here it would be informative if we plot the data as it occurs in time, that is, a time plot.  
We can use the TSPLOT or TPLOT paragraph (see Chapter 3) or the time plot capability of 
SCAGRAF (see The SCA Graphics Package User's Guide) for this purpose.  An SCAGRAF 
plot of SERIESA is given in Figure 5.1. 

Figure 5.1   Series A of Box and Jenkins (1970): 
   Concentration readings of a chemical process 

  
 

From this plot, we note that the series seems to drift upwards slightly, then downwards, 
and then upwards again.  Because of this drift, we may observe a different mean level for the 
series, depending on where we compute it.  Hence we may conclude that the series does not 
have a fixed mean level appropriate for the entire data span.  This is an indication of a 
nonstationary behavior in the time series. 

In order to proceed with the identification stage of the analysis, we need to acquire a 
working knowledge of ARIMA models and notation.  If you are familiar with ARIMA models 
and the backshift operator, you may wish to skip the next section. 

5.1.2   The univariate ARIMA model 

We wish to match the characteristics of our series with those of one or more 
autoregressive-integrated moving average (ARIMA) models.  We have a time series, , t = 
1, 2, . . ., n (here n is 197).  An autoregressive-moving average (ARMA) model has the form 

tZ

t 1 t 1 2 t 2 p t p t 1 t 1 2 t 2 q t qZ Z Z Z C a a a a− − − − −− φ −φ − ⋅⋅⋅− φ = + −θ −θ − ⋅⋅⋅− θ −

2=

q
ta

   (5.1) 

where { a } is a sequence of random errors that are independently and identically distributed 
with a normal distribution, N(0, σ ).  If we introduce the backshift operator, B, where 

t
2

a

 
 ; and so on, 2

t t 1 t t tBZ Z ;     B Z B(BZ ) Z− −= =
 
we can rewrite (5.1) as 
 

2 p 2
t 1 t 2 t p t t 1 t 2 t qZ BZ B Z B Z C a Ba B a B−φ −φ − ⋅⋅⋅ − φ = + −θ −θ − ⋅⋅⋅ − θ    (5.2) 

or 
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2 p 2
1 2 p t 1 2 q(1 B B B )Z C (1 B B B )a−φ −φ − ⋅⋅⋅ − φ = + −θ −θ − ⋅⋅⋅ − θ q

t     (5.3) 

We can abbreviate (5.3) further by writing it as 
 

t t(B)Z C (B)aφ = + θ    (5.4) 

where 
2 p

1 2 p(B) (1 B B B )φ = −φ −φ − ⋅⋅⋅ − φ , and 
2 q

1 2 q(B) (1 B B B )θ = −θ −θ − ⋅⋅⋅ − θ . 

This is known as an ARMA(p,q) model.  The value p denotes the order of the auto-regressive 
operator (B), and q denotes the order of the moving average operator φ θ (B).  The model in 
(5.4) can also be expressed as 
 

t t
(B)Z a
(B)
θ

= µ +
φ

,   (5.5) 

 
where µ  is the mean of the stationary time series.  The mathematical 
properties or requirements of the above models are not discussed here.  For a more detailed 
discussion of these properties see Box and Jenkins (1970). 

1 2 pC /(1 )= −φ −φ − ⋅⋅⋅− φ

 

Relationship to a regression model 
 

The ARMA(p,q) model of a time series is closely related to a regression model of the 
series.  In Chapter 4 we noted a way to incorporate serial correlation in a model is through a 
lagged regression; that is a regression of a series on its own past.  We could write such a 
lagged regression model as (omitting the constant term for notational convenience): 

t 1 t 1 2 t 2 3 t 3Z Z Z Z− − −= π − π − π − ⋅⋅⋅+ ta ,   (5.6) 

or, after moving all Z terms to the left-hand side of the equation and employing the backshift 
operator, we have 
 

t t(B)Z aπ = ,   (5.7) 

where 
2 3

1 2 3(B) (1 B B B )π = − π − π − π − ⋅⋅⋅ . 

Depending upon the nature of the series, we may have a large number of parameters to 
estimate here.  The number of parameters can be greatly reduced if we can approximate π (B) 
as a quotient of polynomials, say (B)/φ θ (B) for some choice of p and q.  In this manner, we 
may approximate (5.7) as 

 
t t(B)θ

(B) Z aφ
=

   (5.8) 
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Multiplication of both sides of (5.8) by θ (B) yields the ARMA(p,q) model as shown in (5.4). 
 

If the series is not stationary (i.e., has no fixed mean level), then the autoregressive 
portion of the ARMA(p,q) model must include a stationary inducing operator.  For a non-
seasonal series, this is most frequently accomplished through a differencing operator (or 
product of differencing operators) of the form (1-B).  That is, instead of modeling the 
nonstationary series , we model the series tZ

t t t(1 B)Z Z Z −− = − 1 . 

Physically this corresponds to modeling the change in the series rather than the series itself.  
Usually only a single differencing operator is required.  On rare occasions in the modeling of 
non-seasonal series, the operator may need to be repeated, say d times.  The model we then 
consider is an autoregressive-integrated moving average model of the form 
 

d
t t(B)(1 B) Z C (B)aφ − = + θ .   (5.9) 

or 
d

t t
(B)(1 B) Z a
(B)
θ

− = µ +
φ

 

 
with .  The model of (5.9), and its equivalent representation, is 
also known as an ARIMA(p,d,q) model. 

1 2 pC /(1 )µ = −φ −φ − ⋅⋅⋅− φ

5.1.3   Model identification 

In the model identification stage, we try to determine “appropriate” orders for p, d, and 
q of the ARIMA(p,d,q) model.  We may not be able to determine a unique model (i.e., a 
unique set of values for p, d, and q), but we may be able to restrict our study to a limited 
number of models.  It may also be the case that not all the autoregressive and moving average 
parameters of an ARIMA(p,d,q) model are required.  For example, if p=3, it may be the case 
that the lag 2 parameter is zero.  We can determine significance during the estimation and 
diagnostic checking stages. 

 
Determining whether or not to difference the data  
 

We have already stated that from its plot, SERIESA may not be stationary.  If this is 
true, we may expect to difference the series at least one time.  We can confirm the stationarity 
or non-stationarity of SERIESA by computing the autocorrelation function (ACF) of the 
series. 

The autocorrelation function measures the correlation of the observations within a time 
series at various lags.  For any positive integer , the lag  autocorrelation is the correlation 
between  and .  The autocorrelation function, ACF, is a sequence of these 
autocorrelations from lag 1 through a specified lag order.  If a series is nonstationary, then its 

l l

tZ t 1Z −
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ACF will be positive and high for a number of lags; and often decreases slowly to zero.  To 
compute and display the sample ACF of our series, we may enter 

 -->ACF   SERIESA.    MAXLAG  IS  12.  
 

 TIME PERIOD ANALYZED . . . . . . . . .  1  TO   197 
 NAME OF THE SERIES . . . . . . . . . .      SERIESA 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          197 
 STANDARD DEVIATION OF THE SERIES . . .        .3982 
 MEAN OF THE (DIFFERENCED) SERIES . . .      17.0624 
 STANDARD DEVIATION OF THE MEAN . . . .        .0284 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .     601.3643 
 
 AUTOCORRELATIONS  
 
   1- 12     .57  .50  .40  .36  .33  .35  .39  .32  .30  .25  .19  .16 
   ST.E.     .07  .09  .10  .11  .12  .12  .13  .13  .14  .14  .14  .14 
    Q       65.0  114  146  172  194  219  251  272  291  305  312  318 

 
           -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
             +----+----+----+----+----+----+----+----+----+----+ 
                                      I 
   1    .57                        +  IXX+XXXXXXXXXXX            
   2    .50                       +   IXXX+XXXXXXXX              
   3    .40                      +    IXXXX+XXXXX                
   4    .36                      +    IXXXX+XXXX                 
   5    .33                     +     IXXXXX+XX                  
   6    .35                     +     IXXXXX+XXX                 
   7    .39                     +     IXXXXX+XXXX                
   8    .32                    +      IXXXXXX+X                  
   9    .30                    +      IXXXXXX+X                  
  10    .25                    +      IXXXXXX+                   
  11    .19                    +      IXXXXX +                   
  12    .16                    +      IXXXX  +       

 
We obtain summary information of our data and the display of the ACF for lags 1 

through 12.  We limited the total number of lags to be computed by including the MAXLAG 
sentence in the paragraph (the default is 36 lags).  The ACF information is given in two 
forms.  It is listed, together with the standard error of each estimate, and it is also plotted.  A 
“Q-value” is also presented in the list of values.  We will defer discussion of this statistic until 
Section 5.1.5 .  We note that although there are no extremely large values in the ACF (i.e., 
values near 1), all values are positive and decrease very slowly.  This behavior and the 
previous time plot support the need to difference the series (i.e., to incorporate a d value of at 
least 1).  We will include the differencing operator (1-B) in the remaining modeling of this 
series. 

Obtaining initial orders for p and q  
 

If the differenced series is stationary we can use its sample ACF and sample partial 
autocorrelation function (PACF) to determine orders for p and q.  We have previously 
discussed the meaning of the ACF.  The PACF is a relative measure of the importance of 
adding terms in a lagged regression of a stationary time series.  That is, the sample PACF can 
be obtained by sequentially fitting 



 ARIMA MODELING AND FORECASTING 5.7
   

   t 11 t 1Z C Z a−= + φ + t

t   t 21 t 1 22 t 2Z C Z Z a− −= + φ + φ +
   t 31 t 1 21 t 2 33 t 3 tZ C Z Z Z a− − −= + φ + φ + φ +

       . 
       . 
       . 

 
and retaining the estimate of the last term of each fit.  Hence 11φ  is a measure of the effect of 
including a first-order lagged term in a model; 22φ  is a measure of the effect of including a 
second-order lagged term in the model given the model contains a first-order term; 33φ  is a 
measure of the effect of adding a third-order term when first and second order lagged terms 
are already present; and so on.  The estimate of φll

tZ
 typically has a value between -1 and 1, 

and can be interpreted as the correlation between  and tZ −l  after accounting for the effects 
due to .  Thus the set of estimates of t 1 t 2 t 1Z , Z ,..., Z− − −l+ 11φ , 22φ , . . . is referred to as the 
sample PACF of the series .  tZ
 

As we may infer from the way that values are computed, the sample PACF provides 
direct information on the order of autoregressive operator (i.e., p) provided q=0.   
Alternatively, the ACF provides direct information on the order of the moving average 
operator (i.e., q) if p=0.  More precisely, if a series can be represented as a pure AR or MA 
process, we observe the following: 

 
       ACF       PACF  

    
    MA(q) “Cuts off” after lag q   “Dies out” in an exponential  
        or sinusoidal fashion 
 
    AR(p) “Dies out” in an exponential  “Cuts off” after lag p 
   or sinusoidal fashion  
    
 
By “cut off” we mean that the sample ACF or PACF has only a few low order significant 
autocorrelations.  Typically we judge that an autocorrelation is significant if it is greater (in 
absolute value) than twice of its standard error.  We can compute the sample ACF and PACF 
for the first-order differenced SERIESA by using the ACF and PACF paragraphs separately, 
or by simply entering 
 

 -->IDEN   SERIESA.   DFORDER IS 1.   MAXLAG IS 12.  
 
The DFORDER sentence specifies the order of differencing we desire (see the note in Section 
5.4.1).  As in the ACF paragraph, the MAXLAG sentence is used to restrict the number of 
lags to compute for the sample ACF and PACF to 12 (the default is 36).  We obtain the 
following: 
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                                             1 
 DIFFERENCE ORDERS. . . . . . . . . . . (1-B  )  
 TIME PERIOD ANALYZED . . . . . . . . .  1  TO   197 
 NAME OF THE SERIES . . . . . . . . . .      SERIESA 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          196 
 STANDARD DEVIATION OF THE SERIES . . .        .3694 
 MEAN OF THE (DIFFERENCED) SERIES . . .        .0020 
 STANDARD DEVIATION OF THE MEAN . . . .        .0264 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .        .0774 
 
 AUTOCORRELATIONS  
 
   1- 12    -.41  .02 -.07 -.01 -.07 -.02  .15 -.07  .04  .02 -.05 -.06 
   ST.E.     .07  .08  .08  .08  .08  .08  .08  .08  .08  .08  .08  .09 
    Q       33.9 34.0 34.9 34.9 35.9 35.9 40.3 41.2 41.5 41.6 42.1 42.9 
 
           -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
             +----+----+----+----+----+----+----+----+----+----+ 
                                      I 
   1   -.41                 XXXXXX+XXXI   +                      
   2    .02                       +   I   +                      
   3   -.07                       + XXI   +                      
   4   -.01                       +   I   +                      
   5   -.07                       + XXI   +                      
   6   -.02                       +  XI   +                      
   7    .15                       +   IXXXX                      
   8   -.07                       + XXI   +                      
   9    .04                       +   IX  +                      
  10    .02                       +   IX  +                      
  11   -.05                       +  XI   +                      
  12   -.06                       + XXI   +      
 
PARTIAL AUTOCORRELATIONS  
 
   1- 12    -.41 -.18 -.17 -.14 -.19 -.21 -.00 -.05 -.02  .04 -.01 -.08 
   ST.E.     .07  .07  .07  .07  .07  .07  .07  .07  .07  .07  .07  .07 
 
           -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
             +----+----+----+----+----+----+----+----+----+----+ 
                                      I 
   1   -.41                 XXXXXX+XXXI   +                      
   2   -.18                      X+XXXI   +                      
   3   -.17                       XXXXI   +                      
   4   -.14                       +XXXI   +                      
   5   -.19                      X+XXXI   +                      
   6   -.21                      X+XXXI   +                      
   7    .00                       +   I   +                      
   8   -.05                       +  XI   +                      
   9   -.02                       +   I   +                      
  10    .04                       +   IX  +                      
  11   -.01                       +   I   +                      
  12   -.08                       + XXI   +   

We see that the ACF cuts off after the first lag and the PACF decays exponentially.  
These results appear to indicate that an ARMA model with p=0 and q=1 may be appropriate.  
Hence, we have tentatively identified SERIESA as an ARIMA(0,1,1) model.  

Mixed ARIMA models 
 

We have relatively simple and effective tools to determine the order of differencing, d, 
and p (or q), if we have a pure autoregressive (or pure moving average) model, after any 



 ARIMA MODELING AND FORECASTING 5.9
   

necessary differencing.  If both p and q are not zero, then the identification of the model can 
be more difficult if only sample ACF and PACF of a series are available for use.  Box and 
Jenkins (1970) provide some information on how to determine the orders of p and q from 
“reading” the sample ACF of a stationary series.  However, this approach is usually not very 
effective in practice. 

Tsay and Tiao (1984) introduced a unified approach to the identification of both the 
mixed stationary and nonstationary ARMA model.   They construct and display a table of 
values, called the extended autocorrelation function (EACF), to suggest the maximum orders 
of p and q for an appropriate ARMA(p,q) model.  The table of values can be summarized in a 
condensed form by replacing those values that are within two standard  errors of zero by an 
‘O’ (to indicate not different from zero), and by an ‘X’ otherwise.  The order of p and q can 
then be determined by finding a position ( q ) in the table so that all values in the table are 
‘0’ for the (i,j) coordinates in the triangular region where i =  + k, and , k = 0, 1, 
2, . . . .   

0p , 0

0p 0j q k≥ +

To illustrate the EACF, we will construct the table for the first-order differenced 
SERIESA.  To do this, we simply enter 

 -->EACF   SERIESA.   DFORDER IS 1. 
                                             1 
 DIFFERENCE ORDERS. . . . . . . . . . . (1-B  )  
 TIME PERIOD ANALYZED . . . . . . . . .  1  TO   197 
 NAME OF THE SERIES . . . . . . . . . .      SERIESA 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          196 
 STANDARD DEVIATION OF THE SERIES . . .        .3694 
 MEAN OF THE (DIFFERENCED) SERIES . . .        .0020 
 STANDARD DEVIATION OF THE MEAN . . . .        .0264 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .        .0774 
 
 THE EXTENDED ACF TABLE  
 
 (Q-->)   0    1    2    3    4    5    6    7    8    9   10   11   12 
 ------------------------------------------------------------------------ 
 (P= 0) -.41  .02 -.07 -.01 -.07 -.02  .15 -.07  .04  .02 -.05 -.06 -.01 
 (P= 1) -.39 -.13 -.05  .01 -.05 -.02  .16  .01  .04  .03 -.02 -.05 -.01 
 (P= 2) -.51 -.02  .15 -.01 -.01 -.03  .16 -.00  .09 -.03 -.01  .01 -.06 
 (P= 3) -.48 -.03  .13 -.02 -.01 -.04  .14  .06  .07 -.03 -.03  .00 -.08 
 (P= 4) -.47 -.44 -.18  .01 -.16 -.03  .10 -.02  .05  .04 -.01  .01 -.06 
 (P= 5) -.51  .12 -.19 -.00 -.27 -.09  .08 -.10  .05  .01 -.03 -.04 -.04 
 (P= 6)  .04 -.15 -.08  .22  .13 -.15 -.25  .01 -.01 -.00 -.05 -.07 -.06 
 
 SIMPLIFIED EXTENDED ACF TABLE (5% LEVEL) 
 
 (Q-->)  0  1  2  3  4  5  6  7  8  9 10 11 12 
 ----------------------------------------------- 
 (P= 0)  X  O  O  O  O  O  O  O  O  O  O  O  O  
 (P= 1)  X  O  O  O  O  O  X  O  O  O  O  O  O 
 (P= 2)  X  O  O  O  O  O  X  O  O  O  O  O  O 
 (P= 3)  X  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 4)  X  X  O  O  O  O  O  O  O  O  O  O  O 
 (P= 5)  X  O  O  O  X  O  O  O  O  O  O  O  O 
 (P= 6)  O  O  O  X  O  O  X  O  O  O  O  O  O 

 
We obtain the same summary information as in the previous IDEN output, a sample 

EACF table with values displayed, and a simplified EACF table.  We may observe that a 



5.10 ARIMA MODELING AND FORECASTING 

triangular region of ‘0’ values appears to emanate from the vertex where p=0 and q=1.  We 
have highlighted this region by hand.  There are two significant values in this region.  We can 
observe from the table of EACF values, these values barely exceed two standard errors.  In 
general, the EACF results support our previous conclusion regarding the order of this model, 
i.e., an ARIMA(0,1,1) model. 

We noted above that the EACF can be used for nonstationary series as well.  To 
illustrate this, we will compute the EACF for the original series, SERIESA.  

 -->EACF   SERIESA  
 

 TIME PERIOD ANALYZED . . . . . . . . .  1  TO   197 
 NAME OF THE SERIES . . . . . . . . . .      SERIESA 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          197 
 STANDARD DEVIATION OF THE SERIES . . .        .3982 
 MEAN OF THE (DIFFERENCED) SERIES . . .      17.0624 
 STANDARD DEVIATION OF THE MEAN . . . .        .0284 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .     601.3643 
 
 THE EXTENDED ACF TABLE  
 
 (Q-->)   0    1    2    3    4    5    6    7    8    9   10   11   12 
 ------------------------------------------------------------------------ 
 (P= 0)  .57  .50  .40  .36  .33  .35  .39  .32  .30  .25  .19  .16  .19 
 (P= 1) -.39  .04 -.06 -.01 -.07 -.01  .16 -.07  .04  .04 -.04 -.06 -.00 
 (P= 2) -.29 -.27 -.04  .01 -.05 -.01  .17  .03  .04  .07 -.02 -.05 -.00 
 (P= 3) -.50 -.01  .09 -.01 -.01 -.03  .16 -.03  .11 -.02 -.01  .01 -.06 
 (P= 4) -.48 -.02  .08 -.02 -.01 -.04  .14  .03  .09 -.03 -.02  .00 -.08 
 (P= 5) -.39 -.41 -.17  .01 -.17 -.02  .10 -.01  .06  .07 -.01  .01 -.06 
 (P= 6) -.49  .15 -.18 -.00 -.26 -.06  .09 -.10  .05  .02 -.02 -.03 -.05 
 
 SIMPLIFIED EXTENDED ACF TABLE (5% LEVEL)  
 
 (Q-->)  0  1  2  3  4  5  6  7  8  9 10 11 12 
 ----------------------------------------------- 
 (P= 0)  X  X  X  X  X  X  X  X  X  O  O  O  O  
 (P= 1)  X  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 2)  X  X  O  O  O  O  X  O  O  O  O  O  O 
 (P= 3)  X  O  O  O  O  O  X  O  O  O  O  O  O 
 (P= 4)  X  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 5)  X  X  O  O  O  O  O  O  O  O  O  O  O 
 (P= 6)  X  O  O  O  X  O  O  O  O  O  O  O  O 

 
The initial summary information is the same as that for the ACF of the original series.  

Now the triangle of insignificant values appears to emanate from p=1, q=1.  This result is 
consistent with our ARIMA(0,1,1) model as the differencing operator (1-B) can be viewed as 
the AR operator (1- B) with =1.  Hence the EACF, ACF, and PACF can be used to 
“validate” one another.  

φ φ

Due to sampling fluctuations, the condensed EACF table may not always provide clear 
cut patterns as shown above.  However, it may indicate a few possible sets of candidates for p 
and q.  We should not be concerned by this lack of “uniqueness”, since the purpose of the 
identification stage is to merely suggest a few reasonable models for us to pursue. 
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5.1.4   Model specification and estimation 

Now that we have tentatively identified an ARIMA(0,1,1) model for our series, we need 
to estimate the model.  This requires two steps.  First, we need to specify the model using the 
TSMODEL paragraph.  Once the model is specified, we can estimate the model using the 
ESTIM paragraph. 

We have determined that we will specify a model having a differencing term and one 
moving average parameter.  However, should we also include a constant term in the model?  
Use of a constant term here indicates we believe there may be a trend in the series.  Our time 
plot did not indicate the presence of any definitive trend.  We can also examine the summary 
statistics provided in the IDEN or EACF display of the differenced series.  As part of the 
summary, we are provided with an estimate of the mean of the (differenced) series, its 
standard error and the associated t-value.  This estimate is obtained assuming no serial 
correlation.  We see the t-value here is .0774, which does not warrant the inclusion of a 
constant term.  Although we are not including a constant term here, whenever we are in doubt 
it is often wise to include a constant term.  We can then let the data “decide” whether the 
constant is significant or not.  Omitting a constant term, when one is required, will affect our 
analysis more adversely than including a constant term when there is no need. 

Model specification 
 
 We want to then specify the following model: 
 
   t t(1 B)Z (1 B)a− = −θ
 
We can specify this model by entering 
 

-->TSMODEL   NAME IS MODELA.   MODEL IS SERIESA((1-B)) = (1-THETA*B)NOISE 
 

We need to provide a model in the SCA workspace with a name (label) so that we can 
refer to it later.  Individual names are required since we can maintain more than one model in 
the workspace in the same SCA session.  Note that a model name must be distinct from any 
variable name.  As a result, we cannot call the model SERIESA, as that is the name of our 
data.  We call our model MODELA in the above model specification.  We can use the 
TSMODEL paragraph later in our SCA session to modify this model.  However, if we use the 
MODEL sentence again in the TSMODEL paragraph with this name, the newer specification 
will completely replace the information held under the model name. 

The model specified in the MODEL sentence is a virtual transcription of (5.10), with one 
exception.  The differencing operator (1-B) is specified to the right of our series name, and 
not on the left as in (5.10).  This convention permits the SCA System to distinguish 
autoregressive operators from “descriptive” modifiers of the series.  
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The label THETA used in the specified model is arbitrary.  We have chosen it here for 
convenience.  The SCA System permits us to simultaneously maintain and modify many  
models.  Parameter names are used to distinguish and maintain current values of parameters.  
After we estimate the above model, the estimate of θ will be maintained in the workspace 
under the label THETA.  Since no variable named THETA exists currently, the SCA System 
will now create one and assign it the initial value 0.10.  We see this in the model summary 
that follows the above model specification. 

 -->TSMODEL   MODELA.   MODEL IS SERIESA((1-B)) = (1-THETA*B)NOISE   
 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODELA 
 
 -----------------------------------------------------------------------                             
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING                                                     
           VARIABLE   OR CENTERED                                                                    
                                         1     
 SERIESC    RANDOM     ORIGINAL     (1-B  )     
 -----------------------------------------------------------------------                             
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T                        
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE                      
                                                                                                     
   1   THETA  SERIESA    MA       1      1     NONE      .1000      

 
The sentence name and verb “NAME IS” have been omitted above since the NAME 

sentence is the most frequently used required sentence (see page 2.6) of the TSMODEL 
paragraph.  We do not always need to be “elaborate” in the specification of a model, as the 
SCA System only requires information on the order of parameters to be estimated, or 
differencing operators used.  Either of the following can be used to describe the model of 
(5.10): 

-->TSMODEL   MODELA.  MODEL IS SERIESA(1) = (1-THETA*B)NOISE. (5.11) 

-->TSMODEL   MODELA.  MODEL IS SERIESA(1) = (1)NOISE. (5.12) 

In (5.11), the differencing operator is reduced to the order of the B operator, that is, 1.  If 
we enter (5.11), the same model summary as given above will occur.  In (5.12), we also 
reduce the moving average operator to simply (1).  This indicates only a first-order term is 
present in the moving average operator.  If we enter (5.12) we will obtain the same summary 
as above, except the parameter estimate will be held internally since no label for the MA 
parameter is specified. 

Model estimation  
 

To estimate the above model we may simply enter 

 -->ESTIM   MODELA.    HOLD  RESIDUALS(RESIDA).  
 
The HOLD sentence is included so that residuals are maintained in the workspace for the 
purpose of subsequent diagnostic checking.  We obtain  
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 ITERATION  1, USING STANDARD ERROR =          .35561116 
 
  ITER.   OBJ.    PARAMETER ESTIMATES  
   1   .2072E+02    .466     
   2   .2005E+02    .606     
   3   .1992E+02    .663     
   4   .1989E+02    .687     
   5   .1989E+02    .697     
   6   .1989E+02    .702     
 
 ITERATION TERMINATED DUE TO:  
 RELATIVE CHANGE IN (OBJECTIVE FUNCTION)**0.5 LESS THAN  .1000D-03 
 
 TOTAL NUMBER OF ITERATIONS . . . . . . . . . . . .          6 
 RELATIVE CHANGE IN (OBJECTIVE FUNCTION)**0.5 . . .  .1319D-04 
 MAXIMUM RELATIVE CHANGE IN THE ESTIMATES . . . . .  .6166D-02 
 
 THE RECIPROCAL CONDITION VALUE FOR THE CROSS PRODUCT MATRIX OF 
 THE PARAMETER PARTIAL DERIVATIVES IS  .100000D+01 
 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODELA  
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1 
 SERIESA    RANDOM     ORIGINAL     (1-B  )  
 ---------------------------------------------------------------------- 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1  THETA   SERIESA    MA       1      1     NONE      .7015     .0511  13.73  
 
 
 TOTAL SUM OF SQUARES . . . . . . . .   .312420E+02 
 TOTAL NUMBER OF OBSERVATIONS . . . .           197 
 RESIDUAL SUM OF SQUARES. . . . . . .   .198853E+02 
 R-SQUARE . . . . . . . . . . . . . .          .360 
 EFFECTIVE NUMBER OF OBSERVATIONS . .           196 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .101456E+00 
 RESIDUAL STANDARD ERROR. . . . . . .   .318521E+00 

 
We are provided with a summary of how our parameters change during the nonlinear 

estimation process, the reason the estimation procedure ended, and a summary of the 
estimated model.  We see our estimate of THETA is .7015 with a t-value of 13.73.  The t-
value indicates that the estimate is clearly significant.  The variance of the residuals, that is, 
the variation in the series that is still not accounted for after our modeling efforts, is .1015.  
This results in a standard error of about .319.  The standard error of our original series (see the 
ACF summary statistics) is .398.  Consequently, (.319/.398)2, or 64%, of the variation of the 
series is still unexplained.  This is reflected in the R-square value of .360 (i.e., 1-.640). 

Estimation algorithms for MA parameters 
 

The ARMA parameter estimates obtained above are maximum likelihood estimates, i.e. 
estimates that maximize a likelihood function.  This function may be reasonably 
approximated by a conditional likelihood function as discussed in Box and Jenkins (1970).  
The SCA System also adopts an approximation to the likelihood function that incorporates a 
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more exact likelihood function as shown in Hillmer and Tiao (1979).  With n observations 
, both approaches compute the likelihood function on the basis of the stochastic 

structure of n-p observations, 
1Z ,...., Zn

p

  
p q

t i t i j t j t
i 1 j 1

Z C Z a a ,       t p 1,.....n− −
= =

= + φ − θ + = +∑ ∑
 
where  are regarded as fixed.  The two methods differ in that the “conditional” 
likelihood algorithm assumes 

1Z ,...., Z

pa  = ... = p q 1a − −  = 0 while the “exact” likelihood algorithm 
computes estimates for those values.  Hence this “exact” approach is exact for MA 
parameters only.  The conditional and exact algorithms do not affect the estimates of a pure 
AR process.  Anderson (1971) shows that such estimates have desirable properties; hence a 
more exact estimate is not required.  A Gauss-Marquardt nonlinear least-squares method 
(MACC 1965) is used to perform parameter estimation in the SCA System.  The objective 
function to be minimized and displayed in the estimation summary is the sum of squared 
residuals in the conditional method; and is the sum of squared residuals plus an adjustment 
term in the exact method.  Details are shown in Hillmer and Tiao (1979). 
 

The exact algorithm is computationally more burdensome, but it can appreciably reduce 
the biases in estimating the moving average parameters jθ ‘s under the conditional approach, 
especially when some of the roots of θ (B) are near the unit circle (e.g., seasonal ARIMA 
models).  It is usually good practice to employ the exact algorithm whenever an MA 
parameter is present (in particular, in a seasonal model). 

The most efficient way to employ the exact estimation method is to first estimate a 
model using the default conditional method.  Then we can re-estimate the model using the 
exact method.  The advantage in doing so is that the conditional method will provide a good 
starting point from which the exact method may begin.  We can accomplish this easily in the 
SCA System since each model maintains a “memory” of the last estimate of a parameter.  

We will now employ the exact method, starting from the current estimate for the MA 
parameter.  We simply enter 

 -->ESTIM    MODELA.   METHOD IS EXACT.  HOLD RESIDUALS(RESIDA). 
 
We obtain the following (the SCA output is edited for presentation purposes): 
 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODELA  
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1 
 SERIESA    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1  THETA   SERIESA    MA       1      1     NONE      .7015     .0505  13.90  
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 TOTAL SUM OF SQUARES . . . . . . . .   .312420E+02 
 TOTAL NUMBER OF OBSERVATIONS . . . .           197 
 RESIDUAL SUM OF SQUARES. . . . . . .   .197429E+02 
 R-SQUARE . . . . . . . . . . . . . .          .365 
 EFFECTIVE NUMBER OF OBSERVATIONS . .           196 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .100729E+00 
 RESIDUAL STANDARD ERROR. . . . . . .   .317378E+00 

 
We note that there has been virtually no change in the results.  This is due to the fact 

that the estimate for θ, 0.7, is not near the unit circle. 

5.1.5   Diagnostic checks of the model 

The final stage of model building is to diagnostically check the model we have 
estimated.  In checking our model(s) we may ask: 

(1)  Is the model statistically consonant with our assumptions?  

(2)  Does the model make sense?  
 
The latter is best answered by an individual who “knows” the data.  Often when two or more 
models lead to approximately the same results (e.g., explanation of variation or forecasts), the 
“best” model may be the one that is most interpretable. 
 

Diagnostic checks of model assumptions can be quantified statistically.  The most basic 
assumption made in ARIMA models is that the errors a 's are independently and normally 
distributed.  Such a serially independent series is also referred to as a white noise series.  If 
checks show this assumption is not true, then our model is not adequate and needs to be 
modified.  If the assumption is correct, then the residuals of our model should approximate a 
serially independent sample and follow a normal distribution with 

t

zero mean and constant 
variance. 

We can check our residuals in a number of ways.  The most comprehensive check is a 
time plot of the residuals.  The plot of the residuals from this fit is shown in Figure 5.2. 

Figure 5.2   Residuals from an ARIMA(0,1,1) fit of SERIESA 

 
  

No apparent pattern is present in the plot, but two points (at t=43 and t=64) appear to 
“stick out” from the rest.  These points may be spurious observations, or outliers.  Outliers are 
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discussed in more detail in Chapter 7.  The variation of the residuals appears to be the same 
over time. 

Another diagnostic check of the fitted model is the ACF of the residual series.  If the 
residuals approximate white noise, then no autocorrelations should be significant.  We can 
check this by computing the ACF of our residual series by entering 

 -->ACF   RESIDA.   MAXLAG IS 12. 
 

 TIME PERIOD ANALYZED . . . . . . . . .  2  TO   197 
 NAME OF THE SERIES . . . . . . . . . .       RESIDA 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          196 
 STANDARD DEVIATION OF THE SERIES . . .        .3166 
 MEAN OF THE (DIFFERENCED) SERIES . . .        .0118 
 STANDARD DEVIATION OF THE MEAN . . . .        .0226 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .        .5239 
 
 AUTOCORRELATIONS  
 
  1- 12     .10  .01 -.11 -.12 -.12 -.01  .14  .02  .04 -.01 -.10 -.12 
  ST.E.     .07  .07  .07  .07  .07  .07  .07  .08  .08  .08  .08  .08 
   Q        1.9  1.9  4.1  6.9 10.0 10.1 14.2 14.3 14.6 14.6 16.9 20.0 

 
          -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
            +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
  1    .10                       +   IXX +                      
  2    .01                       +   I   +                      
  3   -.11                       +XXXI   +                      
  4   -.12                       +XXXI   +                      
  5   -.12                       +XXXI   +                      
  6   -.01                       +   I   +                      
  7    .14                       +   IXXXX                      
  8    .02                       +   IX  +                      
  9    .04                       +   IX  +                      
 10   -.01                       +   I   +                      
 11   -.10                       +XXXI   +                      
 12   -.12                       +XXXI   +   

 
From the summary statistics we see the mean of the residuals is not distinguishable from 

zero (since the t-value is not significant).  In addition, all computed ACF values are within 
two standard errors of zero.   We also are provided with a crude global check on the residuals, 
a portmanteau test, the Ljung-Box Q statistic (1978).  This value, provided in the ACF table 
in the “Q row”, represents a scaled sum of squares of the computed ACF values.  It is scaled 
so that we can use a χ2 distribution, with ( -p-q) degrees of freedom, to determine its 
significance.  For l =12, the Q value 20.0 is marginally significant at the 5% level for a χ2 
distribution with 12-1-1=10 degrees of freedom. 

l

We may also wish to check if we have overfit the series.  That is, if some estimates are 
not statistically different from zero, we may be able to omit them from our model.  Here, we 
have only one parameter in the model, and it is significant, as noted above. 

As a final check of the model, we may also wish to test quantitatively to see if there are 
any spurious residuals that may have affected our fit; and if so, how to correct for them.  We 
have already spotted two potential outliers in the residual plot.  A more complete discussion 
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on outliers, and methods to detect and adjust for outliers, is provided in Chapter 7.  The 
normality assumption for ARIMA models, assuming no outliers existed, typically is satisfied. 

5.1.6   Forecasting an estimated model 

Once we have determined that we have an adequate fit, we can forecast the series using 
the FORECAST paragraph.  To forecast SERIESA using our estimated model, we can enter 

 -->FORECAST   MODELA.   NOFS ARE 12. 
 

 NOTE: THE EXACT METHOD FOR COMPUTING RESIDUALS IS USED 
 
 ---------------------------------- 
  12 FORECASTS, BEGINNING AT  197 
 ---------------------------------- 
 
  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
 
   198     17.5045       .3174 
   199     17.5045       .3312 
   200     17.5045       .3445 
   201     17.5045       .3573 
   202     17.5045       .3696 
   203     17.5045       .3816 
   204     17.5045       .3932 
   205     17.5045       .4044 
   206     17.5045       .4154 
   207     17.5045       .4260 
   208     17.5045       .4365 
   209     17.5045       .4466   

 
We are provided with 12 forecasts, together with the standard error of each forecast.  

The sentence NOFS was included to limit the number of forecasts to 12.  If the sentence is 
omitted, then 24 forecasts are produced. 

It may appear unusual that all forecasts are the same value, yet the standard error of the 
forecast increases.  However, a brief examination of the model used provides necessary 
explanations.  The model we have is (approximately) 

  t t(1 B)SERIESA (1 .7B)a− = −
or 
 . t t 1 tSERIESA SERIESA a .7a− −= + − t 1

 
This model states that the value for SERIESA at any time period is the observed value from 
the period before plus a weighted amount of the errors that occur at both the existing and prior 
period.  Hence the value for t=198 (the first value beyond our data span) would be 
 
 . 198 197 198 197SERIESA SERIESA a .7a= + −
 
 We know the value of our last observation, SERI ; but what about the a ‘s?  
We can use the value of the residual series at t=197 (i.e., ) as a surrogate for , but the 

197ESA

197â
t

197a
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best “guess” we can make for a  is its assumed mean value, 0.  Therefore the forecast for 
is 

198

197SA

198SA

ESA

199

SERI

198ESA

198SERIESA

SERI

SERI

199SERIESA

tZ +l

q t

Z (

E (

l l

t tZ      +

 
  198 197ˆESA SERIE .7a= −
 
Our model also states that the value for t=199 (the second value beyond our data span) would 
be 
 . 199 199 198ESA SERIE a .7a= + −
 
Now none of the values on the right-hand side of the equation are exactly known to us.  The 
best choice of a value for  is the value we have just forecasted (for t=198).  The 
best value we can use for a  or a  is the mean value, 0.  Therefore the forecast for 

 is the same as .  Similarly, the best forecast we can provide for each 
successive time period is the value made for the previous forecast.  This value will always be 
the forecast made for SERI .  Hence all of the forecasts are the same for this particular 
model.  This may not be the case for other models. 

198SERI

19

198ESA
8

 
The increasing value for the standard error of the forecast is directly related to what we 

do not know, and are “forced” to use, for each time period.  For t=198,  is unknown and 
hence the standard error of the forecast is the standard error of the noise sequence (since we 
use the mean level 0 for ).  This value is .3174, the residual standard error of our model.  
For t=199, we need to “account for”   and the weights assigned to them.  Hence the 
error increases.  For subsequent periods we need to “account for” the two error terms and their 
associated weights (as before), as well as the error accumulating by using the same value for 
the forecast.  Thus, the error continues to increase.  The formal statistical derivations for the 
forecasts and standard errors from any ARIMA model are discussed below. 

198a

198a
198a , 199a

Calculations of forecasts and forecast standard errors 
 

Forecasts and the standard errors of forecasts are obtained based on the values through 
the forecast origin, the fitted ARIMA model, and the residuals from the fitted model.  
Suppose observations , , ... are available up to time t and it is desired to forecast future 
observations .  Forecasts calculated in the SCA System are the minimum mean 
squared error (MMSE) forecasts so that the forecast for 

1Z
1

2Z
tZ ,  + ≥l l

tZ +l  is the condition expectation of 
 based on all information to time t.  It can be shown that the MMSE forecast, , can 

be recursively computed using 
tẐ ( )l

t 1 t p t t t 1 t

t q

ˆ ˆ ˆZ ( ) C 1) Z ( p) E (a ) E (a )

a )
+

+ −

= + φ − + ⋅⋅⋅+ φ − − −θ

− ⋅⋅⋅−θ
l

l

l
   t 1+ −l

where 
  , jẐ ( j)          for j 0= ≤
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  t t j t+jE (a )       = a      for j 0+ ≤ , 
  , t t jE (a )      0     for j>0+ =
 

In practice, neither the parameter values nor the values of the error sequence are known.  
Hence we use the estimated parameter values and the corresponding residual sequence in their 
place.  The residuals used in the FORECAST paragraph are those derived using the EXACT 
likelihood method unless we direct otherwise. 

Assuming that the white noise sequence for the model has a variance , the error 

 is normally distributed with zero mean and variance V( ) =  

2
aσ

)t t t
ˆe ( ) Z Z ( )+= −ll l te (l

1
2 2
i a

i 0

−

=

ψ σ
l

∑  

.  The 's are coefficients of the linear polynomial ψ ψ (B), such that φ (B) (B) = ψ θ (B).  In 
practice, the values for the 's are determined from the estimated parameter values, and the 
residual standard error is use for 

ψ

aσ . 

5.2   A Second Example:  Sales Data 

As a second illustration of ARIMA model building, we consider a series of sales data.  
The data, part of Series M of Box and Jenkins (1970), consist of 150 observations and are 
listed in Table 5.2.  These data are modeled together with a series of leading indicators by 
Box and Jenkins (1970, Section 11.5.3).  We will also present this model in Chapter 8.  
However, here we will model the sales data alone.  The data are stored in  the SCA workspace 
under the label SALES.  A time series plot of SALES (produced by SCAGRAF) is shown in 
Figure 5.3. 

Table 5.2 Sales data of Series M of Box and Jenkins (1970) 
    (Data read across the line) 
 

200.1  199.5  199.4  198.9  199.0  200.2  198.6  200.0  200.3  201.2  201.6  201.5 
201.5  203.5  204.9  207.1  210.5  210.5  209.8  208.8  209.5  213.2  213.7  215.1 
218.7  219.8  220.5  223.8  222.8  223.8  221.7  222.3  220.8  219.4  220.1  220.6 
218.9  217.8  217.7  215.0  215.3  215.9  216.7  216.7  217.7  218.7  222.9  224.9 
222.2  220.7  220.0  218.7  217.0  215.9  215.8  214.1  212.3  213.9  214.6  213.6 
212.1  211.4  213.1  212.9  213.3  211.5  212.3  213.0  211.0  210.7  210.1  211.4 
210.0  209.7  208.8  208.8  208.8  210.6  211.9  212.8  212.5  214.8  215.3  217.5 
218.8  220.7  222.2  226.7  228.4  233.2  235.7  237.1  240.6  243.8  245.3  246.0 
246.3  247.7  247.6  247.8  249.4  249.0  249.9  250.5  251.5  249.0  247.6  248.8 
250.4  250.7  253.0  253.7  255.0  256.2  256.0  257.4  260.4  260.0  261.3  260.4 
261.6  260.8  259.8  259.0  258.9  257.4  257.7  257.9  257.4  257.3  257.6  258.9 
257.8  257.7  257.2  257.5  256.8  257.5  257.0  257.6  257.3  257.5  259.6  261.1 

      262.9  263.3  262.8  261.8  262.2  262.7 
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Figure 5.3   Sales data of SERIES M of Box and Jenkins (1970) 

 
 

In the previous example, there was a question of whether the series was stationary or 
not.  The plot here clearly depicts the nonstationarity of SALES.  Although differencing is 
warranted, we will first compute the ACF of the original series to confirm it. 

 -->ACF  SALES.  MAXLAG IS 12. 
 

 TIME PERIOD ANALYZED . . . . . . . . .  1  TO   150 
 NAME OF THE SERIES . . . . . . . . . .        SALES 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          150 
 STANDARD DEVIATION OF THE SERIES . . .      21.4080 
 MEAN OF THE (DIFFERENCED) SERIES . . .     229.9780 
 STANDARD DEVIATION OF THE MEAN . . . .       1.7480 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .     131.5699 
 
 AUTOCORRELATIONS  
 
  1- 12     .98  .96  .94  .92  .90  .87  .85  .83  .80  .78  .75  .73 
  ST.E.     .08  .14  .18  .21  .23  .26  .28  .29  .31  .32  .33  .35 
   Q        148  291  430  563  690  811  926 1035 1139 1237 1330 1418 
 
          -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
            +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
  1    .98                       +   IXXX+XXXXXXXXXXXXXXXXXXXXX 
  2    .96                    +      IXXXXXX+XXXXXXXXXXXXXXXXX  
  3    .94                  +        IXXXXXXXX+XXXXXXXXXXXXXXX  
  4    .92                 +         IXXXXXXXXX+XXXXXXXXXXXXX   
  5    .90               +           IXXXXXXXXXXX+XXXXXXXXXX    
  6    .87              +            IXXXXXXXXXXXX+XXXXXXXXX    
  7    .85             +             IXXXXXXXXXXXXX+XXXXXXX     
  8    .83             +             IXXXXXXXXXXXXX+XXXXXXX     
  9    .80            +              IXXXXXXXXXXXXXX+XXXXX      
 10    .78           +               IXXXXXXXXXXXXXXX+XXX       
 11    .75           +               IXXXXXXXXXXXXXXX+XXX       
 12    .73          +                IXXXXXXXXXXXXXXXX+X        

 
The ACF of SALES has large values and decays very slowly.  This behavior is typical 

of a nonstationary series and indicates that we should difference the series.  We now compute 
the sample ACF and PACF of (1-B)SALES by entering 

 -->IDEN  SALES.   DFORDER IS 1.   MAXLAG IS 12. 
 

                                            1 
 DIFFERENCE ORDERS. . . . . . . . . . . (1-B  )  
 TIME PERIOD ANALYZED . . . . . . . . .  1  TO   150 
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 NAME OF THE SERIES . . . . . . . . . .        SALES 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          149 
 STANDARD DEVIATION OF THE SERIES . . .       1.4391 
 MEAN OF THE (DIFFERENCED) SERIES . . .        .4201 
 STANDARD DEVIATION OF THE MEAN . . . .        .1179 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .       3.5635 
 
 AUTOCORRELATIONS  
 
   1- 12     .31  .28  .23  .25  .15  .13  .06  .13 -.02 -.00  .11 -.01 
   ST.E.     .08  .09  .10  .10  .10  .10  .11  .11  .11  .11  .11  .11 
    Q       14.8 26.6 34.5 44.4 47.9 50.7 51.3 54.1 54.2 54.2 56.0 56.0 
 
           -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
             +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
   1    .31                       +   IXXX+XXXX                  
   2    .28                       +   IXXX+XXX                   
   3    .23                      +    IXXXX+X                    
   4    .25                      +    IXXXX+X                    
   5    .15                      +    IXXXX+                     
   6    .13                      +    IXXX +                     
   7    .06                      +    IXX  +                     
   8    .13                      +    IXXX +                     
   9   -.02                      +    I    +                     
  10    .00                      +    I    +                     
  11    .11                      +    IXXX +                     
  12   -.01                      +    I    +      

 
 PARTIAL AUTOCORRELATIONS  
 
   1- 12     .31  .20  .11  .14 -.00  .01 -.05  .07 -.11 -.03  .14 -.08 
   ST.E.     .08  .08  .08  .08  .08  .08  .08  .08  .08  .08  .08  .08 
 
          -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
            +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
  1    .31                       +   IXXX+XXXX                  
  2    .20                       +   IXXX+X                     
  3    .11                       +   IXXX+                      
  4    .14                       +   IXXX+                      
  5    .00                       +   I   +                      
  6    .01                       +   I   +                      
  7   -.05                       +  XI   +                      
  8    .07                       +   IXX +                      
  9   -.11                       +XXXI   +                      
 10   -.03                       +  XI   +                      
 11    .14                       +   IXXX+                      
 12   -.08                       + XXI   +   

 
Both the ACF and the PACF appear to “die out”.  This joint pattern is typical of a mixed 

ARMA model.  In particular, the pattern above is consistent with that of an ARMA model 
with p = 1 and q = 1.  However, to better identify tentative orders for p and q, we will employ 
the sample EACF by entering  

 -->EACF  SALES.  DFORDER IS 1. 
                                           1 
 DIFFERENCE ORDERS. . . . . . . . . . . (1-B  )  
 TIME PERIOD ANALYZED . . . . . . . . .  1  TO   150 
 NAME OF THE SERIES . . . . . . . . . .        SALES 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          149 
 STANDARD DEVIATION OF THE SERIES . . .       1.4391 
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 MEAN OF THE (DIFFERENCED) SERIES . . .        .4201 
 STANDARD DEVIATION OF THE MEAN . . . .        .1179 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .       3.5635 
 
 THE EXTENDED ACF TABLE  
 
 (Q-->)   0    1    2    3    4    5    6    7    8    9   10   11   12 
 ------------------------------------------------------------------------ 
 (P= 0)  .31  .28  .23  .25  .15  .13  .06  .13 -.02 -.00  .11 -.01 -.02 
 (P= 1) -.47  .02 -.05  .12 -.07  .08 -.05  .13 -.07  .00  .10 -.08 -.00 
 (P= 2) -.43 -.16 -.01  .10  .05 -.02 -.01  .13  .02  .03  .09 -.03 -.01 
 (P= 3) -.49 -.34 -.14  .09  .04 -.04 -.01  .06 -.07 -.02  .08 -.08  .03 
 (P= 4)  .03 -.07  .28 -.27  .06  .01  .01  .04 -.10 -.01  .09  .00 -.03 
 (P= 5)  .34  .01  .07  .02  .21  .02 -.03  .03  .01  .02  .10  .01 -.03 
 (P= 6)  .20 -.23  .07 -.00  .16  .10  .00  .02 -.01  .03  .10 -.05  .03 
 
 SIMPLIFIED EXTENDED ACF TABLE (5% LEVEL)  
 
 (Q-->)  0  1  2  3  4  5  6  7  8  9 10 11 12 
 ----------------------------------------------- 
 (P= 0)  X  X  X  X  O  O  O  O  O  O  O  O  O  
 (P= 1)  X  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 2)  X  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 3)  X  X  O  O  O  O  O  O  O  O  O  O  O 
 (P= 4)  O  O  X  X  O  O  O  O  O  O  O  O  O 
 (P= 5)  X  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 6)  X  X  O  O  O  O  O  O  O  O  O  O  O 

 
We are visually drawn to two possible triangular “regions” that define p and q.  One 

emanates from the vertex where p=1 and q=1 (highlighted by hand), and another emanates 
from the vertex where p=0 and q=4.  The latter choice for p and q is less parsimonious than 
the former and is not supported by the sample ACF and PACF.  As a result, we will use an 
ARIMA(1,1,1) model for SALES.  We will also include a constant term in the model as the t-
value of the mean for the differenced series is well over 3 (specifically, 3.56).  We can specify 
this model as follows  

-->TSMODEL  SALESM.  MODEL IS (1 - PHI*B)SALES(1) = CONST + (1 - TH*B)NOISE 
 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  SALESM  
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
          VARIABLE   OR CENTERED            
                                       1 
 SALES     RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
 PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
   LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
  1   CONST            CNST      1      0     NONE      .0000                   
  2    TH     SALES     MA       1      1     NONE      .1000                   
  3   PHI     SALES     AR       1      1     NONE      .1000  

 
We will now use the conditional likelihood algorithm to estimate this model.  The SCA 

output has been edited for presentation purposes. 

-->ESTIM  SALESM 
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 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  SALESM  
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1 
  SALES     RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1   CONST            CNST      1      0     NONE      .0752     .0587   1.28  
   2    TH     SALES     MA       1      1     NONE      .6039     .1367   4.42  
   3   PHI     SALES     AR       1      1     NONE      .8344     .0942   8.86  
 
 TOTAL SUM OF SQUARES . . . . . . . .   .687451E+05 
 TOTAL NUMBER OF OBSERVATIONS . . . .           150 
 RESIDUAL SUM OF SQUARES. . . . . . .   .260400E+03 
 R-SQUARE . . . . . . . . . . . . . .          .996 
 EFFECTIVE NUMBER OF OBSERVATIONS . .           148 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .175946E+01 
 RESIDUAL STANDARD ERROR. . . . . . .   .132645E+01 

 
 
Modifying a previously specified model 
 

We see that the estimates of the AR and of the MA parameters are both  significantly 
different from zero (since their t-values are large).   However, a t-value of 1.28 indicates the 
estimate of the constant is not statistically different from zero at the 5% level.  As a result, we 
would like to re-estimate the above model, but without the constant term.  

We can delete the constant term from an ARIMA model in two ways.  The most direct 
method is to re-specify the model entirely.  We need to do this whenever we wish to add or 
delete AR or MA parameters in the model.  By using the same names for those parameters 
that are retained in the model, we will begin estimation using the current estimates for the 
parameters.  We can also delete the constant term from a model by including the sentence 
“DELETE CONSTANT” in the TSMODEL paragraph.  In this example we may enter 

 -->TSMODEL  SALESM.  DELETE CONSTANT. 
 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  SALESM  
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED            
                                        1 
  SALES     RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
 PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
   LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
  1    TH     SALES     MA       1      1     NONE      .6039     .1367   4.42  
  2    PH     SALES     AR       1      1     NONE      .8344     .0942   8.86  
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To add a constant term to a model, we must completely re-specify the model using the 
TSMODEL paragraph. 

 
Constraining ARMA parameters 
 

We can use the TSMODEL to specify any constraints we wish to place on the 
estimation of parameters.  If we include the FIXED-PARAMETER sentence in the 
TSMODEL paragraph, we can specify the names of parameters that we wish to remain at 
their currently specified values during estimation.  For example, in this example we could fix 
the AR parameter to .8344 in subsequent estimations by including the sentence 

 FIXED-PARAMETER  IS  PHI.  
 
in the TSMODEL paragraph.  A parameter can be fixed to any value in this manner.  This 
may require the use of an analytic statement (see Appendix A) to define a value and the use of 
the logical sentence UPDATE within the TSMODEL paragraph to “clear” a model's memory 
of the parameter value and reset it to another.  For example, if we wished to maintain the 
value of PHI as .80 during remaining estimations, we could sequentially enter  
 

 -->PHI = 0.8 
 -->TSMODEL  SALESM.  FIXED-PARAMETER IS PHI.  UPDATE.  

 
Note that if the logical sentence UPDATE is not specified, the value for PHI will remain 
at its previously estimated value, which was .8344.  This is true if we try to modify any 
parameters in the model. 
 

In addition to holding any parameters at fixed values, we can constrain one or more 
parameters to be equal to one another during estimation.  The CONSTRAINT sentence is 
used for this purpose.  For example, if we wish to re-estimate the above model with the AR 
parameter equal to the MA parameter, we can enter 

 -->TSMODEL  SALESM.  CONSTRAINT IS (PHI, TH).  
 
All parameters whose names are specified within the same parentheses are held equal during 
estimation.  More than one set of constraints can be specified, with commas used to separate 
sets of parentheses, but a parameter label can be only specified once.  In addition, if we use 
the same label to represent two or more parameters of the model, these parameters will be 
automatically held equal to one another during model estimation. 
 

Once a constraint is placed on a parameter, either fixed at a particular value or held 
equal to one or more parameters, the constraint remains in place during all subsequent 
estimations.  A constraint can only be removed by re-specifying the model using the MODEL 
sentence of the TSMODEL paragraph.  

We will now re-estimate the model for SALES without a constant term.  The exact 
likelihood algorithm is used, and residuals are held in the SCA workspace under the label 
RES after estimation.  Again, the SCA output is edited for presentation purposes. 
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 -->ESTIM  SALESM.  METHOD IS EXACT.  HOLD RESIDUALS(RES) 
 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  SALESM  
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                        1 
  SALES     RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1    TH     SALES     MA       1      1     NONE      .6304     .1142   5.52  
   2   PHI     SALES     AR       1      1     NONE      .8775     .0712  12.32  
 
 TOTAL SUM OF SQUARES . . . . . . . .   .687451E+05 
 TOTAL NUMBER OF OBSERVATIONS . . . .           150 
 RESIDUAL SUM OF SQUARES. . . . . . .   .264462E+03 
 R-SQUARE . . . . . . . . . . . . . .          .996 
 EFFECTIVE NUMBER OF OBSERVATIONS . .           148 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .178691E+01 
 RESIDUAL STANDARD ERROR. . . . . . .   .133675E+01 

 
The parameter estimates change only slightly.  The standard error of the residuals is 

approximately 1.34.   We can compare this value with the standard error of our original series, 
21.41 (see the summary statistics for the ACF of SALES).  Hence, the resultant  value is 
almost 100%.  The high  value is misleading since the variation of the modeled series is 
compared to that of the original series.  Since our series is nonstationary, variation is reduced 
mainly by differencing.  We can observe that the standard error of the differenced series is 
about 1.44 (see the summary statistics for either the IDEN or EACF paragraph for the 
differenced series).  Hence the R  attributable to differencing is about 

.  The R  for the differenced series is approximately 
.  In ARIMA modeling,  is meaningful only if the series is stationary. 

2R
2R

=

2

21 (1.44 / 21.41) .995−
21 (1.34 /1.44) .13− =

2

2R

We now need to check the fitted model.  The time series plot of the residuals (not shown 
here) reveals no apparent patterns or aberrations.  We can obtain the sample ACF of the 
residual series by entering 

 -->ACF  RES.  MAXLAG IS 12. 
 

 TIME PERIOD ANALYZED . . . . . . . . .  3  TO   150 
 NAME OF THE SERIES . . . . . . . . . .          RES 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          148 
 STANDARD DEVIATION OF THE SERIES . . .       1.3280 
 MEAN OF THE (DIFFERENCED) SERIES . . .        .1506 
 STANDARD DEVIATION OF THE MEAN . . . .        .1092 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .       1.3799 
 
 AUTOCORRELATIONS  
 
  1- 12    -.03 -.01 -.02  .08 -.03  .01 -.07  .08 -.12 -.07  .13 -.03 
  ST.E.     .08  .08  .08  .08  .08  .08  .08  .08  .08  .08  .09  .09 
   Q         .2   .2   .3  1.2  1.4  1.4  2.1  3.2  5.4  6.1  8.7  8.9 
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          -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
            +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
  1   -.03                       +  XI   +                      
  2   -.01                       +   I   +                      
  3   -.02                       +  XI   +                      
  4    .08                       +   IXX +                      
  5   -.03                       +  XI   +                      
  6    .01                       +   I   +                      
  7   -.07                       + XXI   +                      
  8    .08                       +   IXX +                      
  9   -.12                       +XXXI   +                      
 10   -.07                       + XXI   +                      
 11    .13                       +   IXXX+                      
 12   -.03                       +  XI   +  

 
The ACF appears to be “clean”.  We can then forecast from the fitted model by entering 

 -->FORECAST  SALESM.  NOFS ARE 12. 
 

 NOTE: THE EXACT METHOD FOR COMPUTING RESIDUALS IS USED 
 
 ---------------------------------- 
  12 FORECASTS, BEGINNING AT  150 
 ---------------------------------- 
 
 TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
 
  151    262.8613      1.3368 
  152    263.0029      2.1368 
  153    263.1271      2.8974 
  154    263.2361      3.6447 
  155    263.3318      4.3828 
  156    263.4157      5.1113 
  157    263.4894      5.8289 
  158    263.5540      6.5340 
  159    263.6107      7.2256 
  160    263.6605      7.9028 
  161    263.7041      8.5652 
  162    263.7424      9.2125 

 
Unlike the forecasts for SERIESA, the forecasts obtained here are not all the same.  The 

forecasts have a gradual upward trend.  This is consistent with the behavior of SALES as 
shown in Figure 5.3 (except for the period around 84 through 96 where the sales increased 
greatly). 

5.3   Modeling Seasonal Time Series 

In the previous sections, we found we could adequately model a nonseasonal time series 
through the use of ARIMA models.  However, we often encounter situations in which a time 
series exhibits some periodic or seasonal pattern.  For example, data recorded monthly may 
exhibit “similar” behavior from year to year; that is, a seasonality of period 12.  Data recorded 
quarterly may have 4 as its seasonality, and data recorded hourly may have 24 as its 
periodicity.  In such situations, seasonal ARIMA models need to be employed to account for 
any seasonal pattern present in the series. 
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To illustrate the modeling of a seasonal time series, we will consider Series G of Box 
and Jenkins (1970).  The data represent the totals of international airline passengers (in 
thousands) for the period January 1949 through December 1960, inclusive.  The data are 
listed in Table 5.3, and are stored in the SCA workspace under the label SERIESG. 

Table 5.3    Series G of Box and Jenkins (1970):  Monthly totals (in thousands) 
  of international airline passengers, January 1949 - December 1960 

   
Year   Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec 

 
1949   112  118  132  129  121  135  148  148  136  119  104  118 
1950   115  126  141  135  125  149  170  170  158  133  114  140 
1951   145  150  178  163  172  178  199  199  184  162  146  166 
1952   171  180  193  181  183  218  230  242  209  191  172  194 
1953   196  196  236  235  229  243  264  272  237  211  180  201 
1954   204  188  235  227  234  264  302  293  259  229  203  229 
1955   242  233  267  269  270  315  364  347  312  274  237  278 
1956   284  277  317  313  318  374  413  405  355  306  271  306 
1957   315  301  356  348  355  422  465  467  404  347  305  336 
1958   340  318  362  348  363  435  491  505  404  359  310  337 
1959   360  342  406  396  420  472  548  559  463  407  362  405 
1960   417  391  419  461  472  535  622  606  508  461  390  432 

 
 

Figure 5.4   Series G of Box and Jenkins (1970) 

 
 

5.3.1   Model identification  

A time series plot of SERIESG (using SCAGRAF) is shown in Figure 5.4.  We observe 
both a distinct seasonality in the data and the presence of a trend.  As a result of the trend, we 
are certain that the series does not have a fixed mean level.  In addition, the variability of the 
data seems to increase over time.  In order to stabilize this variability, a transformation of the 
data seems warranted.  The logarithmic transformation is useful when the variability appears 
to be proportional to the mean.  We can use an analytic statement (see Appendix A) to 
transform the data.  We will store the transformed data under the name LNAIRPAS. 

 -->LNAIRPAS = LN(SERIESG)  
 

A time series plot of LNAIRPAS is shown in Figure 5.5.  The series LNAIRPAS still 
exhibits a trend and seasonality, but we seem to have stabilized the variability over the length 
of the series. 
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Figure 5.5   LNAIRPAS, the natural logarithm of SERIESG 

 
 

We expect that LNAIRPAS is not stationary.  This is confirmed when we compute and 
display the sample ACF of the series.  

-->ACF   LNAIRPAS  
 
 TIME PERIOD ANALYZED . . . . . . . . .  1  TO   144                                       
 NAME OF THE SERIES . . . . . . . . . .     LNAIRPAS                                       
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          144                                       
 STANDARD DEVIATION OF THE SERIES . . .        .4399                                       
 MEAN OF THE (DIFFERENCED) SERIES . . .       5.5422                                       
 STANDARD DEVIATION OF THE MEAN . . . .        .0367                                       
 T-VALUE OF MEAN (AGAINST ZERO) . . . .     151.1774                                       

 
 AUTOCORRELATIONS                                                                          
                                                                                           
           -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0                          
             +----+----+----+----+----+----+----+----+----+----+                           
                                      I                                                    
   1    .95                       +   IXXX+XXXXXXXXXXXXXXXXXXXX                            
   2    .90                    +      IXXXXXX+XXXXXXXXXXXXXXX                              
   3    .85                  +        IXXXXXXXX+XXXXXXXXXXXX                                
   4    .81                 +         IXXXXXXXXX+XXXXXXXXXX                                
   5    .78                +          IXXXXXXXXXX+XXXXXXXX                                 
   6    .76               +           IXXXXXXXXXXX+XXXXXXX                                 
   7    .74              +            IXXXXXXXXXXXX+XXXXX                                  
   8    .73              +            IXXXXXXXXXXXX+XXXXX                                  
   9    .73             +             IXXXXXXXXXXXXX+XXXX                                  
  10    .74            +              IXXXXXXXXXXXXXX+XXXX                                 
  11    .76            +              IXXXXXXXXXXXXXX+XXXX                                 
  12    .76           +               IXXXXXXXXXXXXXXX+XXX                                 
  13    .72           +               IXXXXXXXXXXXXXXX+XX                                  
  14    .66          +                IXXXXXXXXXXXXXXXXX                                   
  15    .62          +                IXXXXXXXXXXXXXXX +                                   
  16    .58         +                 IXXXXXXXXXXXXXX   +                                  
  17    .54         +                 IXXXXXXXXXXXXXX   +                                  
  18    .52         +                 IXXXXXXXXXXXXX    +                                  
  19    .50        +                  IXXXXXXXXXXXXX     +                                 
  20    .49        +                  IXXXXXXXXXXXX      +                                 
  21    .50        +                  IXXXXXXXXXXXX      +                                 
  22    .51        +                  IXXXXXXXXXXXXX     +                                 
  23    .52        +                  IXXXXXXXXXXXXX     +                                 
  24    .52       +                   IXXXXXXXXXXXXX      +                                
  25    .48       +                   IXXXXXXXXXXXX       +                                
  26    .44       +                   IXXXXXXXXXXX        +                                
  27    .40       +                   IXXXXXXXXXX         +                                
  28    .36       +                   IXXXXXXXXX          +                                
  29    .34       +                   IXXXXXXXX           +                                
  30    .31      +                    IXXXXXXXX            +                               
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  31    .30      +                    IXXXXXXX             +                               
  32    .29      +                    IXXXXXXX             +                               
  33    .30      +                    IXXXXXXX             +                               
  34    .30      +                    IXXXXXXXX            +                               
  35    .32      +                    IXXXXXXXX            +                               
  36    .32      +                    IXXXXXXXX            +  

 
The ACF has a slow die-out pattern that is indicative of a nonstationary series.  Differencing 
is required.  However, because the data is seasonal, we may wonder if the “proper” 
differencing operator is (1-B) or (1-B12).  We can examine the sample ACF for using each of 
these differencing operators.  The output is edited for presentation purposes. 
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-->ACF  LNAIRPAS.  DFORDER IS 1. 
         1 

DIFFERENCE ORDERS. . . . . . . . . . . (1-B  ) 
 
TIME PERIOD ANALYZED . . . . . . . . . 1  TO   144 
NAME OF THE SERIES . . . . . . . . . .    LNAIRPAS 
EFFECTIVE NUMBER OF OBSERVATIONS . . .         143 
STANDARD DEVIATION OF THE SERIES . . .       .1062 
MEAN OF THE (DIFFERENCED) SERIES . . .       .0094 
STANDARD DEVIATION OF THE MEAN . . . .       .0089 
T-VALUE OF MEAN (AGAINST ZERO) . . . .      1.0631 

-->ACF   LNAIRPAS.  DFORDER IS 12. 
        12 
DIFFERENCE ORDERS. . . . . . . . . . . (1-B  ) 
 
TIME PERIOD ANALYZED . . . . . . . .  1 TO  144 
NAME OF THE SERIES . . . . . . . . . . LNAIRPAS 
EFFECTIVE NUMBER OF OBSERVATIONS . . .      132 
STANDARD DEVIATION OF THE SERIES . . .    .0614 
MEAN OF THE (DIFFERENCED) SERIES . . .    .1198 
STANDARD DEVIATION OF THE MEAN . . . .    .0053 
T-VALUE OF MEAN (AGAINST ZERO) . . . .  22.4170 

 
AUTOCORRELATIONS 
 
      -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8 

 +----+----+----+----+----+----+----+----+ 
         I 
 1   .20                  + IXXX+X 
 2  -.12                +XXXI   + 
 3  -.15                XXXXI   + 
 4  -.32            XXXX+XXXI   + 
 5  -.08               +  XXI    + 
 6   .03               +    IX   + 
 7  -.11               + XXXI    + 
 8  -.34            XXX+XXXXI    + 
 9  -.12               + XXXI    + 
10  -.11               + XXXI    + 
11   .21               +    IXXXXX 
12   .84         +    IXXXX+XXXXXXXXXXXXXXXX 
13   .22             +      IXXXXX + 
14  -.14             +   XXXI      + 
15  -.12             +   XXXI      + 
16  -.28             XXXXXXXI      + 
17  -.05            +      XI       + 
18   .01            +       I       + 
19  -.11            +    XXXI       + 
20  -.34            XXXXXXXXI       + 
21  -.11            +    XXXI       + 
22  -.08            +     XXI       + 
23   .20            +       IXXXXX  + 
24   .74            +       IXXXXXXX+XXXXXXXXXX 
25   .20           +        IXXXXX   + 
26  -.12           +     XXXI        + 
27  -.10           +     XXXI        + 
28  -.21           +   XXXXXI        + 
29  -.07           +      XXI        + 
30   .02           +        I        + 
31  -.12           +     XXXI        + 
32  -.29           + XXXXXXXI        + 
33  -.13           +     XXXI        + 
34  -.04          +        XI         + 
35   .15          +         IXXXX     + 
36   .66         +         IXXXXXXXXX+XXXXXX 

AUTOCORRELATIONS 
 
 -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8 
  +----+----+----+----+----+----+----+----+ 
             I 
 1   .71           +   IXXX+XXXXXXXXXXXXXX 
 2   .62         +     IXXXXX+XXXXXXXXXX 
 3   .48        +      IXXXXXX+XXXXX  
 4   .44       +       IXXXXXXX+XXX 
 5   .39       +       IXXXXXXX+XX 
 6   .32       +       IXXXXXXXX 
 7   .24      +        IXXXXXX  + 
 8   .19      +        IXXXXX   + 
 9   .15      +        IXXXX    + 
10  -.01      +        I        + 
11  -.11      +     XXXI        + 
12  -.24      +  XXXXXXI        + 
13  -.14      +    XXXXI        + 
14  -.14      +    XXXXI        + 
15  -.10      +      XXI        + 
16  -.15      +    XXXXI        + 
17  -.10      +      XXI        + 
18  -.11      +     XXXI        + 
19  -.14      +    XXXXI        + 
20  -.16      +    XXXXI        + 
21  -.11      +     XXXI        + 
22  -.08      +      XXI        + 
23   .00      +        I        + 
24  -.05      +       XI        + 
25  -.10      +     XXXI        + 
26  -.09      +      XXI        + 
27  -.13      +     XXXI        + 
28  -.15      +    XXXXI        + 
29  -.19     +    XXXXXI         + 
30  -.20     +    XXXXXI         + 
31  -.19     +    XXXXXI         + 
32  -.15     +     XXXXI         + 
33  -.22     +   XXXXXXI         + 
34  -.23     +   XXXXXXI         + 
35  -.27     +  XXXXXXXI         + 
36  -.22     +   XXXXXXI         + 

 
 

Clearly the use of (1-B) alone does not remove the effects of nonstationarity from the 
data, since the ACF at lags 12, 24, 36 (and so on) exhibit the same slow die-out behavior as 
the ACF of the original series.  Seasonal differencing is warranted.  However, the seasonally 
differenced series alone is not stationary as indicated by the slow decay of its ACF.  
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In order to achieve stationarity here, we need to employ both a nonseasonal and a 
seasonal differencing operator in the multiplicative form  (1-B)(1 B12− ).  We can specify 
these operators and obtain the sample ACF of the differenced series by entering  

-->ACF   LNAIRPAS.   DFORDERS ARE 1, 12.  
                                             1      12                                     
 DIFFERENCE ORDERS. . . . . . . . . . . (1-B  ) (1-B  )                                    
 TIME PERIOD ANALYZED . . . . . . . . .  1  TO   144                                       
 NAME OF THE SERIES . . . . . . . . . .       LNAIRPAS                                       
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          131                                       
 STANDARD DEVIATION OF THE SERIES . . .        .0457                                       
 MEAN OF THE (DIFFERENCED) SERIES . . .        .0003                                       
 STANDARD DEVIATION OF THE MEAN . . . .        .0040                                       
 T-VALUE OF MEAN (AGAINST ZERO) . . . .        .0729                                       
                                                                                           
 AUTOCORRELATIONS                                                                          
                                                                                           
           -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0                          
             +----+----+----+----+----+----+----+----+----+----+                           
                                      I                                                    
   1   -.34                  XXXXX+XXXI   +                                                
   2    .11                      +    IXXX +                                               
   3   -.20                      XXXXXI    +                                               
   4    .02                      +    IX   +                                               
   5    .06                      +    IX   +                                               
   6    .03                      +    IX   +                                               
   7   -.06                      +   XI    +                                               
   8    .00                      +    I    +                                               
   9    .18                      +    IXXXX+                                               
  10   -.08                      +  XXI    +                                               
  11    .06                      +    IXX  +                                               
  12   -.39                 XXXXX+XXXXI    +                                               
  13    .15                     +     IXXXX +                                              
  14   -.06                     +    XI     +                                              
  15    .15                     +     IXXXX +                                              
  16   -.14                     +  XXXI     +                                              
  17    .07                     +     IXX   +                                              
  18    .02                     +     I     +                                              
  19   -.01                     +     I     +                                              
  20   -.12                     +  XXXI     +                                              
  21    .04                     +     IX    +                                              
  22   -.09                     +   XXI     +                                              
  23    .22                     +     IXXXXXX                                              
  24   -.02                     +     I     +                                              
  25   -.10                     +  XXXI     +                                              
  26    .05                     +     IX    +                                              
  27   -.03                     +    XI     +                                              
  28    .05                     +     IX    +                                              
  29   -.02                     +     I     +                                              
  30   -.05                     +    XI     +                                              
  31   -.05                     +    XI     +                                              
  32    .20                     +     IXXXXX+                                              
  33   -.12                     +  XXXI     +                                              
  34    .08                     +     IXX   +                                              
  35   -.15                     + XXXXI     +                                              
  36   -.01                     +     I     +  

 
The sample ACF has significant negative values at lags 1 and 12.  Many texts provide 

guides for the pattern of the ACF for many types of seasonal models.  These include 
Appendix 9.1 of Box and Jenkins (1970), Section 6.2 of Abraham and Ledolter (1983), 
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Section 4.4 of Vandaele (1983), and Section 10.2 of Cryer (1986).  The above pattern is 
indicative of a multiplicative MA(1) and MA(12) model, that is, (1 - θ1B)(1 - θ12B12). 

Frequently the sample ACF of an appropriately differenced series provides rather 
definitive information for the identification of a seasonal model.  In some situations, however, 
the sample ACF's may not provide a clear-cut model for the time series.  Liu (1989) provided 
an identification method employing a filtering technique for such situations.  The EACF is not 
effective for the identification of seasonal time series. 

Multiplicative seasonal models 
 

Multiplicative seasonal ARIMA models are often described as  
models, where s is the seasonality, and P, D, and Q are the orders of the seasonal components.  
This multiplicative seasonal model can be expressed as: 

s(p,d,q)x(P,D,Q)

spp s d
t

t

2 t

s

1 p 1 p

Qq s
1 p 1 q

(1 B B )(1 B B )(1 B) Z

C (1 B B )(1 B B )a

−φ − ⋅⋅⋅− φ −Φ −⋅⋅⋅−Φ −

= + −θ − ⋅⋅⋅− θ − θ − ⋅⋅⋅− θ
    (5.13) 

 
The values of the differencing orders, d and D, of this model are usually either 0 or 1.  The 
values of P and Q are also usually 0 or 1.  We have tentatively identified a multiplicative 

 model for the logged airline data.  This particular model 12(0,1,1)x(0,1,1)
 

12 12
t 1(1 B)(1 B )Z (1 B)(1 B )a− − = −θ −θ     (5.14) 

has become known as the airline model and has been shown to be very useful in modeling 
many seasonal time series.  Unfortunately this model is often mis-used.  One common 
mistake in ARIMA modeling is to over-difference the original series, which automatically 
leads to an airline model. 

5.3.2   Model specification and estimation  

The t-value of the mean (against zero) for the multiplicatively differenced series is not 
significant.  Thus, we have tentatively identified the model of the form in (5.14) where  is 
the natural log of SERIESG (i.e., LNAIRPAS).  We can specify this model by entering 

tZ

 -->TSMODEL   NAME IS AIRLINE.   MODEL IS            @  
 -->          LNAIRPAS(1,12) = (1 - THETA1*B)(1 - THETA12*B**12)NOISE. 

 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- AIRLINE  
 
 -----------------------------------------------------------------------                   
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING                                           
           VARIABLE   OR CENTERED                                                          
                                           1      12 
  LNAIRPAS    RANDOM     ORIGINAL     (1-B  ) (1-B  )                                        
 -----------------------------------------------------------------------  
  
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T              
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE            
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   1  THETA1   LNAIRPAS    MA       1      1     NONE      .1000                             
   2 THETA12   LNAIRPAS    MA       2     12     NONE      .1000  

 
Note we have specified our differencing operators (1-B)(1- ) as (1,12).  This is consistent 
with the specification of DFORDERS in the ACF, PACF, IDEN and EACF paragraphs.  We 
could also specify these operators as ((1-B)(1-B**12)) if we desire. 

12B

 
Since the model AIRLINE consists entirely of MA parameters, it is prudent to use the 

exact likelihood algorithm for final estimation.  We will first estimate our airline model using 
the conditional method by simply entering 

 -->ESTIM   AIRLINE  
 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- AIRLINE 
 
 -----------------------------------------------------------------------                   
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING                                           
           VARIABLE   OR CENTERED                                                          
                                           1      12                                         
  LNAIRPAS    RANDOM     ORIGINAL     (1-B  ) (1-B  )                                        
 -----------------------------------------------------------------------  
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T              
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE            
                                                                                           
   1  THETA1   LNAIRPAS  MA       1      1     NONE      .3776     .0813   4.64 
   2 THETA12   LNAIRPAS  MA       2     12     NONE      .5728     .0776   7.38 
 
 TOTAL SUM OF SQUARES . . . . . . . .   .278684E+02  
 TOTAL NUMBER OF OBSERVATIONS . . . .           144                                        
 RESIDUAL SUM OF SQUARES. . . . . . .   .181926E+00                                        
 R-SQUARE . . . . . . . . . . . . . .          .993                                        
 EFFECTIVE NUMBER OF OBSERVATIONS . .           131                                        
 RESIDUAL VARIANCE ESTIMATE . . . . .   .138875E-02                                        
 RESIDUAL STANDARD ERROR. . . . . . .   .372659E-01     

 
We may observe that the MA parameter estimates, .3776 and .5728, do not indicate that 

either of the MA factors have roots close to the unit circle.  However, we will still employ the 
exact estimation method and retain the residuals (in the variable RESID) after the fit by 
entering  

-->ESTIM   AIRLINE.   METHOD IS EXACT.   HOLD  RESIDUALS(RESID).  
 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- AIRLINE 
 
 -----------------------------------------------------------------------                   
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING                                           
           VARIABLE   OR CENTERED                                                          
                                           1      12   
  LNAIRPAS    RANDOM     ORIGINAL     (1-B  ) (1-B  )                                        
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T              
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE            
                                                                                           
   1  THETA1   LNAIRPAS  MA       1      1     NONE      .4021     .0802   5.01 
   2 THETA12   LNAIRPAS  MA       2     12     NONE      .5569     .0728   7.65 
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 TOTAL SUM OF SQUARES . . . . . . . .   .278684E+02 
 TOTAL NUMBER OF OBSERVATIONS . . . .           144 
 RESIDUAL SUM OF SQUARES. . . . . . .   .176601E+00                                        
 R-SQUARE . . . . . . . . . . . . . .          .993                                        
 EFFECTIVE NUMBER OF OBSERVATIONS . .           131                                        
 RESIDUAL VARIANCE ESTIMATE . . . . .   .134810E-02                                        
 RESIDUAL STANDARD ERROR. . . . . . .   .367165E-01  

 
 The fitted model is, approximately,  
 

12 12
t t(1 B)(1 B )LNAIRPAS (1 .40B)(1 .56B )a− − = − −     (5.15) 

The parameter estimates are significant based on their t-values; and the variance of the 
residual series (i.e., the variation still unexplained) is 0.00134 .  The variance after (1-B)(1-

) differencing is (.0457  (see the ACF summary).  Hence we have reduced variation by 
about 36% after differencing. 

12B 2)

 

5.3.3   Diagnostic checks of the airline model  

A time plot of the residual series (not shown here) does not reveal any gross 
abnormalities although some unusual points appear to be present.  These outliers are 
discussed in more detail in Chapter 7.  We can compute and display 24 lags of the sample 
ACF of the residuals.  We see the sample ACF of the residuals is “clean”.  The output is 
edited for presentation purposes. 

 -->ACF   RESID.   MAXLAG IS 24.  
 

 TIME PERIOD ANALYZED . . . . . . . . . 14  TO   144                                       
 NAME OF THE SERIES . . . . . . . . . .        RESID                                       
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          131  
 
 AUTOCORRELATIONS 
 
           -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0  
             +----+----+----+----+----+----+----+----+----+----+                           
                                      I                                                    
   1    .01                       +   I   +                                                
   2    .02                       +   IX  +                                                
   3   -.13                       +XXXI   +                                                
   4   -.13                       +XXXI   +                                                
   5    .06                       +   IX  +                                                
   6    .06                       +   IXX +                                                
   7   -.06                       + XXI   +                                                
   8   -.02                       +  XI   +                                                
   9    .12                       +   IXXX+                                                
  10   -.08                      +  XXI    +                                               
  11    .01                      +    I    +                                               
  12   -.06                      +   XI    +                                               
  13    .02                      +    I    +                                               
  14    .04                      +    IX   +                                               
  15    .06                      +    IX   +                                               
  16   -.14                      +XXXXI    +                                               
  17    .03                      +    IX   +                                               
  18    .00                      +    I    +                                               
  19   -.10                      + XXXI    +                                               
  20   -.10                      +  XXI    +                                               
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  21   -.03                      +   XI    +                                               
  22   -.03                      +   XI    +                                               
  23    .22                      +    IXXXXX                                               
  24    .01                      +    I    +   

5.4   Other Time Series Topics  

This section provides a brief overview of topics related to time series analysis or the 
execution of SCA paragraphs related to ARIMA modeling.  Much of the material presented in 
this section can be considered “advanced” or of occasional use.  As a consequence, this 
section can be skipped, and selected topics can be referenced as necessary.  The material 
presented, and the section containing it are:  

 Section        Topic  
 
 5.4.1  Use of differencing operators  
 5.4.2  Missing data 
 5.4.3  Simulation of an ARIMA model 
 5.4.4  Model identification using the smallest canonical 
   correlation (SCAN) table 
 5.4.5  Inverse autocorrelation function 
 5.4.6  Notational shorthands 
 5.4.7  Plotting forecasts with confidence limits 
 5.4.8  Pi and Psi weights of a specified model 
 

5.4.1   Use of differencing operators  

Sometimes we may find it necessary to use differencing operators to achieve 
stationarity.  Differencing within the usual ARIMA(p,d,q) model is in the form  

d(1 B)−     (5.16) 

In fact, a wider array of stationary inducing operators is available.  The SCA System extends 
the representation of (5.16) to that of 
 

d1 d2 d3 dk(1 B )(1 B )(1 B ) (1 B )− − − ⋅⋅⋅ −                (5.17) 

where d1, d2, ... , dk are referred to as differencing orders.  The representation in (5.17) gives 
us greater flexibility in the type of differencing we want to use.  However, this flexibility can 
lead to some “quirks” in the specification of “d” when this value is greater than 1. 
 

For example, suppose we wish to analyze a double differenced series.  Here we want to 
analyze (1  of a series.  Suppose we specify 2B)−

 DFORDER IS 2  
 
in the ACF, PACF, IDEN, IACF (see Section 5.4.4) or EACF paragraph; or we include the 
differencing operator (2) within the MODEL sentence of the TSMODEL paragraph.  The 
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SCA System will interpret it as single differencing of order 2 and will base its computations 
using the differencing operator (1 . 2B )−
 
 In order to specify the operator , we need to specify  2(1 B)−
 
  DFORDER IS 1, 1  
 
in an “identification” paragraph, or the differencing operator (1,1) in the MODEL sentence of 
the TSMODEL paragraph.  Although this may seem a bit complicated for the specification of 
d in a (p,d,q) model, a (p,d,q) model does not allow for the differencing operator 
 
    4 1(1 B)(1 B )(1 B )− − − 2

 
while it can be handled directly in the SCA System.  The orders of the above differencing 
operators should be specified as 1, 4, 12. 
 

We can also difference a time series outside the SCA paragraphs presented in this 
chapter.  The DIFFERENCE paragraph (see Appendix C) can be used to generate a new time 
series through differencing.  However, use of this paragraph is not advisable in typical time 
series analyses using the SCA System. 

5.4.2   Missing data 

The SCA System provides us with a degree of flexibility in the modeling of a time 
series that contains coded missing data.  Missing data affect the usual computations employed 
for model identification and estimation.  As a result, we are presented with three possible 
options when we wish to model a series containing missing data.  We can 

(1)  Employ SCA identification and estimation paragraphs “as usual” and accept 
the default conditions taken by the paragraphs; 

(2)  Replace all missing data by some “appropriate” values before modeling the 
series; or 

(3)  Use those SCA paragraphs that make necessary computational adjustments for 
missing data. 

 
Ordinarily, if missing data are present in a time series and we do not recode the data, 

then the ACF, PACF, IDEN, EACF and ESTIM paragraphs will proceed as follows.  The first 
occurrence of non-missing data and the next occurrence of a missing data point are noted 
internally.  Only data within this span are used in the calculation of the paragraphs. 

If we want to use the entire span of data, then we may replace all missing data by some 
“appropriate” values.  We can do this using an SCA data editing paragraph (see Appendix B) 
or an analytic statement (see Appendix A).  “Appropriate” values for missing data might 
consist of 
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(1)  the average of all observations in a stationary series,  

(2)  the average of two adjacent observations,  

(3)  the average of all observations with the same periodicity for nonstationary 
series that exhibits a distinct seasonal component but no trend, or  

(4)  the average of two adjacent observations with the same periodicity for a 
nonstationary series that exhibits a distinct seasonal component and trend.  

 
The PATCH paragraph can be used to accomplish the above (described in Appendix C). 
 

The ACF and PACF paragraphs will also make necessary computational adjustments for 
missing data if we include the logical sentence MISSING in the ACF or PACF command.  
For example, if the series SALES contains missing data, we can compute the appropriate ACF 
by entering a command such as 

 -->ACF  SALES.   MISSING.   MAXLAG IS 15. 
 

A precise method to estimate the values of missing data in a time series is employed by 
the OESTIM paragraph.  This paragraph and the method involved are discussed in more detail 
in Chapter 7.  If we do not use the OESTIM paragraph, then we need to recode or “patch” the 
missing data before estimating the parameters of a time series model. 

5.4.3   Simulation of an ARIMA model 

The simulation of data is often beneficial for both data analyses and scientific research.  
Simulated data can provide us with a better understanding of various statistical methods, 
especially when methods are either ad hoc or difficult to understand analytically.  In addition, 
simulated data provide a means to ascertain the sensitivity of an analysis, especially in the 
study of departures from distributional assumptions. 

The SIMULATE paragraph can be used to generate data according to a time series 
model.  The paragraph can also be used to generate data according to a distribution.  More 
information on the latter can be found in Chapter 12 of The SCA Statistical System: Reference 
Manual for General Statistical Analysis. 

We can employ the SIMULATE paragraph and the TSMODEL paragraph to simulate 
data that follows a univariate time series model.  In this section we discuss the simulation of 
an ARIMA model.  The simulation of transfer function models is discussed in Chapter 8. 

The TSMODEL paragraph is used to specify the time series model the data should 
follow, and the SIMULATE paragraph generates both the noise series of the model as well as 
the series itself. 

 To illustrate this, we will simulate the following AR(1) model   
 

t t(1 .75B)X 5.0 a− = + ,  
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where .  We will store the data in the variable XDATA.  First, we will specify the 
AR(1) model using the TSMODEL paragraph.  We will give the model the name XSIM and 
use XDATA as a dummy name within the MODEL sentence.  We also include the logical 
sentence SIMULATION to indicate that this model may be used for simulation purposes. 

2
a 2.5σ =

 
 -->TSMODEL   NAME IS XSIM.  MODEL IS (1 - .75*B)XDATA =  5.0 + NOISE.  @ 
 -->          SIMULATION. 

 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --   XSIM                              
 
 ------------------------------------------------------------------------ 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING                                 
            VARIABLE   OR CENTERED                                                
                                                                                 
   XDATA     RANDOM     ORIGINAL     NONE                                         
 -----------------------------------------------------------------------         
                                                                                 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T    
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE  
                                                                                 
   1                    CNST      1      0     NONE     5.0000                   
   2           XDATA     AR       1      1     NONE      .7500                   

 
We now will use the SIMULATE paragraph to specify the model being used for 

simulation, the number of values to simulate, and the noise process.  The data are stored in the 
variable XDATA. 

 -->SIMULATE   MODEL IS XSIM.   NOBS ARE 200.   NOISE IS N(0.0, 2.5). 
 

 THE UNIVARIATE TIME SERIES  XDATA   IS SIMULATED USING MODEL XSIM   

 
The sentence “NOISE IS N(0.0, 2.5)” specifies the noise sequence should have a normal 

distribution with mean 0.0 and variance 2.5.  We can now check the data simulated.  The 
mean and variance of an AR(1) process with φ =.75, C=5.0 and σ =  are as follows  2

a 2.5

   x C /(1 ) 5 /(1 .75) 20.0µ = −φ = − =
 
  2 2 2 2

x a /(1 ) 2.5 /(1 (.75) ) 5.71σ = σ −φ = − ≈
 
  x 2.39σ ≈
 
In addition, the ACF of the data should be , l = 1, 2, . . . ; and the PACF of the data 
should be .75 for l  = 1; and be 0 for  = 2, 3, . . . .  We can compute and display these 
statistics using the IDEN paragraph (not shown here).  We find the sample statistics to be in 
reasonable agreement with the theoretic values.  We can also estimate an AR(1) model.  The 
results are shown below. 

(.75)l

l
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SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  XMODEL  
 
----------------------------------------------------------------------- 
VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
          VARIABLE   OR CENTERED           
 
 XDATA     RANDOM     ORIGINAL     NONE 
----------------------------------------------------------------------- 
 
 PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
   LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
  1   CNST             CNST      1      0     NONE     6.5498    1.0819   6.05  
  2   PHI     XDATA     AR       1      1     NONE      .6859     .0516  13.29  
 
 
TOTAL SUM OF SQUARES . . . . . . . .   .954895E+03 
TOTAL NUMBER OF OBSERVATIONS . . . .           200 
RESIDUAL SUM OF SQUARES. . . . . . .   .506064E+03 
R-SQUARE . . . . . . . . . . . . . .          .467 
EFFECTIVE NUMBER OF OBSERVATIONS . .           199 
RESIDUAL VARIANCE ESTIMATE . . . . .   .254304E+01 
RESIDUAL STANDARD ERROR. . . . . . .   .159469E+01  

 
The estimated values of C, φ , and 2

xσ  are 6.55, 0.69 and 2.54, respectively.  These are 
in reasonable accord with the “true” value.  

Seed values 
 

Simulated data are derived from a sequence of pseudo random numbers.  These pseudo 
random numbers are created by a random number generator.  The generator requires an initial 
seed value from which to generate its first value.  The random number generator creates both 
a random number and a new seed for the next value.  If no initial seed is specified in the 
SIMULATE paragraph, the default value of 1234567 is used as the seed.  Unless we provide a 
seed value, the same sequence of pseudo random numbers will be used in every model 
simulation.  The SEED sentence may be included in the SIMULATE paragraph to either 
specify a specific initial seed value or the name of a variable that stores the seed value.  For 
example, the previous SIMULATE command could have been 

-->SIMULATE   MODEL IS XSIM.   NOBS ARE 200.   NOISE IS N(0.0, 2.5).   SEED IS GSEED. 
 
If the variable GSEED is undefined, the default value 1234567 is used in the simulation of the 
normal data.  After simulation, the value last created as a seed value is stored in GSEED.  
This seed can be used for subsequent simulations. 
 

It is worth restating that it is important to use the SEED sentence when generating more 
than one data set.  If the SEED sentence is not employed, then the same initial seed value (i.e., 
1234567) will be used for each data set.  If we employ the SEED sentence, in the manner used 
above, then a new initial seed will be used for each new data set. 



5.40 ARIMA MODELING AND FORECASTING 

Omitting data from the beginning of a simulated sequence 
 

When simulating a time series, simulated data are often used in the calculation of 
subsequent simulated values.  In such cases, the recursive relationship being used may be 
“more valid” later in the simulated sequence.  Thus we may wish to create more data than the 
number we actually desire and remove the “excess” from the beginning of the sequence.  This 
is an unobtrusive rule that can be applied in the simulation of data from any distribution or 
model. 

The OMIT sentence is used to delete a specified number of simulated values from the 
beginning of the sequence.  Continuing with the current example, if we wish to simulate a 
total of 200 observations while omitting the first 50 values created, we may enter 

 -->SIMULATE   MODEL IS XSIM.  NOBS IS 250.   NOISE IS N(0.0, 2.5).    @ 
 -->           SEED IS GSEED.   OMIT 50. 

 
Note that 250 values are simulated, as specified in the NOBS sentence.  However, only the 
last 250-50 = 200 are actually stored in XDATA. 

Use of a variable name 
 

We did not use a variable name in the above SIMULATE paragraph as we had 
embedded the name in the MODEL sentence of the TSMODEL paragraph.  If we use a 
variable name in the SIMULATE paragraph, then the simulated data will be stored under the 
name specified.  For example, if we had specified 

 -->SIMULATE   YDATA.   MODEL IS XSIM.   NOBS ARE 250.   OMIT 50.    @ 
 -->           NOISE IS N(0.0, 2.5). 

 
then the simulated data would be stored in the variable YDATA.  The variable XDATA (used 
in the model XSIM) remains unchanged, or undefined if it has not been created previously. 

5.4.4   Model identification using the smallest canonical correlation (SCAN) table 

In Section 5.1.3 we discussed the extended autocorrelation function (EACF) and its use 
in the determination of the maximum orders of an ARMA(p,q) model.  Tsay and Tiao (1985) 
also provide another approach for determining the orders of a mixed ARMA(p,q) model.  
Like the EACF method, the approach can be used for both stationary and nonstationary series. 

The approach proposed by Tsay and Tiao (1985) utilizes canonical correlation and the 
smallest eigenvalue for a computed matrix.  A table of statistics is derived.  Each statistic is a 
function of the smallest eigenvalue of a matrix derived from the autocovariance of a series 
and the sample variance of the autocorrelation of a transformation of the series.  The two-way 
table that summarizes the results is called the smallest canonical correlation (SCAN) table. 

We employ the table to determine possible values for p and q by searching for a corner 
of insignificant values of these statistics.  That is, we try to determine a value of p and q so 
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that the computed statistic is insignificant for i  and .  As in the case of the EACF, a 
simplified table is produced in which the symbol ‘O’ is displayed to indicate a position where 
the statistic is insignificant, and the symbol ‘X’ is displayed otherwise. 

p≥ j q≥

To illustrate the use of the SCAN table, we will construct the table for SERIESA used 
previously in Section 5.1.  At that time we found an ARIMA(0,1,1) model to be appropriate.  
This means that an ARMA(1,1) model would be identified for SERIESA, and an ARMA(0,1) 
model would be identified for the series (1-B)SERIESA.  To obtain the SCAN table for 
SERIESA, we can simply enter 

 -->SCAN   SERIESA 
 
We obtain the following: 
 

 TIME PERIOD ANALYZED . . . . . . . . . . . .  1  TO   197 
 EFFECTIVE NUMBER OF OBSERVATIONS (NOBE). . .          197 
 
 THE SCAN TABLE (NORMALIZED BY 1%  CHI-SQUARE CRITICAL VALUES): 
 
  Q:      0      1      2      3      4      5      6 
 ------------------------------------------------------- 
  0    11.72   4.79   2.34   1.66   1.28   1.48   1.83 
  1     1.97    .03    .06    .00    .11    .01    .52 
  2      .18    .42    .06    .01    .03    .19    .31 
  3      .22    .43    .03    .01    .03    .03    .27 
  4      .15    .03    .03   -.01    .05    .29    .14 
  5      .61    .04    .14   -.10    .23   -.02    .06 
  6     1.04    .74    .37    .51    .20    .09    .09 
 
 SIMPLIFIED SCAN TABLE (1% LEVEL): 
 
  Q:   0   1   2   3   4   5   6 
 ---------------------------------- 
  0:   X   X   X   X   X   X   X    
  1:   X   O   O   O   O   O   O    
  2:   O   O   O   O   O   O   O    
  3:   O   O   O   O   O   O   O    
  4:   O   O   O   O   O   O   O    
  5:   O   O   O   O   O   O   O    
  6:   X   O   O   O   O   O   O    

  
A corner of zeros (highlighted by hand) is seen in the simplified scan table beginning at i=1 
(p) and j=1 (q).  Thus the model ARMA(1,1) is identified. 
 

We can obtain the SCAN table for the first-order differenced SERIESA (i.e., (1-
B)SERIESA) by entering 

 -->SCAN   SERIESA.    DFORDER IS 1. 
                                                    1 
 DIFFERENCE ORDERS. . . . . . . . . . . . . . (1-B  )  
 TIME PERIOD ANALYZED . . . . . . . . . . . .  1  TO   197 
 EFFECTIVE NUMBER OF OBSERVATIONS (NOBE). . .          196 
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 THE SCAN TABLE (NORMALIZED BY 1%  CHI-SQUARE CRITICAL VALUES): 
 
  Q:      0      1      2      3      4      5      6 
 -------------------------------------------------------- 
  0     5.56    .01    .10    .00    .11    .01    .51 
  1     1.05    .09    .03    .02    .02    .20    .31 
  2      .91    .00    .12    .01    .03    .03    .22 
  3      .56    .02    .04    .02    .05    .30    .14 
  4     1.16    .01    .02    .03    .25   -.01    .06 
  5     1.54    .46    .77    .38    .12    .40    .12 
  6      .00    .03    .34    .07    .02    .36    .09 
 
 SIMPLIFIED SCAN TABLE (1% LEVEL): 
 
  Q:   0   1   2   3   4   5   6 
 ----------------------------------  
  0:   X   O   O   O   O   O   O    
  1:   X   O   O   O   O   O   O    
  2:   O   O   O   O   O   O   O    
  3:   O   O   O   O   O   O   O    
  4:   X   O   O   O   O   O   O    
  5:   X   O   O   O   O   O   O    
  6:   O   O   O   O   O   O   O    

 
Here the corner of insignificant statistics begins at i=0 (p) and j=1 (q).  Hence the 
ARIMA(0,1,1) model identified previously is confirmed using the SCAN table. 
 

The smallest canonical correlation approach for a single series can also be extended to a 
vector (multiple) time series model.  Details regarding this approach may be found in Tiao 
and Tsay (1985). 

5.4.5   Inverse autocorrelation function 

Throughout this chapter we have employed the ACF, PACF or EACF to help identify 
one or more tentative models for a time series.  Another tool used for tentative model 
identification is the sample inverse autocorrelation function (IACF).  More complete 
information on the usage of the inverse autocorrelation function can be found in Cleveland 
(1972) and Chatfield (1979). 

The inverse autocorrelation function is sometimes used as an alternative to the PACF for 
model identification.  The IACF of an ARMA model is the same as ACF for the model when 
the AR and MA operators are reversed.  As a result the IACF has properties similar to the 
PACF, and its use (in terms of “cut off” and “die out” patterns) is the same as the PACF. 

5.4.6   Notational shorthands 

Within this document, time series models are usually specified using a “longhand 
notation” in the MODEL sentence of the TSMODEL paragraph.  That is, the ARIMA model 
under consideration is virtually “transcribed” in the MODEL sentence with labels replacing 
Greek symbols.  Such a specification is useful when simple models are specified or for the 
convenience in reviewing the computer output associated with various models or series. 
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When the SCA System is used more frequently, or when time series models become 
more “complex”, it is useful to have a “shorthand notation” available for model specification.  
To illustrate such notation, consider the ARIMA model 

2 12 12 1
1 2 3 t 1 2(1 B B )(1 B )(1 B )Z (1 B)(1 B )a−φ −φ −φ − = −θ −θ 2

t . (5.18) 

If the series involved in (5.18) is stored in the SCA workspace under the label ZDATA, 
then a “longhand” transcription of (5.18) could be 

 (1 PHI1*B PHI2*B**2)(1 PHI3*B**12)ZDATA((1 B**12))     @
=(1-THETA1*B)(1-THETA2*B**12)NOISE
− − − −

 (5.19) 

 
The basic information used by the SCA System from (5.19) are the orders of the 

backshift operators in each autoregressive, differencing, or moving average operator and the 
labels associated with all parameters.  In fact, the labels are not essential unless we wish to 
maintain parameter estimates within variables or if constraints are used on parameters.  As a 
result, the expression 

(1, 2)(12)ZDATA(12) = (1)(12)NOISE (5.20) 

is equivalent to (5.19) provided all parameters are to be estimated without any constraint.  
Clearly, (5.20) is a terser way to specify the same basic model but the clarity of (5.19) is 
sacrificed.  It may be a concern that if the shorthand notation of (5.20) is used, then specific 
initial parameter estimates could not be specified nor subsequently modified.  However, this is 
not the case as the AR and MA operators in this shorthand allow the more general form 
 

(orders of backshift operators; parameter values or labels) 

The portion “parameter values or labels” allows for either specific numeric values or labels of 
variables holding the initial estimates.  Hence the following shorthand expression corresponds 
to (5.19) exactly 
 

(1,2; PHI1, PHI2)(12; PHI3)ZDATA(12) = (1; THETA1)(12; THETA2)NOISE. (5.21) 

The more “complete shorthand” expression in (5.21) may be more complicated to use 
than longhand notation for simple low order models.  However, this notation is very useful 
when a model or operator contains many parameters.  For example, the above notation can be 
used to specify the expression 

2 3 4 5
1 2 3 4 5 t(1 B B B B B )Z−φ −φ −φ −φ −φ = ta  

as 
(1 TO 5; PHI1 TO PHI5)ZDATA = NOISE . 

The shorthand notation is used frequently in the specification of transfer function models (see 
Chapters 6 and 8, respectively). 
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5.4.7   Plotting forecasts with confidence limits 

It is often valuable to plot forecast values of a time series along with the original series.  
In addition, plotting the confidence limits of the forecasts provides us with information on the 
potential variability of these forecasts. 

In order to plot forecasts, we need to create forecasts (using the FORECAST paragraph), 
possibly modify series using analytic functions or data editing capabilities (see Appendices A 
and B), and then plot the resultant data (using either the capabilities of SCAGRAF or those 
described in Chapter 3).  As an example, suppose we want to plot 12 forecast values of 
SALES from the model we derived in Section 5.2.  In addition, suppose we want to display 
the 90% confidence intervals of the forecasts.  The estimated model is in the SCA workspace 
under the label SALESM.  To forecast the series and retain the forecasts and their standard 
errors we can enter  

 -->FORECAST   SALESM.   NOFS ARE 12.        @  
 -->           HOLD  FORECASTS(FCSTSALE), STD_ERR(STDSALE).  

 
 NOTE: THE EXACT METHOD FOR COMPUTING RESIDUALS IS USED 
 ---------------------------------- 
  12 FORECASTS, BEGINNING AT  150 
 ---------------------------------- 
 TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
  151    262.8613      1.3368 
  152    263.0029      2.1368 
  153    263.1271      2.8974 
  154    263.2361      3.6447 
  155    263.3318      4.3828 
  156    263.4157      5.1113 
  157    263.4894      5.8289 
  158    263.5540      6.5340 
  159    263.6107      7.2256 
  160    263.6605      7.9028 
  161    263.7041      8.5652 
  162    263.7424      9.2125 

 
Our forecasts are now in the variable FCSTSALE and the standard errors are in 

STDSALE.  We can save the variables SALES, FCSTSALE and STDSALE on a file and use 
SCAGRAF to construct a plot of the forecasts (with or without the original series).  This plot 
is shown in Figure 5.6. 
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  Figure 5.6    Forecast plot for SALES using ARIMA(1,1,1) model. 
    The plot is of only the last portion of SALES. 

  Forecasts (t), confidence intervals (0) 
 

 
 

To accomplish the same type of plot within the SCA System, we need to perform a few 
simple steps.  For example, the upper and lower confidence limits for a 90% confidence 
interval can be computed using the following two analytic statements (see Appendix A)  

  UPPER = FCSTSALE + 1.645*STDSALE  

  LOWER = FCSTSALE - 1.645*STDSALE  
 
We can plot the forecasts and confidence intervals directly by using the MTSPLOT paragraph 
(see Chapter 3) and entering  
 

 -->MTSPLOT   LOWER, FCSTSALE, UPPER.   SYMBOLS ARE  ‘-‘, ‘+’, ‘-‘. 
 
The symbols ‘-‘, ‘+’, and ‘-‘ are specified here to represent the lower confidence limit, 
forecasted value, and upper confidence limit, respectively.  We obtain the following display: 

 
TIME SERIES PLOT FOR VARIABLES    LOWER, FCSTSALE,  AND    UPPER 
 
        --------------------+---------------     
 277.20 +                   - - -          +     
        I                 -                I     
        I             - -                  I     
        I           -                      I     
 270.00 +       - -                        +     
        I     -                            I     
        I   -                              I     
        I -                   + +          I     
 262.80 + + + + + + + + + + +              +     
        I -                                I     
        I   - -                            I     
        I       -                          I     
 255.60 +         - -                      +     
        I             -                    I     
        I               - -                I     
        I                   - -            I     
 248.40 +                       -          +     
        --------------------+---------------     

                             10   
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If we would like to plot the forecasts on the same frame as the original series, we need 
to append each of the above three variables to SALES.  We can accomplish this through the 
JOIN paragraph (see Appendix B). 

 -->JOIN   SALES, LOWER.   NEW IS SALELOW.  

 -->JOIN   SALES, UPPER.   NEW IS SALEUPP.  

 -->JOIN   SALES, FCSTSALE.   NEW IS SALEFORE.  
 
We may now employ MTSPLOT as before. 
 

5.4.8   Pi and psi weights of a specified model 

 An ARIMA model, for example 
 

t t(B)Z (B)aφ = θ , 

may be rewritten in two other forms.  One form is in terms of the present and past values of 
the series and the current shock (noise) to the system.  In the other form, the current data 
value is written in terms of the present and past values of shock.  In the former, the model 
above may be written as 
 

t t(B)Z aπ = , 

where 
2

1 2(B) 1 B Bπ = − π − π − ⋅⋅⋅ . 

The coefficients of the linear polynomial (B)π  satisfy the relationship (B) (B) (B)π θ = φ .  The 
coefficients of , or pi-weights, indicate the relative importance (weight) of past 
observations in predicting the future and how the current value of the series may be derived 
from past values and the current shock.  The pi-weights may also be used in forecasting future 
values. 

(B)π

 
 

a

The model above can also be written as 
 

t tZ (B)= ψ , 

where 
2

1 2(B) 1 B Bψ = +ψ +ψ + ⋅⋅⋅ . 

The coefficients of the linear polynomial (B)ψ  are such that (B) (B) (B)ψ φ = θ .  The 
coefficients of ψ , or psi-weights, indicate how the current value of the series may be 
derived from the noise series.  The psi-weights are used in the calculation of the variance of 
the error in forecasted values (see Section 5.1.6) and may also be used in the updating of 
forecasts (Box and Jenkins, 1970). 

(B)
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Both the pi and psi-weights of a specified univariate model may be obtained using the 
WEIGHT paragraph.  In addition, the transfer function weights (impulse response weights, 
see Chapter 8) of a transfer function model that has been specified previously may be 
calculated (see Section 8.7.8). 

Examples 
 

To illustrate the WEIGHT paragraph, we will compute the pi and psi-weights for the 
final models fitted to the SALES data used in Section 5.2 and the airline data of Section 5.3.  
The models fitted to these series are in the SCA workspace under the labels SALESM and 
AIRLINE, respectively. 

 To compute 24 pi and psi-weights using the model held in SALESM, we may enter 
 

 -->WEIGHT   SALESM.   PIWEIGHTS IN SALESPI.   PSIWEIGHTS IN SALESPSI.   @ 
 -->         MAXIMUM IS 24. 

 
The MAXIMUM sentence is specified to limit the number of weights to 24 (the default is 
100).  The values stored in SALESPI are 0 1 2 23, , ,....,π π π π

,
 for the model in SALESM 

( ).  Similarly, the values stored in SALESPSI are 0 1π = 0 1 2,...., 3ψ ψ ψ  for the same model 
( ).  We can use the PRINT paragraph to print the values computed. 0 1ψ =
 

 -->PRINT   SALESPI.   NO LABEL.   FORMAT IS '5F10.4'. 
 

   1.0000    1.2471    -.0913    -.0576    -.0363 
   -.0229    -.0144    -.0091    -.0057    -.0036 
   -.0023    -.0014    -.0009    -.0006    -.0004 
   -.0002    -.0001    -.901E-04 -.568E-04 -.358E-04 
   -.226E-04 -.142E-04 -.897E-05 -.566E-05 

 
 -->PRINT   SALESPSI.  NO LABEL.   FORMAT IS '5F10.4'. 

 
   1.0000    1.2471    1.4639    1.6542    1.8212 
   1.9677    2.0962    2.2090    2.3080    2.3949 
   2.4711    2.5380    2.5967    2.6482    2.6934 
   2.7331    2.7679    2.7984    2.8252    2.8487 
   2.8693    2.8874    2.9033    2.9173 

 
In like manner we can compute 50 pi and psi-weights (i.e., 0π  through π  and 49 0ψ  

through ) corresponding to the airline model of Section 5.3 by entering 49ψ

 -->WEIGHT   AIRLINE.   PIWEIGHTS IN AIRPI.   PSIWEIGHTS IN AIRPSI.   @ 
 -->         MAXIMUM IS 50. 

 
The pi weights are computed from 
 

12 12
1 12(B)(1 B)(1 B ) (1 B)(1 B )π −θ −θ = − − , 

and the psi-weights are computed from 
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12 12
1 12(B)(1 B)(1 B ) (1 B)(1 B )ψ − − = −θ −θ  . 

The values are printed below 
 

 -->PRINT   AIRPI.   NO LABEL.   FORMAT IS '5F10.4'. 
 

   1.0000     .5979     .2404     .0967     .0389 
    .0156     .0063     .0025     .0010     .0004 
    .0002     .6606E-04 .4431    -.2649    -.1065 
   -.0428    -.0172    -.0069    -.0028    -.0011 
   -.0005    -.0002    -.728E-04 -.293E-04  .2468 
   -.1475    -.0593    -.0239    -.0096    -.0039 
   -.0016    -.0006    -.0003    -.0001    -.405E-04 
   -.163E-04  .1374    -.0822    -.0330    -.0133 
   -.0053    -.0021    -.0009    -.0003    -.0001 
   -.562E-04 -.226E-04 -.908E-05  .0765    -.0458 

 
 -->PRINT   AIRPSI.   NO LABEL.   FORMAT IS '5F10.4'. 

 
   1.0000     .5979     .5979     .5979     .5979 
    .5979     .5979     .5979     .5979     .5979 
    .5979     .5979    1.0410     .8628     .8628 
    .8628     .8628     .8628     .8628     .8628 
    .8628     .8628     .8628     .8628    1.3059 
   1.1278    1.1278    1.1278    1.1278    1.1278 
   1.1278    1.1278    1.1278    1.1278    1.1278 
   1.1278    1.5709    1.3927    1.3927    1.3927 
   1.3927    1.3927    1.3927    1.3927    1.3927 
   1.3927    1.3927    1.3927    1.8358    1.6576 
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SUMMARY OF THE SCA PARAGRAPHS IN CHAPTER 5 

 
This section provides a summary of those SCA paragraphs employed in this chapter.  

The syntax for many paragraphs is presented in both a brief and full form.  The brief display 
of the syntax contains the most frequently used sentences of a paragraph, while the full 
display presents all possible modifying sentences of a paragraph.  In addition, special remarks 
related to a paragraph may also be presented with the description. 

Each SCA paragraph begins with a paragraph name and is followed by modifying 
sentences.  Sentences that may be used as modifiers for a paragraph are shown below and the 
types of arguments used in each sentence are also specified.  Sentences not designated 
required may be omitted as default conditions (or values) exist.  The most frequently used 
required sentence is given as the first sentence of the paragraph.  The portion of this sentence 
that may be omitted is underlined.  This portion may be omitted only if this sentence appears 
as the first sentence in a paragraph.  Otherwise, all portions of the sentence must be used.  The 
last character of each line except the last line must be the continuation character, ‘@’. 

The paragraphs to be explained in this summary are ACF, PACF, IDEN, EACF, SCAN, 
IACF, TSMODEL, ESTIM, FORECAST, SIMULATE and WEIGHT. 

 
 Legend (see Chapter 2 for further explanation) 
 
 v : variable or model name 
 i : integer 
 r : real value 
 w  : keyword 
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ACF Paragraph  
 

The ACF paragraph is used to compute the sample autocorrelation function of a time 
series.  The paragraph also displays some descriptive statistics including the sample mean, 
standard deviation and a t-statistic on the significance of a constant term.  The sample ACF 
may also be computed within the IDEN paragraph. 

Syntax for the ACF Paragraph  
 
Brief syntax 

 
Full syntax 

Sen

ACF VARIABLE  IS  v.  @ 
 DFORDERS  ARE  i1, i2, --- . @ 
 MAXLAG  IS  i. 
 
Required sentence:  VARIABLE 

 

ACF VARIABLE  IS  v.    @  
 DFORDERS  ARE  i1, i2, --- .   @  
 MAXLAG  IS  i.    @  

SPAN  IS  i1, i2.    @  
 HOLD ACF(v), SDACF(v).    @ 

T(w1, w2, ---), @ 
        NOPRINT(w1, w2, ---). 

 

 OUTPUT LEVEL(w), PRIN

  
Required sentence:  VARIABLE  

 

 
tences Used in the ACF Paragraph 

RIABLE sentence    
The VARIABLE sentence is used to specify the name of the series to be analyzed.  

ORDERS sentence  

  
VA

DF
The DFORDERS sentence is used to specify the orders of differencing to be applied on 
the series when differencing is the stationary inducing transformation being used. For 
example, the order associated with the differencing operator (1-B) is 1 and that of 
( ) is 12.  If a power of an operator is to be used (for example, ) then the 
differencing order must be repeated the appropriate number of time ple, 1, 
1).  The default is none.  

121 B− 2(1 B)−
s (in this exam
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MAXLAG sentence  
The MAXLAG sentence is used to specify the maximum order of sample ACF to be 
computed.  The default is 36.  

SPAN sentence  
The SPAN sentence is used to specify the span of time indices, from i1 to i2, for which 
the data will be analyzed.  The default is the maximum span available for the series. 

 
HOLD sentence  

The HOLD sentence is used to specify those values computed for particular functions to 
be retained in the workspace.  Only those statistics desired to be retained need be named.  
Values are placed in the variable named in parentheses.  The default is that none of the 
values of the above statistics will be retained after the paragraph is executed.  The values 
that may be retained are: 

ACF : the sample ACF of the series  
SDACF : the standard deviations of the sample ACF for the series  

 
OUTPUT sentence 

The OUTPUT sentence is used to control the amount of output displayed for selected 
statistics.  Control is achieved in a two-stage procedure.  First, a basic LEVEL of output 
(default NORMAL) is designated.  Output may then be increased (decreased) from this 
level by use of PRINT (NOPRINT). 

The keywords for LEVEL and output printed are: 

BRIEF : VALUE 
NORMAL : VALUE, PLOT, CI, LBQ 

 
where the keywords on the right denote: 

VALUE : values of the sample ACF 
PLOT : plot of the sample ACF 
CI  : plot of the 95% confidence interval for the sample ACF 
LBQ : values of the Ljung-Box Q statistics (Ljung and Box 1978) for the sample 
  ACF for each lag 
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PACF Paragraph 
 

The PACF paragraph is used to compute the sample partial autocorrelation function of a 
time series.  The paragraph also displays some descriptive statistics including the sample 
mean, standard deviation and a t-statistic on the significance of a constant term.  The sample 
PACF may also be computed within the IDEN paragraph. 

Syntax for the PACF Paragraph  
 
Brief syntax 

 
Full syntax

Sen

 
 

 

 

 
tences 

RIABL
The VA

ORDER

 
VA

DF
The DF
the serie
example
(
differen
1).  The

12(1 B−
PACF VARIABLE  IS  v.  @
 DFORDERS  ARE  i1, i2, --- . @
 MAXLAG  IS  i. 
 
Required sentence:  VARIABLE 
 

PACF VARIABLE  IS  v.    @  
 DFORDERS  ARE  i1, i2, --- .   @  
 MAXLAG  IS  i.    @  

SPAN  IS  i1, i2.    @  
PACF(v), SDPACF(v).    @ 

(w1, w2, ---), @ 

  
tence:  VARIABLE  

 
 HOLD 
 OUTPUT LEVEL(w), PRINT
        NOPRINT(w1, w2, ---). 

Required sen

Used in the PACF Paragraph  

E sentence  
RIABLE sentence is used to specify the name of the series to be analyzed.  

S sentence  
ORDERS sentence is used to specify the orders of differencing to be applied on 
s when differencing is the stationary inducing transformation being used.  For 
, the order associated with the differencing operator (1-B) is 1 and that of 
) is 12.  If a power of an operator is to be used (for example, ) then the 

cing order must be repeated the appropriate number of time ple, 1, 
 default is none.  

) 2(1 B)−
s (in this exam
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MAXLAG sentence  
The MAXLAG sentence is used to specify the maximum order of sample PACF to be 
computed.  The default is 36.  

SPAN sentence  
The SPAN sentence is used to specify the span of time indices, from i1 to i2, for which 
the data will be analyzed.  The default is the maximum span available for the series. 

HOLD sentence  
The HOLD sentence is used to specify those values computed for particular functions to 
be retained in the workspace.  Only those statistics desired to be retained need be named.  
Values are placed in the variable named in parentheses.  The default is that none of the 
values of the above statistics will be retained after the paragraph is executed.  The values 
that may be retained are: 

PACF : the sample PACF of the series  
SDPACF : the standard deviations of the sample PACF for the series  

 
OUTPUT sentence 

The OUTPUT sentence is used to control the amount of output displayed for selected 
statistics.  Control is achieved in a two-stage procedure.  First, a basic LEVEL of output 
(default NORMAL) is designated.  Output may then be increased (decreased) from this 
level by use of PRINT (NOPRINT). 

The keywords for LEVEL and associated output are: 

BRIEF : VALUE 
NORMAL : VALUE, PLOT, CI 
 
where the keywords on the right denote: 

VALUE : values of the sample PACF 
PLOT : plot of the sample PACF 
CI  : plot of the 95% confidence interval for the sample PACF 
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IDEN Paragraph  
 

The IDEN paragraph can be used when performing the tentative identification of a 
series or in the diagnostic checking of a residual series.  The paragraph is used to co-ordinate 
the computation of the sample ACF (autocorrelation function) and PACF (partial 
autocorrelation function) of a univariate time series.  If only the sample ACF is desired, it 
may be computed using the ACF paragraph; similarly for the sample PACF.  All three 
paragraphs also display some descriptive statistics including the sample mean, standard 
deviation and a t-statistic on the significance of a constant term.  

Syntax for the IDEN Paragraph 
 
Brief syntax 

 
Full syntax   

Sen

IDEN VARIABLE  IS  v.  @  
 DFORDERS  ARE  i1, i2, --- . @ 
 MAXLAG  IS  i. 
 
Required sentence:  VARIABLE 

 

IDEN VARIABLE  IS  v.     @  
 DFORDERS  ARE  i1, i2, --- .    @ 
 MAXLAG  IS  i.     @  

SPAN  IS  i1, i2.     @  
 HOLD ACF(v), PACF(v), SDACF(v), SDPACF(v). @ 

T(w1, w2, ---),  @ 
 

  
tence:  VARIABLE  

 

 OUTPUT LEVEL(w), PRIN
        NOPRINT(w1, w2, ---).

Required sen
 

 
tences Used in the IDEN Paragraph 

RIABLE sentence  
The VARIABLE sentence is used to specify the name of the series to be analyzed.  

ORDERS sentence  

2(1 B)−
s (in this exam

  
VA

DF
entence is used to specify the orders of differencing to be applied on 

erator is to be used (for example, ) then the 
rder must be repeated the appropriate number of time ple, 1, 

1).  The default is none.  

The DFORDERS s
the series when differencing is the stationary-inducing transformation being used.  For 
example, the order associated with the differencing operator (1-B) is 1 and that of 
( 121 B− ) is 12.  If a power of an op
differencing o
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MA
CF and PACF 

to be computed.  The default is 36.  

SPA

HO
The HOLD sentence is used to specify those values computed for particular functions to 

ained tatistics desired to be retained need be named. 
parentheses.  The default is that none of the 

xecuted. The values 

ample ACF of the series  

  
OUTPUT sentence 

nt of output displayed for selected 
statistics.  Control is achieved in a two-stage procedure.  First, a basic LEVEL of output 

signated.  Output may then be increased (decreased) from this 

 output are: 

AL

VALUE : values of the sample ACF or PACF 
PLOT : plot of the sample ACF or PACF 
CI  : plot of the 95% confidence interval for the sample ACF or PACF 
LBQ : values of the Ljung-Box Q statistics (Ljung and Box 1978) for the sample 
  ACF for each lag 

 
 
 

XLAG sentence  
The MAXLAG sentence is used to specify the maximum order of sample A

N sentence  
The SPAN sentence is used to specify the span of time indices, i1 to i2, for which the  data 
will be analyzed.  The default is the maximum span available for the series. 

LD sentence  

be ret  in the workspace.  Only those s
Values are placed in the variable named in 
values of the above statistics will be retained after the paragraph is e
that may be retained are: 

ACF : the s
PACF : the sample PACF of the series  
SDACF : the standard deviations of the sample ACF for the series  
SDPACF : the standard deviations of the sample PACF for the series 

The OUTPUT sentence is used to control the amou

(default NORMAL) is de
level by use of PRINT (NOPRINT). 

The keywords for LEVEL and associated

BRIEF : VALUE 
NORM  : VALUE, PLOT, CI, LBQ 
 
where the keywords on the right denote: 
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EACF Paragraph 
 

The EACF paragraph is used to compute the sample extended autocorrelation function.  
The paragraph produces a table useful in determining the order of a mixed stationary or 
nonstationary ARMA process.   

Syntax for the EACF Paragraph 
 
Brief syntax 

 
Full syntax

 
Sen

 

 

 

tences 

RIABL
The VA

ORDER
The DF

  
VA

DF

the serie
example
( 121 B−
differen
1).  The

MAXLAG 
The MA
average
and max
EACF VARIABLE  IS  v.  @ 
 DFORDERS  ARE  i1, i2, --- . 
  
Required sentence:  VARIABLE  
 

EACF VARIABLE  IS  v.    @  
 DFORDERS  ARE  i1, i2, --- .    @  
 MAXLAG  IS  AR(i1), MA(i2).   @  
 SPAN  IS  i1, i2.    @ 

OUTPUT LEVEL(w), PRINT(w1, w2, ---) @ 
        NOPRINT(w1, w2, ---). 
 

  
Required sentence:  VARIABLE  

Used in the EACF Paragraph 

E sentence  
RIABLE sentence is used to specify the name of the series to be analyzed.  

S sentence  
ORDERS sentence is used to specify the orders of differencing to be applied on 

fferencing is the stationary inducing transformation being used.  For 

R order is 6 
 order is 12. 

s when di
, the order associated with the differencing operator (1-B) is 1 and that of 

) is 12.  If a power of an operator is to be used (for example, 2(1 B)− ) then the 
cing order must be repeated the appropriate number of times (in this example, 1, 
 default is none.   

sentence  
XLAG sentence is used to specify the maximum autoregressive (AR) and moving 

 (MA) orders to be computed and displayed.  The default maximum A
imum MA
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SPA

OUTPUT sentence 
unt of output displayed for selected 

statistics.  Control is achieved in a two-stage procedure.  First, a basic LEVEL of output 
AL d.  Output may then be increased (decreased) from this 

he keywords for LEVEL and output displayed are: 

BRIEF  : TABLE 

where the keywords on the right denote: 

s of the table derived from the sample EACF 
y of the condensed summary table for the series 

E

SCAN Paragraph

N sentence  
The SPAN sentence is used to specify the span of time indices, i1 to i2, for which the  data 
will be analyzed.  The default is the maximum span available for the series.  

The OUTPUT sentence is used to control the amo

(default NORM ) is designate
level by use of PRINT (NOPRINT). 

T

NORMAL    : TABLE, VALUES 
DETAILED : TABLE, VALUES, EAR 
 

VALUE : value
TABLE : displa

AR : the computed extended autoregressive coefficients for the series 
 
 

 

The SCAN paragraph is used to compute and display the smallest canonical correlation 
 developed by Tsay and Tiao (1985).  The SCAN table is useful in determining 

e order of a mixed stationary or nonstationary ARMA process (see Section 5.4.4).  

Syntax for the SCAN Paragraph

 

(SCAN) table
th

 
 
Brief syntax 

 
 

SCAN VARIABLE  IS  v.   @  
 DFORDERS  ARE  i1, i2, --- . 
  
Required sentence:  VARIABLE  
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Full syntax 

SCAN VARIABLE  IS  v.    @  
 DFORDERS  ARE  i1, i2, --- .    @  
 MAXLAG  IS  AR(i1), MA(i2).   @  
 SPAN  IS 

 
Sen

 i1, i2.    @ 
 OUTPUT LEVEL(w), PRINT(w1, w2, ---) @ 

  NOPRINT(w1, w2, ---).       
  
Required sentence:  VARIABLE  

 

tences Used in the SCAN Paragraph 

RIABLE sentence  
  
VA

sentence is used to specify the name of the series to be analyzed.  

DF

 the differencing operator (1-B) is 1 and that of 
sed (for example, ) then the 

differencing order must be repeated the appropriate number of time ple, 1, 
 

MAXLAG sentence  
y the maximum autoregressive (AR) and moving 

average (MA) orders to be computed and displayed.  The default maximum AR order is 6 

PAN sentence  
The SPAN sentence is used to specify the span of time indices, i1 to i2, for which the  data 

The default is the maximum span available for the series.  

UT

INT). 

ut displayed are: 

: TABLE 
NORMAL : TABLE, VALUES 
 
where the keywords on the right denote: 

VALUES : the values of the SCAN table 

The VARIABLE 

ORDERS sentence  
The DFORDERS sentence is used to specify the orders of differencing to be applied on 
the series when differencing is the stationary inducing transformation being used.  For 
example, the order associated with
( 121 B− ) is 12.  If a power of an operator is to be u 2(1 B)−

s (in this exam
1).  The default is none.  

The MAXLAG sentence is used to specif

and maximum MA order is 12. 

S

will be analyzed.  

O PUT sentence 
The OUTPUT sentence is used to control the amount of output displayed for selected 
statistics.  Control is achieved in a two-stage procedure.  First, a basic LEVEL of output 
(default NORMAL) is designated.  Output may then be increased (decreased) from this 
level by use of PRINT (NOPR

The keywords for LEVEL and outp

BRIEF 
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TABLE : display of the condensed SCAN table 

 
IACF Paragraph 

 

 
 

The IACF paragraph is used to compute the sample inverse autocorrelation function of a 
time series (see Section 5.4.5 for more information).  The paragraph also displays some 
descriptive statistics including the sample mean, standard deviation and a t-statistic on the 
significance of a constant term.  

Syntax for the IACF Paragraph  
 
Brief syntax 

 
Ful syntaxl  

Required sentence:  VARIABLE 

IACF VARIAB

IACF VARIABLE  IS  v.  @ 
 DFORDERS  ARE  i1, i2, --- . @ 
 MAXLAG  IS  i. 
 

LE  IS  v.    @  
ORDERS  ARE  i1, i2, --- .   @  

, SDIACF(v).   @ 
OUTPUT LEVEL(w), PRINT(w1, w2, ---). @ 

 DF
 MAXLAG  IS  i.    @  
 SPAN  IS  i1, i2.    @  
 HOLD IACF(v)
 
        NOPRINT(w1, w2, ---). 
  
Required sentence:  VARIABLE  

 
Sentences Used in the IACF Paragraph 

RIABLE sentence 
The VARIABLE sentence

  
VA

 is used to specify the name of the series to be analyzed.  

DF R
 applied on 

differencing is the stationary inducing transformation being used. For 

1).  The default is none.  

O DERS sentence  
The DFORDERS sentence is used to specify the orders of differencing to be
the series when 
example, the order associated with the differencing operator (1-B) is 1 and that of 
( 121 B− ) is 12.  If a power of an operator is to be used (for example, 2(1 B)− ) then the 
differencing order must be repeated the appropriate number of times (in this example, 1, 
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MA
e maximum order of sample ACF to be 

computed.  The default is 36.  

SPAN sentence 
ed to specify the span of time indices, from i1 to i2, for which 

fault is the maximum span available for the series. 

HO
The HOLD sentence is used to specify those values computed for particular functions to 

d e statistics desired to be retained need be named.  
ed in parentheses.  The default is that none of the 

ecuted.  The values 
that may be retained are: 

 IACF  : the sample IACF of the series  
 SDIACF : the standard deviations of the sample IACF for the series  

 
OUTPUT sentence 

The OUTPUT sentence is used to control the amount of output displayed for selected 
statistics.  Control is achieved in a two-stage procedure.  First, a basic LEVEL of output 
(default NORMAL) is designated.  Output may then be increased (decreased) from this 
level by use of PRINT (NOPRINT). 

The keywords for LEVEL and associated output are: 

BRIEF : VALUE 
NORMAL : VALUE, PLOT, CI 
 
where the keywords on the right denote: 

VALUE : values of the sample IACF 
PLOT : plot of the sample IACF 
CI  : plot of the 95% confidence interval for the sample IACF 

 
 
 

XLAG sentence 
The MAXLAG sentence is used to specify th

The SPAN sentence is us
the data will be analyzed.  The de

LD sentence 

be retaine  in the workspace.  Only thos
Values are placed in the variable nam
values of the above statistics will be retained after the paragraph is ex
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TSMODEL Paragraph 
 

The TSMODEL paragraph is used to specify or modify a univariate ARIMA model.  
The paragraph is also used for the specification or modification of an intervention or transfer 
function model.  The syntax description for these usages is provided in Chapters 6 and 8, 
respectively.  For each model specified in a TSMODEL paragraph, a distinguishing label or 
name must also be given.  A number of different models may be specified, each having a 
unique name, and subsequently employed at a user's discretion.  Moreover, the label also 
enables the information contained under it to be modified. 

Syntax for the TSMODEL Paragraph 
 
Brief syntax 

 
Full syntax

 
Sen

 

tences
 

paragra

MODEL s
The MO

NAME sen
The NA
the par
TSMODEL NAME  IS  model-name.     @ 
  MODEL  IS  “model”. 
  
Required sentence:  NAME  
 

 

p

e

a

TSMODEL NAME  IS  model-name.    @  
  MODEL  IS  “model”.     @  
  DELETE CONSTANT.    @ 

 FIXED-PARAMETERS ARE v1, v2, ---. @ 
 CONSTRAINTS ARE (v1,v2,---), ---,  @ 

                  (v1,v2,---).    @ 
 VARIANCE IS v.    @ 
 SHOW./NO SHOW.    @  

  CHECK./NO CHECK.    @  
 ROOTS./NO ROOTS.     @  

ATION.  @ 

  

 SIMULATION./NO SIMUL
  UPDATE./NO UPDATE. 

Required sentence:  NAME
Used in the TSMODEL Paragraph 

fied in 
related 

hs or if the model is to be modified. 

ntence  
DEL sentence is used to specify a univariate Box-Jenkins ARIMA model. 

tence  
ME sentence is used to specify a unique label (name) for the model speci
graph.  This label is used to refer to this model in other time series 
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DELETE sentence   
The DELETE sentence is used to delete the constant term from an existing ARIMA 
model.  Once the constant term is deleted, it can only be re-inserted using the MODEL 
sentence. 

FIXED-PARAMETER sentence 
The FIXED-PARAMETER sentence is used to specify the parameters whose values will 
be held constant during model estimation, where v’s are the parameter names.  See 
Section 5.2 for a brief discussion of this sentence.  The default condition is that no 
parameters are fixed. 

CONSTRAINT sentence 
The CONSTRAINT sentence is used to specify that the parameters within each pair of 
parentheses will be constrained to have the same value during model estimation. See 
Section 5.2 for a brief discussion of this sentence.  The default condition is that no 
parameters are constrained to be equal. 

VARIANCE sentence 
The VARIANCE sentence is used to specify a variable where the value of the noise 
variance is or will be stored.  If a value for the variable is known, this value will be used 
as initial variance in estimation and the final estimated value of the variance will be stored 
in this variable for future estimation or in forecasting.  Otherwise the variance is 
calculated from the residual series derived from the specified model and parameter 
estimates.  Note that the SCA System designates an internal variable for the VARIANCE 
sentence so that the specification of this sentence is optional. 

SHOW sentence  
The SHOW sentence is used to display a summary of the specified model.  The default is 
SHOW. The summary includes series name, differencing (if any), span for data, parameter 
labels (if any) and current values for parameters.  

CHECK sentence  
The CHECK sentence is used to check whether all roots of the AR, MA, and denominator 
polynomials lie outside the unit circle.  The default is NO CHECK.  

ROOTS sentence  
The ROOTS sentence is used to display all roots of the AR, MA and denominator 
polynomials.  The default is NO ROOTS. 

SIMULATION sentence  
The SIMULATION sentence is used to specify that the model will be used for simulation 
purposes.  Ordinarily this sentence is not specified.  See Section 5.4.2 or 8.7.7 for more 
details.  The default is NO SIMULATION.  

UPDATE sentence 
The UPDATE sentence is used to specify that parameter values of the model are updated 
using the most current information available.  The default is NO UPDATE. In the default 
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case, parameter values are updated only after execution of the ESTIM paragraph rather 
than immediately. 

 
ESTIM Paragraph  
  

The ESTIM paragraph is used to control the estimation of the parameters of an ARIMA 
model.  

Syntax of the ESTIM Paragraph 
 
Brief syntax 

 
Full syntax  

 
e ESTIM Paragraph

ESTIM  MODEL  IS  v.                  @ 
  HOLD RESIDUALS(v).   
   
Required sentence:  MODEL 

ESTIM  MODEL  IS  v.       @ 
 METHOD  IS  w.      @ 

  STOP-CRITERIA  ARE  MAXIT(i), LIKELIHOOD(r1), @ 
                        ESTIMATE(r2).    @ 

 SPAN  IS  i1, i2.      @ 
 HOLD RESIDUALS(v), FITTED(v), VARIANCE(v).  @ 

 PRINT(w1, w2, ---),   @ 
, ---). 

 OUTPUT LEVEL(w),
        NOPRINT(w1, w2

 
Required sentence:  MODEL 

Sentences Used in th  
 
MO

aragraph. 

METHOD sentence  
The METHOD sentence is used to specify the likelihood function used for model 
estimation.  The keyword may be CONDITIONAL for the “conditional” likelihood or 
EXACT for the “exact” likelihood function.   See Section 5.1.4 for a discussion of these 
two likelihood functions.  The default is CONDITIONAL. 

DEL sentence 
The MODEL sentence is used to specify the label (name) of the model to be estimated.  
The label must be one specified in a previous TSMODEL p
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STOP sentence 
The STOP sentence is used to specify the stopping criterion for nonlinear estimation.  The 
argument, i, for the keyword MAXIT specifies the maximum number of iterations (default 
is i=10); the argument, r1, for the keyword LIKELIHOOD specifies the value of the 
relative convergence criterion on the likelihood function (default is r1=0.0001); and the 
argument, r2, for the keyword ESTIMATE specifies the value of the relative convergence 
criterion on the parameter estimates (default is r2=0.001).  Estimation iterations will be 
terminated when the relative change in the value of the likelihood function or parameter 
estimates between two successive iterations is less than or equal to the convergence 
criterion, or if the maximum number of iterations is reached. 

SPAN sentence 
The SPAN sentence is used to specify the span of time indices, from i1 to i2, for which 
the data will be analyzed.  The default is the maximum span available for the series. 

HOLD sentence 
The HOLD sentence is used to specify those values computed for particular functions to 
be retained in the workspace.  Only those statistics desired to be retained need be named.  
Values are placed in the variable named in parentheses.  The default is that none of the 
values of the above statistics will be retained after the paragraph is used.  The values that 
may be retained are: 

RESIDUAL : the residual series  
FITTED : the one-step-ahead forecasts (fitted values) of the series  
VARIANCE : variance of the noise  

 
OUTPUT sentence 

The OUTPUT sentence is used to control the amount of output displayed for selected 
statistics.  Control is achieved in a two stage procedure.  First, a basic LEVEL of output 
(default NORMAL) is designated.  Output may then be increased (decreased) from this 
level by use of PRINT (NOPRINT). 

The keywords for LEVEL and output displayed are: 

BRIEF  : estimates and their related statistics only 
NORMAL  : RCORR 
DETAILED : ITERATION, CORR, and RCORR 
 
where the keywords on the right denote: 

ITERATION :  the parameter and covariance estimates for each iteration 
CORR :  the correlation matrix for the parameter estimates 
RCORR : the reduced correlation matrix for the parameter estimates (i.e., a 

display in which all values have no more than two decimal places and 
those estimates within two standard errors of zero are displayed as 
dots,  ‘.’). 
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FORECAST Paragraph 
 

The FORECAST paragraph is used to compute the forecast of future values of a time 
series based on a specified ARIMA model.  The FORECAST paragraph requires the current 
estimate of the variance σ2 to compute standard errors of forecasts.  The variance for the 
estimated model is always stored internally during the execution of the ESTIM paragraph, but 
the internal estimate is overwritten at each subsequent execution of a ESTIM paragraph for 
the same model. 

The FORECAST paragraph has other sentences available, not described below.  These 
are used in the forecasting of intervention and transfer function models and are described in 
Chapters 6 and 8, respectively. 

Syntax of the FORECAST Paragraph 
 
Brief syntax 

 
Full syntax 

the FORECAST Paragraph 

FORECAST MODEL  IS  v.     @  
  NOFS ARE i1, i2, --- .   @ 

 ORIGINS ARE i1, i2, ---. 
  
Required sentence:  MODEL  

FORECAST MODEL  IS  v.        @  
  NOFS ARE i1, i2, --- .       @ 

 ORIGINS ARE i1, i2, --- .      @  
  JOIN. /NO JOIN.       @  

 METHOD IS w.      @ 
  HOLD FORECASTS(v1,v2,---), STD_ERRS(v1,v2,---).  @ 

 OUTPUT PRINT(w), NOPRINT(w). 
  
Required sentence:  MODEL  

 
Sentences Used in  
  
MO

The MODEL sentence is used to specify the label (name) of the model for the series to be 
e label must be one specified in a previous TSMODEL paragraph.  

NO

ich forecasts will be generated.  The number of arguments in this sentence 

DEL sentence  

forecasted.  Th

FS sentence  
The NOFS sentence is used to specify for each time origin the number of time periods 
ahead for wh
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must be the same as that in the ORIGINS sentence.  The default is 24 forecasts for each 
time origin. 

ORIGINS sentence  

JOIN sentence  
e is used to specify that the forecasts calculated should be appended to 

ME
OD sentence is used to specify the likelihood function used for the 

computation of the residual series employed in forecasting.  The keyword may be 
L for the “conditional” likelihood, or EXACT for the exact likelihood 

HO
s used to specify those values computed for particular functions to 

be retained in the workspace.  Only those statistics desired to be retained need be named.  
ault is that none of the 

 The values that 
may be retained are:   

 
OUTPUT sentence 

The OUTPUT sentence is used to control the amount of output displayed for various 
statistics.  The default condition is PRINT(FORECASTS); that is, to display forecast 
values for each time origin.  To suppress this, specify NOPRINT(FORECASTS). 

 
 

The ORIGINS sentence is used to specify the time origins for forecasts.  The default is 
one origin, the last observation.  

The JOIN sentenc
the variable of the model relative to the specified origin.  If more than one origin is 
specified only the last will be used.  The default is NO JOIN. 

THOD sentence 
The METH

CONDITIONA
function.  See Section 5.1.4 for a discussion of these two likelihood functions.  The default 
is EXACT. 

LD sentence  
The HOLD sentence i

Values are placed in the variable named in parentheses.  The def
values of the above statistics will be retained after the paragraph is used.

FORECASTS : forecasts for each corresponding time origin   
STD_ERRS : standard errors of the forecasts at the last time origin 
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SIMULATE Paragraph  
 

The SIMULATE paragraph is used to generate data according to a user specified 
univariate time series model.  A univariate time series model must have been specified 
previously using the TSMODEL paragraph.  The paragraph is also used to generate data 
according to a user specified distribution.  More information on this can be found in Chapter 
12 of The SCA Statistical System: Reference Manual for General Statistical Analysis. 

Syntax for the SIMULATE Paragraph  

SIMULATE VARIABLE  IS  v.      @  
  MODEL  IS  model-name.     @  

 NOISE  IS  distribution (parameters) or VARIABLE(v).  @ 
  NOBS  IS  i.       @  

 SEED  IS  i        @  
  OMIT  IS  i.  
 
Required sentences:  MODEL, NOISE and NOBS  

 
Sentences Used in the SIMULATE Paragraph 

VA

 used in the MODEL sentence of the 
TSMODEL paragraph is used to store the results. 

MO

 paragraph.  The sentence 
SIMULATION must also appear in the TSMODEL paragraph. 

NO

 values to be used as the sequence is specified.  The following distributions can 
be used:  

atrix 
 v2.  Note that v1 and v2 must be names of variables defined previously. 

NO
The NOBS sentence is used to specify the number of observations to be simulated.  

 
RIABLE sentence  
The VARIABLE sentence is used to specify the name of the variable to store the 
simulation results.  The sentence is not required if a univariate time series is generated.  If 
the sentence is not specified, the variable name

DEL sentence 
The MODEL sentence is used to specify the name (label) of the model to be simulated.  
The model may be an ARIMA model specified in a TSMODEL

ISE sentence 
The NOISE sentence is used to specify the noise sequence for the simulated time series 
model.  Either the distribution for generating the noise sequence or the name of a variable 
containing

U(r1,r2) : uniform distribution between r1 and r2  
N(r1,r2) : normal distribution with mean r1 and variance r2  
MN(v1,v2): multivariate normal distribution with mean vector v1 and covariance m

 
BS sentence  
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SEED sentence  
The SEED sentence is used to specify an integer or the name of a variable for starting the 
random number generation. When a variable is used, the seven digit value 1234567 is 
used as a seed if it is not defined yet, or the value of the variable is used if the variable is 
an existing one. After the simulation, the variable contains the seed last used. The number 
of digits for the seed must not be more than 8 digits.  The default is 1234567.  

OMIT sentence  
The OMIT sentence is used to specify the number of observations to be omitted at the 
beginning of the simulated data.  

 
 
WEIGHT Paragraph 
 

The WEIGHT paragraph is used to compute the pi and psi weights of an ARIMA time 
series model.  It can also be used to compute the impulse response weights of a transfer 
function model (see Section 8.7.8). 

Syntax of the WEIGHT paragraph 

WEIGHT MODEL  model-name.  @ 
  PIWEIGHTS IN v.  @ 
  PSIWEIGHTS IN v.  @ 

 MAXIMUM  IS  i.  @ 
  CUTOFF  IS  r. 
 
Required sentences:  MODEL 

 
Sentences Used in the WEIGHT Paragraph 

MO

be computed.  The label must be the one specified in a previous 
TSMODEL paragraph. 

PIW
fy the name of the variable to store the pi-

weights associated with the ARIMA model. 

PSI
ify the name of the variable to store the psi-

weights associated with the ARIMA model. 

MA
 number of weights to be 

computed.  The default is 100 for all weights to be computed. 

 
DEL sentence 
The MODEL sentence is used to specify the label (name) of the ARIMA model for which 
pi or psi-weights are to 

EIGHTS sentence 
The PIWEIGHTS sentence is used to speci

WEIGHTS sentence 
The PSIWEIGHTS sentence is used to spec

XIMUM sentence 
The MAXIMUM sentence is used to specify the maximum
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CUTOFF sentence 
The CUTOFF sentence is used to specify a cutoff value to limit the number of weights 
that will be stored.  The last weights stored represents the last value greater than or equal 
to (in absolute value) the cutoff value.  Note that the specification of a cutoff value will 
cause the variables that store the weights to have different lengths.  The default cutoff 
value is 0; that is, all weights will be stored. 
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CHAPTER 6 

INTERVENTION ANALYSIS 

  
Time series are often affected by various external events such as major corporate, 

political or economic policy initiatives or changes; technological changes; work stoppages; 
sales promotions; advertising; and so forth.  These external events are commonly known as 
interventions.  When such interventions are known to us, we may either wish to evaluate the 
effect of these external events or to incorporate the interventions into our time series model to 
possibly improve parameter estimates or forecasts.  In this chapter, we discuss intervention 
analysis (or impact analysis) and how the SCA System can be employed for such analyses.  
The SCA System also has capabilities for the analysis of a time series when interventions, or 
the timings for interventions, are unknown to us.  Such an analysis is an aspect of outlier 
detection and adjustment, and is discussed in Chapter 7. 

6.1 The Intervention Model 

Traditionally, if a time series was subjected to an intervention at a particular time 
period, say T, its effect in changing the mean level of the series was determined by using a 
two-sample t-test.  The mean level in the pre-intervention period was contrasted with that 
after the intervention occurred.  Box and Tiao (1965) showed that the t-test is not appropriate 
in the case of serially correlated data.  Moreover, an intervention may not be a step change, 
which is the basic assumption of the two-sample t-test. 

Box and Tiao (1975) provided a procedure for analyzing a time series in the presence of 
known external events.  This procedure has become known as intervention (or impact) 
analysis.  In their approach, a time series is represented by two distinct components: an 
underlying disturbance term, and the set of interventions on the series.  In the case of a single 
intervention, the form of the intervention model is 

 
 t

(B)Y C I N
(B)

ω
= + +

δ t t  (6.1) 

 
It is a binary indicator vector (that is, a vector assuming the values 0 or 1) that defines the 
period of the intervention.  The term (ω(B)/δ(B)) is a characterization of the effect(s) of the 
intervention and will be discussed later.  The term  is called the disturbance, which can be 
expressed as 

tN

  
t t

(B)N Y C I
(B)

ω
= − −

δ t . (6.2) 

 
We assume that  may be modeled as an ARIMA process as defined in the previous 
chapter.  In the case that there are no exogenous events, then the model for Y  reduces to the 

tN

t
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ARIMA models discussed previously.  The model given in (6.1) can be directly extended to 
include more than one interventions.  
 

To illustrate equations (6.1) and (6.2), consider the SALES data of the previous chapter.  
There are 150 observations in this data set.  Suppose that a strike occurred in the month 
represented by t = 120, and a new set of governmental regulations affecting sales went into 
effect beginning at month t = 135 and staying in effect thereafter.  There are two 
interventions.  They can be defined as follows 

 
1t

  1,   t=120
I

  0,   otherwise


= 


 

and 
 

2t

  0,   prior to t=135
I

  1,   after t=135


= 


 

 
The form of the intervention model in this case is 
 

1 2
t 1t

1 2

(B) (B)Y C I I N
(B) (B)

ω ω
= + + +

δ δ 2t t

t

. (6.3) 

 
In the absence of any interventions, as was the case in Chapter 5, an adequate model for the 
data was found to be  
 

t(1 B)(1 B)Z (1 B)a−φ − = −θ . (6.4) 

We may then wish to consider using an ARIMA(1,1,1) model as a model for .  The 
structure of the polynomials used in each intervention period is dependent on the type of 
intervention indicator used and the postulated effect of intervention, as will now be discussed. 

tN

6.2 Characterizations for an Intervention 

Two different types of interventions were described in the example above.  The strike 
(defined by ) was in effect for one time period only.  The government regulations (defined 
by ) remained in effect once they were instituted.  

1tI
2tI

An indicator variable representing an intervention that takes place for one time period 
only is called a pulse function.  It is usually represented as , where T is the time that the 
intervention occurs (i.e., has the value 1).  In the example above, T = 120. 

(T)
tP

An indicator variable representing an intervention that remains in effect beginning from 
a particular time period is called a step function.  This variable is usually represented as S , 
where T is the time that the intervention begins.  In the example above, T = 135. 

(T)
t

The pulse and step functions are the most common characterizations for the intervention 
scenarios.  As noted above, the response to an intervention is characterized by the rational 
polynomial 
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 (B)
(B)

ω
δ

. 

 
The operator in the numerator, (B)ω , represents the impact(s) of the intervention and the 
length of time (delay) it takes the impact(s) to be reflected in the time series.  For example, 
the effect of a strike may only be in the time period in which it occurred, while the effect of an 
advertising campaign may affect the current time period and have a residual effect on the next 
period.  Hence we may use the characterization 0(B)ω = ω  to indicate a contemporaneous 
(same time) effect; 1(B) Bω = ω  to describe an effect not “felt” until the next time period; or 

 to describe an event that affects the measured response in both the current 
and next time period. 

0 1(B) (B)ω = ω +ω

 
The operator in the denominator, (B)δ , represents the way in which an impact 

dissipates.  In most cases, the δ of an intervention model is a low order polynomial, for 
example, 

(B)

1(B) 1 Bδ = −δ . 

If an intervention has a relatively long term residual effect (or growth pattern), then the value 
of  will be moderate to large.  However, if the effect is short term, then the value of 1δ 1δ  will 
be small.  In an extreme case, the intervention may not have any residual effect.  In such a 
case, we have . 1 0δ =
 

To formally summarize, the rational polynomial (B) / (B)ω δ  consists of the operators 
2 s

0 1 2 s 1(B) B B B 1−
−ω = ω +ω +ω + ⋅⋅⋅+ ω , and 

2 r
1 2 r(B) 1 B B Bδ = −δ −δ − ⋅⋅⋅− δ . 

However, in practice ω  usually consists of only a few terms (often no more than 1 or 2 
terms) while  usually can be represented as either 

(B)
(B)δ (B)δ =1 or 1(B) 1 Bδ = −δ . 

 
A useful set of information are the descriptions of the responses to a step and pulse input 

function for various configurations of (B)ω  and (B)δ .  In Figure 6.1 responses are shown for 
, , and  for both a step and a pulse function.  Visuals, or 

descriptions, of other frequently used responses can be found in Box and Tiao (1975), 
Vandaele (1983, pages 335-338), Wei (1990, pages 185-186), and Abraham and Ledolter 
(1983, pages 355-356). 

Bω /(1 B)ω −δ (B) /(1 B)ω −
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Figure 6.1   Some responses to a step and a pulse function 
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In Figure 6.1 we note that there is an exact relationship between a  step and a pulse 
function.  That is, 

(T) (T)
t t(1 B)S P− = . (6.5) 

Because of this relationship, an intervention can be described equally well by either a pulse or 
a step function.  The form used often depends upon the one that is more convenient to use, or 
the form that provides the easier interpretation. 

6.3 A Modeling Strategy for Intervention Analysis 

There are two “separate” components in an intervention model: a deterministic 
component describing the intervention(s) and the associated response(s), and a stochastic 
disturbance term.  The overall modeling strategy is to obtain reasonable initial representations 
for both components and iterate to a final model based on intermediate estimations, diagnostic 
check, and model interpretations. 

It may be difficult to initially identify a model for the disturbance term  since it is 
directly affected by the effects of the intervention(s).  One strategy is to model  using 
either the observations prior to the occurrence of any intervention or the observations well 
after the time of occurrence of the last intervention, depending upon which portion provides  

tN
tN
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the longer set of data.  Alternatively, models may be constructed for each of the two periods 
and compared.  A “composite” choice for  may then be made.  During the estimation and 
checking process,  may then be modified based on the changes made to the exogenous 
effects and on the residual series. 

tN
tN

The exogenous intervention portion of the model cannot be identified using rigorous 
statistical techniques.  This portion is generally postulated based on the plot of the time series 
or using knowledge of the data under study, and is then modified as necessary.  Usually, the 
known characterizations of responses to pulse and step functions (as described above) are 
used to provide initial representations for the interventions. 

Three examples are used in the remainder of this chapter to illustrate intervention 
analysis and the use of the SCA System in such analyses.  Further analyses and discussions of 
these examples can be found in Chapter 7. 

6.4 Intervention Analysis of a Production Process 

As a simple example of an intervention analysis, we consider the daily production data 
of an automobile component.  The data are listed in Table 6.1 and are plotted in Figure 6.2.  
The data are stored in the SCA workspace in the variable PRODUCTN. 

Table 6.1   Production process data (read across) 
   

1715  1825  1700  1770  2000  1690  2070  1825  1725  2090 
1975  1505  1925  1430  1990  1680  1750  1940  2070  1915 
1860  1950  2050  1110  1540  1050  1500  1580  1830  1790 
1470  2100  1960  1880  1900  2005  1860  2040  2070  1960 
2035  1560  1880  1900  1525  1600  2500  2460  2200  2405 
2365  2375  2225  2030  2300  2380  1940  2480  2365  2280 
1895  2520  2680  2205  2330  2345  1840  1875  2370  2160 
2200  2275  2170  2400  2250  2395  2325  2300  2155  2230 

     2240  2570  2325  2355  2090 

 
 

Figure 6.2   Production process data 

 
  

Our attention is immediately drawn to a change in the mean level in the plot of 
PRODUCTN.  In fact, the production process was changed beginning at t=47.  In Figure 6.3, 
two separate mean level lines are inserted, one prior to the process change and one after. 
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Figure 6.3   Production process data with mean level lines 
before and after a process change 

 
 

Since the change in the process remained in effect from its introduction, we will use a 
step function to represent the period of the intervention.  Specifically, we will use S  as the 
step function for this intervention.  It appears that the effect of the intervention was an upward 
shift in the mean level.  As a result, the deterministic component of our model will be 

(47)
t

(47)
tSω . (6.6) 

We will restrict our attention to the first 46 observations to identify a model for the 
disturbance term, .  Since the number of observations is relatively small, there may be 
some ambiguity in the order of the model identified.  The ACF of the first 46 observations 
reveals the following 

tN

 -->ACF   PRODUCTN.   SPAN IS 1, 46.   MAXLAG IS 12. 
 

 TIME PERIOD ANALYZED . . . . . . . . .  1  TO    46 
 NAME OF THE SERIES . . . . . . . . . .     PRODUCTN 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .           46 
 STANDARD DEVIATION OF THE SERIES . . .     241.5422 
 MEAN OF THE (DIFFERENCED) SERIES . . .    1795.5430 
 STANDARD DEVIATION OF THE MEAN . . . .      35.6135 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .      50.4176 
 
 AUTOCORRELATIONS  
 
  1- 12     .18  .31  .14 -.01 -.08 -.20 -.23 -.17 -.23 -.05 -.09 -.00 
  ST.E.     .15  .15  .16  .17  .17  .17  .17  .18  .18  .19  .19  .19 
   Q        1.6  6.2  7.3  7.3  7.7 10.0 12.9 14.7 17.8 17.9 18.4 18.4 
 
          -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
            +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
  1    .18                    +      IXXXX  +                   
  2    .31                    +      IXXXXXX+X                  
  3    .14                   +       IXXXX   +                  
  4   -.01                   +       I       +                  
  5   -.08                   +     XXI       +                  
  6   -.20                   +  XXXXXI       +                  
  7   -.23                  +  XXXXXXI        +                 
  8   -.17                  +    XXXXI        +                 
  9   -.23                  +  XXXXXXI        +                 
 10   -.05                  +       XI        +                 
 11   -.09                  +      XXI        +                 
 12    .00                  +        I        +    
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Except for the autocorrelation at lag 2, the ACF is “clean”.  To obtain more information, we 
will now use the EACF for the same period. 
 

 -->EACF   PRODUCTN.   SPAN IS 1,46. 
 

 TIME PERIOD ANALYZED . . . . . . . . .  1  TO    46 
 NAME OF THE SERIES . . . . . . . . . .     PRODUCTN 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .           46 
 STANDARD DEVIATION OF THE SERIES . . .     241.5422 
 MEAN OF THE (DIFFERENCED) SERIES . . .    1795.5430 
 STANDARD DEVIATION OF THE MEAN . . . .      35.6135 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .      50.4176 
 
 THE EXTENDED ACF TABLE  
 
 (Q-->)   0    1    2    3    4    5    6    7    8    9   10   11   12 
 ------------------------------------------------------------------------ 
 (P= 0)  .18  .31  .14 -.01 -.08 -.20 -.23 -.17 -.23 -.05 -.09 -.00 -.14 
 (P= 1) -.47  .22  .17 -.05  .01 -.06 -.06  .05 -.19  .12 -.10  .04 -.15 
 (P= 2) -.19  .37 -.04 -.05  .04 -.03 -.09 -.02 -.17  .02  .09  .06 -.11 
 (P= 3)  .30  .35 -.05 -.15  .08 -.02 -.03  .00 -.17  .04  .06  .09 -.12 
 (P= 4) -.51 -.05  .12  .19 -.12  .06 -.01 -.02 -.14  .08 -.05  .13 -.12 
 (P= 5) -.50 -.33  .03  .23  .01 -.00 -.00 -.02 -.13  .01  .01  .06 -.07 
 (P= 6) -.50  .18 -.17  .23  .04  .02  .03 -.03 -.14 -.01 -.02  .01 -.03 
 
 SIMPLIFIED EXTENDED ACF TABLE (5% LEVEL)  
 
 (Q-->)  0  1  2  3  4  5  6  7  8  9 10 11 12 
 ----------------------------------------------- 
 (P= 0)  O  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 1)  X  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 2)  O  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 3)  O  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 4)  X  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 5)  X  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 6)  X  O  O  O  O  O  O  O  O  O  O  O  O  

 
From the summary statistics of both the ACF and EACF, we see that a constant term (to 
represent the mean level) should be in the model.  The simplified EACF table indicates that an 
ARMA(0,0) model may be appropriate for the data.  We will slightly overfit this model by 
considering an ARMA(0,1) model.  That is,  
 

tN (1 B)a= −θ t

t

. (6.7)  

By combining (6.6) and (6.7), we have the following initial model for the production data: 
 

(47)
t tY C S (1 B)a= +ω + −θ . (6.8) 

In order to fit the model of (6.8), we need to first create the step function and then specify the 
model.  We will use the GENERATE paragraph (see Appendix B) to create the step function.  
The step function will be given the variable name SHIFT.  The SCA output is edited for 
presentation purposes. 
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 -->GENERATE   SHIFT.   NROW ARE 85.   VALUES ARE 0 FOR 46, 1 FOR 39. 
 
 -->TSMODEL   PRODUCT.   MODEL IS      @ 
 -->      PRODUCTN = CONST + (WO)SHIFT(BINARY) + (1-THETA*B)NOISE. 

 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- PRODUCT  
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED            
 
 PRODUCTN   RANDOM     ORIGINAL     NONE 
 
  SHIFT     BINARY     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
   LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
  1  CONST             CNST      1      0     NONE      .0000                   
  2    WO     SHIFT    NUM.      1      0     NONE      .1000                   
  3  THETA   PRODUCTN   MA       1      1     NONE      .1000  
 

Note that the intervention component within the TSMODEL paragraph is specified as 
“(W0)SHIFT(BINARY)”.  As noted above, SHIFT is the name of the step function.  It is 
designated as a BINARY series to distinguish it from a series that is not deterministic (see 
Chapter 8).  The parentheses on the operator (W0) are necessary so that the SCA System can 
distinguish the model parameter ω and the intervention indicator  (47)

tS .

 We can estimate the above model by entering (SCA output is edited)  
 

 -->ESTIM  PRODUCT.  HOLD RESIDUALS(RES) 
 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- PRODUCT  
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
 
 PRODUCTN   RANDOM     ORIGINAL     NONE 
 
  SHIFT     BINARY     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1  CONST             CNST      1      0     NONE  1794.5048   34.6732  51.75  
   2    WO     SHIFT    NUM.      1      0     NONE   483.0584   51.1227   9.45  
   3  THETA   PRODUCTN   MA       1      1     NONE     -.0990     .1086   -.91  
 
 TOTAL SUM OF SQUARES . . . . . . . .   .888999E+07 
 TOTAL NUMBER OF OBSERVATIONS . . . .            85 
 RESIDUAL SUM OF SQUARES. . . . . . .   .395200E+07 
 R-SQUARE . . . . . . . . . . . . . .          .555 
 EFFECTIVE NUMBER OF OBSERVATIONS . .            85 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .464941E+05 
 RESIDUAL STANDARD ERROR. . . . . . .   .215625E+03 
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Modifying an existing model 
 

As we may have expected, the estimate of the MA parameter is not statistically 
significant and we may consider dropping it from the model.  Although the model is simple 
and does not involve many parameters, we may not wish to re-specify the entire model simply 
to alter one portion of it.  Here we wish to change our noise component from (1  to just 

.  We can do this using the CHANGE sentence of the TSMODEL paragraph.  If we enter 
tB)a−θ

ta

 -->TSMODEL   PRODUCT.    CHANGE  NOISE. 
 
we will alter the existing model held under the name PRODUCT in the manner indicated.  
Currently the model named PRODUCT has two components, one involving the variable 
SHIFT and another involving NOISE.  We can change any component by simply re-stating it.  
For example, if CHANGE sentence above had been specified as 
 

 CHANGE  (1 - THETA*B - THETA2*B**2)NOISE  
 
then we would have changed the component involving NOISE from an MA(1) model to an 
MA(2) model.  More information on altering existing intervention models is provided in 
Section 6.7.  The TSMODEL paragraph above yields the following 
 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- PRODUCT  
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED            
 
 PRODUCTN   RANDOM     ORIGINAL     NONE 
 
  SHIFT     BINARY     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
   LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
  1  CONST             CNST      1      0     NONE  1794.5048   34.6732  51.75  
  2    WO     SHIFT    NUM.      1      0     NONE   483.0584   51.1227   9.45  

 
 We can estimate the changed model by entering (SCA output is edited)  
 

 -->ESTIM   PRODUCT.    HOLD RESIDUALS(RES) 
 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- PRODUCT  
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
 
 PRODUCTN   RANDOM     ORIGINAL     NONE 
 
  SHIFT     BINARY     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1  CONST             CNST      1      0     NONE  1795.5121   31.9710  56.16  
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   2    WO     SHIFT    NUM.      1      0     NONE   481.5542   47.1991  10.20  
 
 TOTAL SUM OF SQUARES . . . . . . . .   .888999E+07 
 TOTAL NUMBER OF OBSERVATIONS . . . .            85 
 RESIDUAL SUM OF SQUARES. . . . . . .   .399660E+07 
 R-SQUARE . . . . . . . . . . . . . .          .550 
 EFFECTIVE NUMBER OF OBSERVATIONS . .            85 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .470188E+05 
 RESIDUAL STANDARD ERROR. . . . . . .   .216838E+03 

 
Residuals are maintained in the variable RES for diagnostic checking purposes.  The 

ACF of RES (not shown) reveals no anomalies.  In the time plot of RES (also not shown here) 
there are two points (at t = 24 and 26) that are apart from the rest.  These will be discussed in 
Chapter 7. 

As expected, we find evidence of a significant shift in the mean level of the production 
data caused by the change in the production process. 

6.5 Intervention Analysis of the Rate of Change in the U.S. Consumer Price Index  

As a second example of intervention analysis, we consider an example  from Box and 
Tiao (1975) concerning the rate of change in the U.S. Consumer Price Index (CPI).  The data 
consist of 234 successive monthly values during the period July 1953 through December 
1972.  The data are stored in the SCA workspace under the name RATECPI and are listed and 
plotted in Table 6.2 and Figure 6.4, respectively.  

Table 6.2   Monthly rate of change in the U.S. Consumer Price Index 
  July 1953 through December 1972 from Box and Tiao (1975) 

 (Read data across.  Data should be divided by 100.) 

.129  .385  .256  .128 -.383 -.128  .385 -.256 -.256 -.128  .385  .128 

.128 -.256 -.384 -.128  .129 -.385  .000  .000  .000 -.129  .000  .258 

.258 -.128  .386  .000  .128 -.384  .000  .000  .000  .257  .513  .894 

.760 -.126  .252  .629  .125  .125  .250  .498  .248  .372  .247  .616 

.613  .244  .122  .000  .486  .000  .605  .241  .842  .119  .119  .119 

.119 -.119  .000  .000  .119 -.119  .119 -.119  .000  .119  .119  .475 

.473 -.118  .354  .235  .117 -.117  .000  .117  .117  .469  .117  .233 

.000  .000  .233  .465  .116  .116 -.115  .116  .000  .000 -.115  .231 

.462 -.115  .345  .000  .000 -.115  .000  .344  .229  .229  .000  .114 

.228  .000  .682 -.113  .000 -.226  .227  .113  .113  .000  .000  .452 

.563  .000  .000  .112  .224  .223  .112 -.111  .112  .111  .000  .223 

.333  .000  .111  .111  .221  .110  .110  .000  .110  .330  .329  .547 

.109 -.218  .218  .218  .217  .434  .000  .649  .430  .536  .107  .320 

.425  .530  .316  .421  .105  .105  .000  .105  .209  .313  .312  .415 

.517  .412  .205  .410  .306  .407  .406  .405  .504  .402  .400  .599 

.596  .395  .295  .687  .488  .292  .388  .483  .963  .764  .380  .757 

.564  .468  .559  .464  .647  .736  .457  .637  .634  .721  .537  .535 

.444  .265  .529  .703  .349  .610  .087  .260  .346  .431  .601  .683 

.340  .254  .085  .253  .169  .421  .168  .502  .334  .249  .332  .331 
      .413  .247  .492  .327  .326  .325 
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Figure 6.4   Rate of change of the U.S. Consumers Price Index 
(July 1953 through December 1972) 

 
 

In September, October and November of 1971, a collection of federal controls termed 
Phase I were imposed on the U.S. economy.  These controls were followed by Phase II 
controls that lasted for the remainder of the observation period.  These control policies were 
designed to reduce the level of inflation.  As a result, it was postulated that each phase 
produced a (negative) change in the level of the rate of change of the CPI. 

6.5.1   Preliminary model postulation 

Box and Tiao (1975) identified an ARIMA model for the period prior to September 
1971 and used it as the model for the disturbance term.  The model was an ARIMA (0,1,1) 
model; that is, 

 . (6.9) 

In order to incorporate this ARIMA model with the intervention components, we can re-write 
(6.9) as  
 

t t(1 B)N (1 B)a− = −θ

t t
1 BN a
1 B
−θ

=
−

 . (6.10) 

 
It was assumed that the model for the disturbance remained essentially the same during the 
intervention period.  As a result, the following model was used 
 

t 1 1t 2 2t
1 BY I I
1 B
−θ

= ω +ω +
− ta  , (6.11) 

where 
 

  

 
and  is the rate of change of the CPI (that is, RATECPI). 

1t

1, t September,October, November 1971
I

0, otherwise
=

= 


 

1, t December 1971≥
2tI

0, otherwise
= 


 

tY
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6.5.2   Creating indicators for the interventions 

We need to create indicators representing  and   The GENERATE paragraph (see 
Appendix B) will be used twice to create the binary variables labeled PHASE1 and PHASE2, 
corresponding to  and  respectiv have the value 1 for t = 219, 220 
and 221; while PHASE2 is the step function   We can use the following commands (the 
SCA responses to the commands are not shown) to generate these two indicators. 

 -->GENERATE   PHASE1.   NROW ARE 234.      @ 
 -->           VALUES ARE 0 FOR 218, 1, 1, 1, 0 FOR 13. 
 
 -->GENERATE   PHASE2.   NROW ARE 234.   VALUES ARE 0 FOR 221, 1 FOR 13. 

 

6.5.3   Model specification with a differencing factor 

The TSMODEL paragraph permits the use of denominator terms in the  specification of 
any polynomial operator.  For example, an ARMA(1,1) disturbance term can be specified as 

 (1 - THETA*B)/(1 - PHI*B)NOISE  
 
since  at is the same as 

1tI

ely.  PHASE1 will 
222) .

2tI .

1tI 2tI ,
(
tS

t tN {(1 B) /(1 B)}a= −θ −φ t t(1 B)N (1 B)a−φ = −θ .  As a result, we may 
consider specifying the model of (6.11) in the same manner as that used in the production 
process example.  That is, we may consider specifying the model as 
 

 RATECPI = (W1)PHASE1(BINARY) + (W2)PHASE2(BINARY) + (1-TH*B)/(1-B)NOISE 
 
However, in the SCA convention, a differencing term may not be specified as a denominator 
of an operator.  The reason for this is twofold.  First, by excluding differencing operators from 
the denominator of such expressions, the SCA System can distinguish AR operators from 
differencing operators.  This is especially true when only orders of operators are specified.  In 
this way the shorthand notation (see Section 5.4.5) 
  

 (1,2)/(1)NOISE 
 
can be uniquely interpreted as the specification of an ARMA(1,2) process.  More importantly, 
this restriction ensures that an unstable model is not specified by mistake. 
 

As a consequence of this restriction on the specification of differencing operations, we 
must phrase the differencing operator of (6.11) in such a fashion that can be treated as the 
modifier of one or more series.  If we treat the differencing factor (1-B) as an operator, we can 
multiply both sides of (6.11) by (1-B).  The resultant expression is 

t  (6.12) 

Now the differencing operator can be specified as a modifier of  and   Hence we 
now specify the model of (6.12) as 
 

t 1 1t 2 2t(1 B)Y (1 B)I (1 B)I (1 B)a− = ω − +ω − + −θ

tY , 1tI 2tI .
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 -->TSMODEL   CPIMODEL.   MODEL IS RATECPI(1) = (W1)PHASE1(BINARY,1) +   @ 
 -->          (W2)PHASE2(BINARY,1) + (1 - TH*B)NOISE. 

 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- CPIMODEL 
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED            
                                         1 
 RATECPI    RANDOM     ORIGINAL     (1-B  )  
                                         1 
  PHASE1    BINARY     ORIGINAL     (1-B  )  
                                         1 
  PHASE2    BINARY     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
 PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
   LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
  1    W1     PHASE1   NUM.      1      0     NONE      .1000                   
  2    W2     PHASE2   NUM.      1      0     NONE      .1000                   
  3    TH    RATECPI    MA       1      1     NONE      .1000 

 
Note that we employed a shorthand notation for the specification of the differencing operator.  
That is, we specified “RATECPI((1-B))” simply as “RATECPI(1)” and 
“RATECPI(BINARY, (1-B) )” as “RATECPI(BINARY,1)” in the MODEL sentence above.  
Since the model contains an MA parameter, we will estimate the model sequentially, first 
employing the conditional likelihood function and then the exact likelihood function (see 
Section 5.2 for a discussion of these methods).  Only the results for the exact estimation are 
shown, and all SCA output below is edited for presentation purposes. 
 

 -->ESTIM   CPIMODEL 
 
 -->ESTIM   CPIMODEL.   METHOD IS EXACT.   HOLD RESIDUAL(RESCPI). 

 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- CPIMODEL 
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1 
 RATECPI    RANDOM     ORIGINAL     (1-B  )  
                                         1 
  PHASE1    BINARY     ORIGINAL     (1-B  )  
                                         1 
  PHASE2    BINARY     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
 PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
   LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
  1    W1     PHASE1   NUM.      1      0     NONE     -.0026     .0014  -1.86  
  2    W2     PHASE2   NUM.      1      0     NONE     -.0009     .0013   -.73  
  3    TH    RATECPI    MA       1      1     NONE      .8532     .0335  25.49  
 
 TOTAL SUM OF SQUARES . . . . . . . .   .154003E-02 
 TOTAL NUMBER OF OBSERVATIONS . . . .           234 
 RESIDUAL SUM OF SQUARES. . . . . . .   .106273E-02 
 R-SQUARE . . . . . . . . . . . . . .          .307 
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 EFFECTIVE NUMBER OF OBSERVATIONS . .           233 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .456105E-05 
 RESIDUAL STANDARD ERROR. . . . . . .   .213566E-02   

 
Based on the signs of the estimates for 1ω  and 2ω , both control periods appear to have 

reduced the level of inflation.  However, neither ef ect is significant at the 5% level even 
though the effect associated with Phase I is close to be significant.  Clearly, Phase II produced 
no significant drop in the change of CPI.  The ACF of the residual series (not shown) is fairly 
clean and does not indicate any major flaw in the model.  However, a check of outliers, or 
spurious values, in the residuals reveals a few questionable observations.  This example will 
be continued in Chapter 7 to demonstrate the effect of these observations on the above results. 

6.6 Intervention Analysis of Los Angeles Ozone Data 

As a last example of intervention analysis, we consider the monthly average of the 
ozone (O3) level in downtown Los Angeles for the period January 1955 through December 
1972.  These data were used by Box and Tiao (1975) and are stored in the SCA workspace 
under the name OZONE.  The values of OZONE are listed in Table 6.3 and are plotted in 
Figure 6.5. 

 
Table 6.3   Monthly averages of ozone (in 10-3 pphm) 

 in downtown Los Angeles (1955-1972) 
    (read data across) 

 
2.7  2.0  3.6  5.0  6.5  6.1  5.9  5.0  6.4  7.4  8.2  3.9 
4.1  4.5  5.5  3.8  4.8  5.6  6.3  5.9  8.7  5.3  5.7  5.7 
3.0  3.4  4.9  4.5  4.0  5.7  6.3  7.1  8.0  5.2  5.0  4.7 
3.7  3.1  2.5  4.0  4.1  4.6  4.4  4.2  5.1  4.6  4.4  4.0 
2.9  2.4  4.7  5.1  4.0  7.5  7.7  6.3  5.3  5.7  4.8  2.7 
1.7  2.0  3.4  4.0  4.3  5.0  5.5  5.0  5.4  3.8  2.4  2.0 
2.2  2.5  2.6  3.3  2.9  4.3  4.2  4.2  3.9  3.9  2.5  2.2 
2.4  1.9  2.1  4.5  3.3  3.4  4.1  5.7  4.8  5.0  2.8  2.9 
1.7  3.2  2.7  3.0  3.4  3.8  5.0  4.8  4.9  3.5  2.5  2.4 
1.6  2.3  2.5  3.1  3.5  4.5  5.7  5.0  4.6  4.8  2.1  1.4 
2.1  2.9  2.7  4.2  3.9  4.1  4.6  5.8  4.4  6.1  3.5  1.9 
1.8  1.9  3.7  4.4  3.8  5.6  5.7  5.1  5.6  4.8  2.5  1.5 
1.8  2.5  2.6  1.8  3.7  3.7  4.9  5.1  3.7  5.4  3.0  1.8 
2.1  2.6  2.8  3.2  3.5  3.5  4.9  4.2  4.7  3.7  3.2  1.8 
2.0  1.7  2.8  3.2  4.4  3.4  3.9  5.5  3.8  3.2  2.3  2.2 
1.3  2.3  2.7  3.3  3.7  3.0  3.8  4.7  4.6  2.9  1.7  1.3 
1.8  2.0  2.2  3.0  2.4  3.5  3.5  3.3  2.7  2.5  1.6  1.2 
1.5  2.0  3.1  3.0  3.5  3.4  4.0  3.8  3.1  2.1  1.6  1.3 

 
 
 
  

f
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310−Figure 6.5 Monthly averages of ozone (in  pphm) 
  in downtown Los Angeles (1955 - 1972) 

 
 

As may be observed in Figure 6.5, a strong seasonality is apparent in the data.  The data 
are not stationary, so differencing is required.  A decrease in the level of ozone through the 
years is also visible.  As noted in Box and Tiao (1975), two interventions of potential 
importance are:  

 INT1: the opening of the Golden State Freeway and the inception of a new law  
  reducing hydrocarbons in gasoline (January 1960), and  

 INT2: regulations regarding engine designs (beginning in 1966). 
 
The first intervention is expected to produce a step change in the ozone level beginning in 
January 1960.  The second intervention is expected to gradually reduce the level of ozone as 
new cars are introduced in the area.  The effects associated with the second intervention were 
further divided into two seasons, “summer” and “winter”, in order to account for atmospheric 
conditions that result in higher readings of ozone in the  “summer” season.  Box and Tiao 
(1975) found that a multiplicative MA model is adequate for the seasonally differenced series.  
As a result, we will estimate a model corresponding to  
 12

2
t

−θ  (6.13) 

 
where INT1 is a step function with the value 1 beginning in January 1960 (t = 61), and INT2S 
(summer) and INT2W (winter) assume the value 1 for appropriate seasonal periods beginning 
June 1966 and the value 0 otherwise.  The response associated with INT1 is modeled as a 
level change.  The response associated with both INT2S and INT2W requires further 
explanation.  
 

To illustrate this response, consider INT2S.  The “summer” period is defined as the 
months June-October (the “winter” period is all other months).  Hence the values of INT2S 
associated with January, February, ..., December beginning in 1966 are 0,0,0,0,0,1,1,1,1,1,0,0.  
If we observe the response of  in Figure 6.1, we note a “ramp” response that 
grows in equal increm ).  The response associated with INT2S is a seasonal 
extension of this response.  Here we have a “ramp” response that grows in uniform 
increments for each month in the period.  The same interpretation is true for the response 
associated with INT2W. 

32 1
t 1 t t t12 12 12

(1 B)(1 B )OZONE INT1 INT2S INT2W a
1 B 1 B 1 B

ωω −θ
= ω + + +

− − −

(T)
t( /(1 B))Sω −

ents (the value of ω
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There are a number of ways in which the necessary indicator variables can be 
introduced into the SCA workspace.  In some cases, these indicators may reside with the time 
series on an external file and may be transmitted to the SCA workspace using the INPUT 
paragraph (see Chapter 2).  In addition, we can use SCA commands to create the variables.  
For example, the following are commands or sequence of commands that can be used to 
create the necessary binary indicator variables here.  Please see Appendix B for more 
information on the GENERATE and JOIN paragraphs, and Appendix A for more information 
on the row direct product (RDP) operator.  All SCA responses to these commands are edited 
out for presentation purposes. 

 (The step function, INT1) 
 -->GENERATE   INT1.   NROW IS 216.   VALUES ARE 0 FOR 60, 1 FOR 156. 

 
 (The summer indicator, INT2S) 

 -->GENERATE   ZERO.   NROW IS 132.   VALUES ARE 0 FOR 132. 
 -->GENERATE   SUMM.   NROW IS 12.    VALUES ARE 0,0,0,0,0,1,1,1,1,1,0,0. 
 -->GENERATE   NSUM.   NROW IS 7.    VALUES ARE 1 FOR 7. 
 -->SUMMER = RDP(SUMM,NSUM) 
 -->JOIN   ZERO, SUMMER.    NEW IS INT2S. 

 
 (The winter indicator, INT2W) 

 -->GENERATE   W1966.   NROW IS 12.   VALUES ARE 0 FOR 10, 1, 1. 
 -->GENERATE   WINT.   NROW IS 12.   VALUES ARE 1,1,1,1,1,0,0,0,0,0,1,1. 
 -->GENERATE   NWIN.   NROW IS 6.   VALUES ARE 1 FOR 6. 
 -->WINTER = RDP(WINT,NWIN) 
 -->JOIN   ZERO, W1966, WINTER.   NEW IS INT2W. 

 
As noted in Section 6.5.3, we cannot specify model (6.13) directly since it contains a 
differencing operator in one or more denominators.  If we multiply both sides of (6.13) by 

, we obtain the following  
 

t  (6.14) 

 We can now use the TSMODEL paragraph to specify model (6.14). 
 

 -->TSMODEL  OZONEMDL.   MODEL IS OZONE(12) = (W1)INT1(BINARY,12) +   @ 
 --> (W2)INT2S(BINARY) + (W3)INT2W(BINARY) + (1-TH1*B)(1-TH2*B**12)NOISE. 

 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- OZONEMDL 
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED            
                                        12 
  OZONE     RANDOM     ORIGINAL     (1-B  )  
                                        12 
  INT1      BINARY     ORIGINAL     (1-B  )  
  
  INT2S     BINARY     ORIGINAL     NONE 
 
  INT2W     BINARY     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 

12(1 B )−

12 12 12
t 1 t 2 t 3 t 1 1(1 B )OZONE (1 B )INT1 INT2S INT2W (1 B)(1 B )a− = ω − +ω +ω + −θ −θ
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 PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
   LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
  1    W1     INT1     NUM.      1      0     NONE      .1000                   
  2    W2     INT2S    NUM.      1      0     NONE      .1000                   
  3    W3     INT2W    NUM.      1      0     NONE      .1000                   
  4   TH1     OZONE     MA       1      1     NONE      .1000                   
  5   TH2     OZONE     MA       2     12     NONE      .1000 
 

Since the model contains MA parameters (in particular, a seasonal MA parameter), we 
will estimate the model sequentially.  We first employ the conditional likelihood algorithm, 
then re-estimate using the exact likelihood algorithm (see Section 5.2 for a discussion of these 
methods).  Only the results for the final estimation are shown, and the output is edited for 
presentation purposes.  

 -->ESTIM   OZONEMDL 
 
 -->ESTIM   OZONEMDL.   METHOD IS EXACT.   HOLD RESIDUALS(RESOZONE) 

 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- OZONEMDL 
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                        12 
  OZONE     RANDOM     ORIGINAL     (1-B  )  
                                        12 
  INT1      BINARY     ORIGINAL     (1-B  )  
  
  INT2S     BINARY     ORIGINAL     NONE 
 
  INT2W     BINARY     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 
 PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
   LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
  1    W1     INT1     NUM.      1      0     NONE    -1.3358     .1911  -6.99  
  2    W2     INT2S    NUM.      1      0     NONE     -.2382     .0584  -4.08  
  3    W3     INT2W    NUM.      1      0     NONE     -.0959     .0543  -1.76  
  4   TH1     OZONE     MA       1      1     NONE     -.2650     .0679  -3.90  
  5   TH2     OZONE     MA       2     12     NONE      .7781     .0404  19.25  
 
 TOTAL SUM OF SQUARES . . . . . . . .   .478369E+03 
 TOTAL NUMBER OF OBSERVATIONS . . . .           216 
 RESIDUAL SUM OF SQUARES. . . . . . .   .125677E+03 
 R-SQUARE . . . . . . . . . . . . . .          .722 
 EFFECTIVE NUMBER OF OBSERVATIONS . .           204 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .616064E+00 
 RESIDUAL STANDARD ERROR. . . . . . .   .784898E+00  
 

As expected, all estimates of the intervention parameters have a negative sign, 
indicating reductions of the ozone level.  The estimate of 1ω , -1.34, indicates that the joint 
effect of the opening of a new freeway and change in ga ixtures result in a permanent 
level reduction in ozone of about 1.34 units.  There is an approximate 0.24 unit per year 
reduction in ozone during the “summer” period and a 0.10 unit per year reduction in ozone 
during the “winter” period.  The reduction associated with the “summer” period is statistically 
significant at the 5% level, but the reduction associated with the “winter” period is not.  Box 

soline m
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and Tiao (1975) conclude that the reduction during the winter period may be classified as 
“slight”. 

The ACF of the residuals indicate a good fit, and no gross errors are seen in the time 
plot.  However, if we re-estimate the above model while detecting and adjusting for possible 
outliers, we will obtain somewhat different results.  These results are presented in Chapter 7. 

6.7 Other Intervention Related Topics 

This section provides a brief overview of topics related to intervention analysis or the 
execution of SCA paragraphs related to intervention analysis.  Much of the material presented 
in this section can be considered “advanced” or of occasional use.  As a consequence, this 
section can be skipped, and selected topics can be referenced as necessary.  The material 
presented, and the section containing it are: 

 Section             Topic 
 
 6.7.1  Modifying an intervention model 

 6.7.2  Estimation of interventions containing a denominator polynomial 

 6.7.3  Forecasting from an intervention model 

 6.7.4  Constraints on parameters 

 6.7.5  Notational shorthand 

6.7.1   Modifying an intervention model 

An intervention model may be modified by adding or deleting interventions as well as 
changing the existing interventions or disturbance.  This is accomplished through the 
inclusion of the ADD, CHANGE, or DELETE sentence in the TSMODEL paragraph. 

To illustrate these capabilities, we will assume that we have the already specified 
following modified version of the intervention model used in Section 6.5 (only a portion of 
the MODEL sentence is given below). 

 

  (6.15) 

As in Section 6.5, we will use the name CPIMODEL for the above specification. 

RATECPI(1) CONST (W1)PHASE1(BINARY,1) (W2)PHASE2(BINARY,1)@
(1 TH*B)NOISE

= + +
+ −
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The ADD sentence 
 
The ADD sentence is used in TSMODEL paragraph to modify an existing intervention model 
by the addition of new interventions.  Any intervention must be represented with a new binary 
variable and the complete response associated with it.  For example, if the component 

t  is to be added to CPIMODEL where  is a defined PHASE3 period, then the 
following command suffices 
 

 TSMODEL   CPIMODEL.   ADD (W3)PHASE3(BINARY,1).  
 
It is important that the labels of parameters used in the ADD sentence as well as the label of 
the binary series be different from any labels in the existing model.  More than one 
interventions may be added to an existing model by joining each intervention with an addition 
symbol (+).  For example, if both the above PHASE3 component and the component 

t  are to be added to CPIMODEL where  is a defined PHASE4 period, then the 
following command may be used 
 

 TSMODEL   CPIMODEL.   @ 
           ADD (W3)PHASE3(BINARY,1) + (W4)PHASE4(BINARY,1). 

The CHANGE sentence

3 3(1 B)Iω − 3tI

4 4(1 B)Iω − 4tI

 
 

The CHANGE sentence is used in the TSMODEL paragraph to modify operators of 
existing components within an intervention model.  In the CPIMODEL employing (6.15), 
there are three components associated with the variable names PHASE1, PHASE2 and 
NOISE.  The change is made by a complete re-specification of affected components.  Hence 
the sentence has a syntax similar to that of ADD sentence.  For example, if the ARMA 
operator of the disturbance in (6.15) is to be changed to {1/(1 B)−φ }  then the following 
TSMODEL paragraph suffices 

 TSMODEL   CPIMODEL.    CHANGE  1/(1-PHI*B)NOISE. 
 

It is important to emphasize that only operators of existing components of an 
intervention model are affected by the CHANGE sentence.  As in the ADD sentence, if more 
than one component are to be changed, then each component must be separated by an addition 
symbol (+).  The SCA System will not process a CHANGE sentence involving variables not 
present in the existing model, it only changes existing components. 

The CHANGE sentence may be used to modify a component specified in an ADD 
sentence when both sentences are used within the same TSMODEL paragraph.  In such 
situation, the SCA System first processes the ADD sentence and then the CHANGE sentence 
regardless of the order in which they are written. 

ta
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The DELETE sentence 
 

The DELETE sentence is used in a TSMODEL paragraph to modify an existing 
intervention model by deleting specified intervention components or the constant term from 
the model.  The former is accomplished by deleting the variable describing the intervention 
period.  For example, if the intervention occurring during PHASE1 is to be removed from the 
intervention model CPIMODEL, the following command suffices 

 TSMODEL   CPIMODEL.    DELETE   PHASE1. 
 
To delete the constant term from the model CPIMODEL, we simply enter 
 

 TSMODEL   CPIMODEL.    DELETE CONSTANT. 
 
We do not enter the variable name, the keyword CONSTANT is recognized as the constant 
term.  A constant term can only be added by re-specification of a model through the MODEL 
sentence. 

6.7.2   Estimation of interventions containing a denominator polynomial 

The general representation of the response of an intervention is given by .  
As noted in Section 6.1, the order of the 

(B) / (B)ω δ
(B)δ  polynomial is usually  

Hence some of the most common intervention response functions used are 
not greater than 1. 

0 1; B; and   
1 B
ω

ω ω +ω
−δ

 (6.16) 

 
The estimation procedure used by the SCA System is fairly robust; that is, in most cases 

any non-zero initial estimates of parameters will lead to the convergence to a final set.  
However, problems can arise in the case of intervention response functions that contain a 
denominator polynomial (e.g., ).  A more detailed discussion can be found in Liu 
and Tiao (1980).  The same is true in the case of transfer function models (see Chapter 8).  In 
these cases, it is often im asonable initial estimates of parameters in the 
numerator polynomial (i.e., ) be provided.  If reasonable initial estimates are not 
provided, the estimation process may result in an overflow error and cause the estimation 
process to terminate. 

A simple strategy to prevent such an overflow error is to proceed sequentially whenever 
a denominator polynomial is to be used.  First, estimate the model without

/(1 B)ω −δ

portant that re
(B)ω

 denominator terms 
to obtain reasonable estimates of the terms in (B)ω .  Next use the CHANGE sentence to 
“insert” the denominator terms into the model. 

To illustrate this, suppose the response function we wanted to use to describe the effect 
of Phase I of Section 6.5 was  instead of 1 1/(1 B)ω −δ 1ω , the one actually used.  As a result, at 
some point we would want a com

  (W1)/(1-D1*B)PHASE1(BINARY,1) 

ponent like 
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in the model.  However, since we are unsure of the approximate value for  initially, it 
would be unwise to specify the model with this component immediately.  Instead, we should 
use a model that includes the component 
 
 (W1)PHASE1(BINARY,1) 
 
such as in the CPIMODEL specified in Section 6.5.  After an initial estimation, we can 
change the component using a command similar to 
 
 TSMODEL   CPIMODEL.    CHANGE (W1)/(1-D1*B)PHASE1(BINARY,1). 
 
In this manner, we are more certain of estimating 

1ω

/(1 B)ω −δ  beginning from a “reasonable” 
estimate of ω.  In using this strategy, it is necessary that label(s) are given to the numerator 
parameter(s). 

6.7.3   Forecasting from an intervention model 

Forecasts calculated using the SCA System for intervention models are minimum mean 
squared error forecasts, discussed in Section 5.1.6.  The basic difference between forecasting 
an ARMA model and an intervention model is that the intervention model includes binary 
series representing intervention periods.  Since binary series are deterministic and cannot be 
forecasted, we must provide the future values of these series.  That is, the variables in the 
SCA workspace that contain the data for the intervention indicator may need to be appended 
using editing paragraphs (see Appendix B).  The extra values in the binary series represent the 
envisioned “future” of the intervention. 

For example, if we were to forecast 12 values from the end of the data using 
CPIMODEL of Section 6.5, then we would need to append 12 zero values to the end of 
PHASE1 and 12 values to the end of PHASE2 indicating how much longer the second 
intervention period would be.  We can initially generate longer series for PHASE1 and 
PHASE2 if we know that we will later forecast from the model.  By default, the ESTIM 
paragraph will only use the commonly shared periods of PHASE1, PHASE2 and RATECPI. 

6.7.4   Constraints on parameters 

Constraints on parameters in an intervention model are accommodated in the same 
manner as in the case of ARMA parameters.  Parameters may be fixed to a specific value or 
constrained to be equal to other parameters using the FIXED-PARAMETER or 
CONSTRAINT sentences in the TSMODEL paragraph.  These sentences have the same 
meaning as those described in Section 5.2.  In addition, if we use the same label names to 
represent two or more parameters, these parameters will be held equal to one another during 
model estimation. 



6.22 INTERVENTION ANALYSIS 

6.7.5   Notational shorthand 

The notational shorthand available for ARIMA model specification (see Section 5.4.5) 
extends to intervention model specification as well.  The only appreciable difference is that 
the numerator of an intervention component can contain a contemporaneous (i.e., a zero-
order) term.  Each intervention component permits parameters to be abbreviated as 

  (order of the backshift term; parameter labels or values) 
 
where the parameter labels may be omitted as before. 
 

To illustrate longhand and shorthand expressions of a model, the following 
specifications of a model are all equivalent (provided all parameters are estimated without 
constraint): 

 
 RATECPI((1-B)) = CONST + (W1)PHASE1(BINARY,(1-B))      @ 

            + (W2)PHASE2(BINARY,(1-B)) + (1-TH*B)NOISE 
 

 RATECPI(1) = CONST + (W1)PHASE1(BINARY,1) + (W2)PHASE2(BINARY,1) @  
+ (1-TH*B)NOISE 

 
 RATECPI(1) = CONST + (0;W1)PHASE1(BINARY,1) + (0;W2)PHASE2(BINARY,1) @ 
   +(1;TH)NOISE 
 
 RATECPI(1) = CONST +(0)PHASE1(BINARY,1) + (0)PHASE2 + (1)NOISE 
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SUMMARY OF THE SCA PARAGRAPHS IN CHAPTER 6 

 
This section provides a summary of those SCA paragraphs employed in this chapter.  

The syntax for many paragraphs is presented in both a brief and full form.  The brief display 
of the syntax contains the most frequently used sentences of a paragraph, while the full 
display presents all possible modifying sentences of a paragraph.  In addition, special remarks 
related to a paragraph may also be presented with the description. 

Each SCA paragraph begins with a paragraph name and is followed by modifying 
sentences.  Sentences that may be used as modifiers for a paragraph are shown below and the 
types of arguments used in each sentence are also specified.  Sentences not designated 
required may be omitted as default conditions (or values) exist.  The most frequently used 
required sentence is given as the first sentence of the paragraph.  The portion of this sentence 
that may be omitted is underlined.  This portion may be omitted only if this sentence appears 
as the first sentence in a paragraph.  Otherwise, all portions of the sentence must be used.  The 
last character of each line except the last line must be the continuation character, ‘@’. 

The paragraphs to be explained in this summary are TSMODEL, ESTIM, FORECAST, 
and SIMULATE. 

 Legend (see Chapter 2 for further explanation) 
 
 v : variable or model name 
 i : integer 
 r : real value 
 w  : keyword 
 
 
TSMODEL Paragraph 
 

The TSMODEL paragraph is used to specify or modify an intervention model.  The 
paragraph is also used for the specification or modification of an ARIMA or transfer function 
model.  The syntax description for these usages is provided in Chapters 5 and 8, respectively.  
For each model specified in a TSMODEL paragraph, a distinguishing label or name must also 
be given.  A number of different models may be specified, each having a unique name, and 
subsequently employed at a user's discretion.  Moreover, the label also enables the 
information contained under it to be modified. 
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Syntax for the TSMODEL Paragraph 
 
Brief syntax 

 
Full syntax 

 
Sen
 
NAM

T
t
p

MO
T

ADD
T
m

TSMODEL NAME  IS  model-name.        @  
  MODEL  IS  “model”. 
  
Required sentence:  NAME  

 

 
 

 
 
 

TSMODEL NAME  IS  model-name.    @ 
 MODEL  IS  “model”.     @ 

  ADD “components of a model”.   @ 
 CHANGE “components of a model”.  @ 

  DELETE CONSTANT.    @ 
 FIXED-PARAMETERS ARE v1, v2, ---. @ 

  CONSTRAINTS ARE (v1,v2,---), ---,  @ 
                 (v1,v2,---).    @ 

  VARIANCE IS v.    @ 
 SHOW./NO SHOW.    @ 

  CHECK./NO CHECK.    @ 
 ROOTS./NO ROOTS.     @ 

  SIMULATION./NO SIMULATION.  @ 
 UPDATE./NO UPDATE. 

  
Required sentence:  NAME 
tences Used in the TSMODEL Paragraph 

E sentence  
he NAME sentence is used to specify a unique label (name) for the model specified in 

he paragraph.  This label is used to refer to this model in other time series related 
aragraphs or if the model is to be modified. 

DEL sentence  
he MODEL sentence is used to specify an intervention model. 

 sentence 
he ADD sentence is used to specify component terms that will be added to an existing 
odel.  More information is provided in Section 6.7.1. 
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CHANGE sentence 
The CHANGE sentence is used to modify component terms of an existing model.  More 
information is provided in Section 6.7.1. 

DELETE sentence   
The DELETE sentence is used to delete intervention components or the constant term 
from an existing intervention model.  An intervention component is deleted by listing the 
name of the binary variable representing the intervention period.  The constant term is 
deleted by specifying the keyword CONSTANT.  Once the constant term is deleted, it can 
only be re-inserted using the MODEL sentence. 

FIXED-PARAMETER sentence 
The FIXED-PARAMETER sentence is used to specify the parameters whose values will 
be held constant during model estimation, where v’s are the parameter names.  See 
Section 5.2 for a brief discussion of this sentence.  The default condition is that no 
parameters are fixed. 

CONSTRAINT sentence 
The CONSTRAINT sentence is used to specify that the parameters within each pair of 
parentheses will be constrained to have the same value during model estimation. See 
Section 6.7.4 for a brief discussion of this sentence.  The default condition is that no 
parameters are constrained to be equal. 

VARIANCE sentence 
The VARIANCE sentence is used to specify a variable where the value of the noise 
variance is or will be stored.  If a value for the variable is known, this value will be used 
as initial variance in estimation and the final estimated value of the variance will be stored 
in this variable for future estimation or in forecasting.  Otherwise the variance is 
calculated from the residual series derived from the specified model and parameter 
estimates.  Note that the SCA System designates an internal variable for the VARIANCE 
sentence so that the specification of this sentence is optional. 

SHOW sentence  
The SHOW sentence is used to display a summary of the specified model.  The default is 
SHOW. The summary includes series name, differencing (if any), span for data, parameter 
labels (if any) and current values for parameters.  

CHECK sentence  
The CHECK sentence is used to check whether all roots of the AR, MA, and denominator 
polynomials lie outside the unit circle.  The default is NO CHECK.  

ROOTS sentence  
The ROOTS sentence is used to display all roots of the AR, MA and denominator 
polynomials.  The default is NO ROOTS. 
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SIMULATION sentence  
The SIMULATION sentence is used to specify that the model will be used for simulation 
purposes.  Ordinarily this sentence is not specified.  See Section 5.4.2 or 8.7.7 for more 
details.  The default is NO SIMULATION.  

UPDATE sentence 
The UPDATE sentence is used to specify that parameter values of the model are updated 
using the most current information available.  The default is NO UPDATE. In the default 
case, parameter values are updated only after execution of the ESTIM paragraph rather 
than immediately. 

 
 
ESTIM Paragraph  
  

The ESTIM paragraph is used to control the estimation of the parameters of an 
intervention model. 

Syntax of the ESTIM Paragraph 
 
Brief syntax 

 
Full syntax 

 
 

 

 

ESTIM  MODEL v.                  @ 
  HOLD RESIDUALS(v).  
   
Required sentence:  MODEL 
 

 
 
 
 
 
 
 

ESTIM  MODEL v.       @
  METHOD  IS  w.      @
  STOP-CRITERIA  ARE  MAXIT(i), LIKELIHOOD(r1), @
                       ESTIMATE(r2).     @

 SPAN  IS  i1, i2.      @
  HOLD RESIDUALS(v), FITTED(v), VARIANCE(v).  @

 OUTPUT LEVEL(w), PRINT(w1, w2, ---),   @
                   NOPRINT(w1, w2, ---). 
 
Required sentence:  MODEL 
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Sentences Used in the ESTIM Paragraph 
 
MODEL sentence   

The MODEL sentence is used to specify the label (name) of the model to be estimated.  
The label must be one specified in a previous TSMODEL paragraph.    

METHOD sentence  
The METHOD sentence is used to specify the likelihood function used for model 
estimation.  The keyword may be CONDITIONAL for the “conditional” likelihood  or 
EXACT for the “exact” likelihood function.   See Section 5.1.4 for a discussion of these 
two likelihood functions.  The default is CONDITIONAL. 

STOP sentence 
The STOP sentence is used to specify the stopping criterion for nonlinear estimation.  The 
argument, i, for the keyword MAXIT specifies the maximum number of iterations (default 
is i=10); the argument, r1, for the keyword LIKELIHOOD specifies the value of the 
relative convergence criterion on the likelihood function (default is r1=0.0001); and the 
argument, r2, for the keyword ESTIMATE specifies the value of the relative convergence 
criterion on the parameter estimates (default is r2=0.001).  Estimation iterations will be 
terminated when the relative change in the value of the likelihood function or parameter 
estimates between two successive iterations is less than or equal to the convergence 
criterion, or if the maximum number of iterations is reached. 

SPAN sentence 
The SPAN sentence is used to specify the span of time indices, from i1 to i2, for which 
the data will be analyzed.  The default is the maximum span available for the series. 

HOLD sentence 
The HOLD sentence is used to specify those values computed for particular functions to 
be retained in the workspace.  Only those statistics desired to be retained need be named.  
Values are placed in the variable named in parentheses.  The default is that none of the 
values of the above statistics will be retained after the paragraph is used.  The values that 
may be retained are: 

RESIDUAL : the residual series  
FITTED : the one-step-ahead forecasts (fitted values) of the series  
VARIANCE : variance of the noise  
DISTURBANCE  : the disturbance series of the model 

 
OUTPUT sentence 

The OUTPUT sentence is used to control the amount of output displayed for selected 
statistics.  Control is achieved in a two stage procedure.  First, a basic LEVEL of output 
(default NORMAL) is designated.  Output may then be increased (decreased) from this 
level by use of PRINT (NOPRINT). 

The keywords for LEVEL and output displayed are: 

BRIEF : estimates and their related statistics only 



6.28 INTERVENTION ANALYSIS 

NORMAL : RCORR 
DETAILED : ITERATION, CORR, and RCORR 

 
where the keywords on the right denote: 

ITERATION : the parameter and covariance estimates for each iteration 
CORR : the correlation matrix for the parameter estimates 
RCORR : the reduced correlation matrix for the parameter estimates (i.e., a display 

in which all values have no more than two decimal places and those 
estimates within two standard errors of zero are displayed as dots, ‘.’). 

 
 
FORECAST Paragraph 
 

The FORECAST paragraph is used to compute the forecast of future values of a time 
series based on a specified intervention model.  The binary variables representing intervention 
periods must be defined for the forecast period (see Section 6.7.3).  

The FORECAST paragraph requires the current estimate of the variance σ2 to compute 
standard errors of forecasts.  The variance for the estimated model is always stored internally 
during the execution of the ESTIM paragraph, but the internal estimate is overwritten at each 
subsequent execution of a ESTIM paragraph for the same model. 

The FORECAST paragraph has other sentences available, but are not described below.  
These are used in the forecasting of transfer function models and are described in Chapter 8. 

Syntax of the FORECAST Paragraph 
 
Brief syntax 

 

FORECAST MODEL v.    @  
  NOFS ARE i1, i2, --- .  @ 
  ORIGINS ARE i1, i2, ---. 
  
Required sentence:  MODEL  
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Full syntax 

 
Sentences Used in the FORECAST Paragraph  
  
MODEL sentence  

The MODEL sentence is used to specify the label (name) of the model for the series to be 
forecasted.  The label must be one specified in a previous TSMODEL paragraph.  

NOFS sentence  
The NOFS sentence is used to specify for each time origin the number of time periods 
ahead for which forecasts will be generated.  The number of arguments in this sentence 
must be the same as that in the ORIGINS sentence.  The default is 24 forecasts for each 
time origin. 

ORIGINS sentence  
The ORIGINS sentence is used to specify the time origins for forecasts.  The default is 
one origin, the last observation. 

JOIN sentence  
The JOIN sentence is used to specify that the forecasts calculated should be appended to 
the variable of the model relative to the specified origin.  If more than one origin is 
specified only the last will be used.  The default is NO JOIN. 

METHOD sentence 
The METHOD sentence is used to specify the likelihood function used for the 
computation of the residual series employed in forecasting.  The keyword may be 
CONDITIONAL for the “conditional” likelihood, or EXACT for the exact likelihood 
function.  See Section 5.1.4 for a discussion of these two likelihood functions.  The default 
is EXACT. 

HOLD sentence  
The HOLD sentence is used to specify those values computed for particular functions to 
be retained in the workspace.  Only those statistics desired to be retained need be named.  
Values are placed in the variable named in parentheses.  The default is that none of the 
values of the above statistics will be retained after the paragraph is used. The values that 

FORECAST MODEL v.        @  
  NOFS ARE i1, i2, --- .       @ 

 ORIGINS ARE i1, i2, --- .      @  
  JOIN. /NO JOIN.       @  

 METHOD IS w.      @ 
 HOLD FORECASTS(v1,v2,---), STD_ERRS(v1,v2,---).  @ 

  OUTPUT PRINT(w), NOPRINT(w). 
  
Required sentence:  MODEL 

may be retained are:   
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FORECASTS : forecasts for each corresponding time origin   
STD_ERRS : standard errors of the forecasts at the last time origin 

 
OUTPUT sentence 

The OUTPUT sentence is used to control the amount of output displayed for various 
statistics.  The default condition is PRINT(FORECASTS); that is, to display forecast 
values for each time origin.  To suppress this, specify NOPRINT(FORECASTS). 

 
 
SIMULATE Paragraph 
 

The SIMULATE paragraph is used to generate data according to a user specified 
univariate time series model.  See Sections 5.4.2 and 8.7.7 for more information on this 
paragraph.  A univariate time series model must have been specified previously using the 
TSMODEL paragraph.  The paragraph is also used to generate data according to a user 
specified distribution.  More information on this can be found in Chapter 12 of The SCA 
Statistical System: Reference Manual for General Statistical Analysis. 

Syntax for the SIMULATE Paragraph  

 
Sentences 
 
VARIABL

The VA
simulati
the sent
TSMOD

MODEL se
The MO
The mo
SIMUL

 
 

 

SIMULATE VARIABLE  IS  v.      @ 
  MODEL  IS  model-name.     @ 

 NOISE  IS  distribution (parameters) or VARIABLE(v).  @ 
  NOBS  IS  i.       @ 

 SEED  IS  i. 
 
Required sentences:  MODEL, NOISE and NOBS  
Used in the SIMULATE Paragraph 

E sentence  
RIABLE sentence is used to specify the name of the variable to store the 

on results.  The sentence is not required if a univariate time series is generated.  If 
ence is not specified, the variable name used in the MODEL sentence of the 
EL paragraph is used to store the results. 

ntence 
DEL sentence is used to specify the name (label) of the model to be simulated.  

del may be an ARIMA model specified in a TSMODEL paragraph.  The sentence 
ATION must also appear in the TSMODEL paragraph. 
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NOISE sentence 
The NOISE sentence is used to specify the noise sequence for the simulated time series 
model.  Either the distribution for generating the noise sequence or the name of a variable 
containing values to be used as the sequence is specified.  The following distributions can 
be used:  

U(r1,r2) : uniform distribution between r1 and r2  
N(r1,r2) : normal distribution with mean r1 and variance r2  
MN(v1,v2): multivariate normal distribution with mean vector v1 and covariance matrix 
 v2.  Note that v1 and v2 must be names of variables defined previously. 

 
NOBS sentence  

The NOBS sentence is used to specify the number of observations to be simulated. 

SEED sentence  
The SEED sentence is used to specify an integer or the name of a variable for starting the 
random number generation. When a variable is used, the seven digit value 1234567 is 
used as a seed if it is not defined yet, or the value of the variable is used if the variable is 
an existing one. After the simulation, the variable contains the seed last used. The number 
of digits for the seed must not be more than 8 digits.  The default is 1234567. 
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CHAPTER  7 

OUTLIER DETECTION AND ADJUSTMENT 

 
As noted in Chapter 6, time series are often subject to unexpected or uncontrolled 

events.  If these events are known to us, we may be able to account for their effects through an 
intervention model.  However, if the events are not initially known, or if the times of the 
events are unknown, then other approaches may be necessary for their detection and 
adjustment.  

This chapter considers how to detect and adjust for the effects of such unknown or 
unexpected occurrences in a time series.  These unusual observations are referred to as 
outliers.  Depending on their nature, outliers may have moderate to substantial impact on an 
analysis.  It is important to detect outliers for a number of reasons:  

(1)  Better understanding of the series under study.  The detection of outliers may 
highlight the occurrences of those external events affecting a series, and in what 
manner.  Uncovering such occurrences can lead to enlightenment on why a series 
performs as it does.  In addition, we may discover spurious observations (e.g., 
recording errors) that may mask the proper modeling of a time series.  

(2) Better modeling and estimation.  Unknown external events can alter the structures 
of statistics typically used for model identification.  Uncovering outliers can result in 
simplifying the structure of a model used.  Moreover, even if we employ the “proper” 
model for a series, the presence of unaccounted external events may seriously affect 
the parameter estimates of the model.  

(3) Improved intervention analyses.  As noted above, parameter estimates can be 
affected by the presence of unknown external events.  As a result, if we employ an 
intervention model, we need to be certain that the intervention effects are not 
contaminated by any outlier effects.  In this manner we are also more confident that 
test statistics for parameter estimates will not be biased due to an inflated variance.  

(4) Better forecasting performance.  Depending upon the timing and nature of the 
event, an external event may affect the forecasting performance of a model.  By 
adjusting for the presence of an outlier, we may be able to improve the forecasts and 
the overall forecasting performance of a model.  In addition, should a detected event 
re-occur, we may be able to better forecast how a series will respond to it.  

Additional information regarding the nature and motivation for outlier detection and 
adjustment can be found in Fox (1972), Chang (1982), Hillmer, Bell, and Tiao (1983), Tsay 
(1988), Chang, Tiao and Chen (1988), Ledolter (1987 and 1989), Pankratz (1991), Chen and 
Liu (1990), and Liu and Chen (1991). 

 
 



7.2 OUTLIER DETECTION AND ADJUSTMENT 

7.1 Outliers in a Time Series 

In Chapter 5, we introduced the autoregressive moving average (ARMA) model that 
may be written as: 

q− , (7.1) 

or more simply 
 

. (7.2) 

The model of equation (7.2) can be directly extended to include differencing operators to 
induce stationarity and to encompass seasonal terms (as multiplicative AR or MA operators, 
see Section 5.3).  In Chapter 6, we introduced deterministic (binary) series into a time series 
model to represent interventions.  In the latter case, equation (7.2) was used to represent the 
model for the underlying disturbance term. 
 

To facilitate our understanding of outliers, in this section we will concentrate our 
discussions to non-seasonal models.  Moreover we will assume C=0 so that we may re-write 
(7.2) as 

t 1 t 1 p t p t 1 t 1 q tZ Z Z C a a a− − −− φ − ⋅⋅⋅− φ = + −θ − ⋅⋅⋅− θ

t t(B)Z C (B)aφ = + θ

t t
(B)Z a
(B)
θ

=
φ

. (7.3) 

 
In the above equation,  represents a series that is not contaminated with outliers.  We will 
use  in the presence of an outlier.  As we will see, 
our representation for an outlier will take the form of the intervention model used in Chapter 6 
in which: 
 

(a)  the intervention period must be determined, and 

(b)  the disturbance term, Nt, represents the uncontaminated series Zt of equation 
(7.2) or (7.3). 

We will now define and illustrate four types of outliers.  These are additive outlier (AO), 
innovational outlier (IO), level shift (LS), and temporary (or transient) change (TC). 

To illustrate the effect of each type of outlier, we consider how an outlier affects the 
values of a simulated AR(1) process.  For this purpose, 65 observations are simulated from 
the model 

tZ
 to represent the values observed for tY tZ

t t
1Z a

1 .6B
=

−
,         with   a 1.0σ =  

 
The data are shown in Figure 7.1. 
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Figure 7.1    Data from a simulated AR(1) process 

7.1.1   Additive outlier (AO) 

An additive outlier (AO) is an event that affects a series for one time period only.  One 
illustration of an AO is a recording error (e.g., the actual value 2.1 may be recorded as 21.0, 
0.1, or the like).  For this reason, an additive outlier is sometimes called a gross error.  If we 
assume that an outlier occurs at time t=T, we can represent the series we observe by the model  

 (7.4) 

where  is a pulse function (that is,  assumes the value 1 when t = T and is 0 
 represents the amount of deviation from the “true” value of  

 
To illustrate the effect of an AO on the base AR(1) model, we include an AO at time t = 

30 with  = 5.  The plot of the resultant series is shown, together with the original value at 
e see that all observations are unchanged, except for the change in the 

value at t = 30. 

 
Figure 7.2    Additive outlier at t = 30 in a simulated AR(1) process 

 

(T)
t t A tY Z P= +ω

(T)
tP

otherwise).  The value 

(T)
tP

Aω TZ .

Aω
t=30 in Figure 7.2.  W
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7.1.2  Innovational outlier (IO) 

Unlike an additive outlier, an innovational outlier (IO) is an event whose effect is 
propagated according to the ARIMA model of the process.  In this manner, an IO affects all 
values observed after its occurrence.  In practice, an IO often represents the onset of an 
external cause (Tsay, 1988).  The model for the observed series is 

(T)(B)θ  (7.5) 

 
The m
 

t t I tY Z P
(B)

= + ω
φ

odel given in (7.5) can be re-written as 

(T)
t t I

(B)Y (a P
(B)
θ

= +ω
φ t )  (7.6) 

 
We may better understand the difference between an IO and an AO by comparing (7.6) with 
(7.4).  We see in (7.4) that an AO alters only the observation  while an IO alters only the 
shock   As a result, an AO only affects one observation,  while the effect of an IO is 

es of or  according to the 

TZ ,

TY ,Ta .
present in all valu tY  f  t T≥ ψ -weights of the model (see Box and 
Jenkins (1970) for mo  information regarding re ψ -weights).  The  term

 is som
inology IO arises 

resen  in (7.6) as th etimes referred to as the 
innovation series.  
 

To illustrate the effect of an IO on the base AR(1) model, we include an IO at time t = 
30 with  = 5.  The plot of the resultant series, along with the original points, is shown in 

ay observe that the values plotted from t=30 through t=38 are all noticeably 
above those of the original series.  Moreover, a comparison of the values of the simulated 
AR(1) series and those with the IO effect present reveals the effect of the IO can be observed 
(to 3 significant digits) through t = 47. 

 
Figure 7.3    Innovational outlier at t = 30 in a simulated AR(1) process 

 
 

because of the rep tation given e series { ta }

Iω
Figure 7.3.  We m
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7.1.3   Level shift (LS) 

A level shift (LS) is an event that affects a series at a given time, and whose effect 
becomes permanent.  A level shift could reflect the change of a process mechanism, the 
change in a recording device, or a change in the definition of the variable itself.  The model 
for the series we observe may be represented by 

(T)
t t L t

1Y Z P
1 B

= + ω
−

   (7.7) 

 
Equation (7.7) is the same as  
 

 (7.8) 

 
where  is a step function

(T)
t t L tY Z S= +ω

(T)
tS

thereafter).  W
tZ (T)

tP

tZ (T)
tS

 (i.e., assumes the value 0 before t = T and has the value 1 
e can see that the model for an AO, given by (7.4), and the model for a level 

shift, given by (7.8), are the same, except that an AO affects  only at t = T  ( ) while an 
LS affects  permanently from t = T onwards ( ). 
 

To illustrate the effect of an LS, we include an LS at time t = 30 on the base AR(1) 
model.  As before, we use  = 5.  Plots of the resultant series and the original series are 
shown in Figure 7.4.  We observe that after t=30 the mean level of the resultant series is 
higher than before.  Except for this, the two series are identical in all other ways. 

 
Figure 7.4    Level shift at t = 30 in a simulated AR(1) process 

 

7.1.4   Temporary change (TC) 

An additive outlier (AO) and a level shift (LS) represent two distinct patterns in which 
an event affects a series.  For a level shift, the level of the underlying process is affected for 
all future time, while an additive outlier affects the series for only one time period.  It is useful 
to consider an event that has some initial impact on a series, and the impact eventually 
disappears.  A temporary (or transient) change (TC) is an event having such an initial impact 

Lω
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and whose effect decays exponentially according to some dampening factor, say δ.  We can 
represent the observed series as  

(T)
t t C t

1Y Z P , 0
1 B

= + ω < δ <
−δ

1 (7.9) 

 
We can see that (7.4) and (7.7) are the limiting cases of (7.9).  In (7.4), the dampening factor δ 
is 0, while in (7.7) this factor is 1. 
 

To illustrate the effect of a TC, we include a TC at time t=30 with Cω =5 and δ=.8.  Plots 
of the resultant series and the original series are displayed in Figure 7.5.  We may note the 
resultant plot looks similar to that of an IO.  This is especially true in the case of an AR(1) 
model since the form of the decay of the impact is identical to an AR(1).  Here, the TC is 
identical to an IO if δ = .6.  Since δ is relatively close to 1, the effect of the outlier is 
discernible to the eye for a number of periods (here through about t = 45). 

 
Figure 7.5    Temporary change at t = 30 in a simulated AR(1) process 

 

7.2 Methods for Outlier Detection and Adjustment 

In this section we provide an overview of methods for detection and adjustment of one 
or more outliers.  This section may be skipped on first reading and later referenced as 
necessary.  A more complete discussion of the materials presented in this section may be 
found in Chen and Liu (1990) and Chang, Tiao and Chen (1988). 

7.2.1   Outlier detection when ARMA parameters are known 

It is natural to consider the residuals of a fitted model for use in detecting outliers in a 
time series, since most diagnostic checks of a model are based on residuals (see Sections 4.4.2 
and 5.1.5).  However, outliers in a time series can affect both the model we may identify for 
the series as well as the parameter estimates of the identified model.  As a result, it is unclear 
how useful the residuals may be for outlier detection in certain situations.  To better 
understand how a single outlier manifests itself in the residual series, consider the filtered 
series 
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Y  (7.10) 

where π(B) is the polynomial operator in the π-weights of the ARIMA model (see Section 
5.1.2).  The weights in π(B) may be obtained by equating coefficients in the backshift 
operator in an expression involving π(B) and the polynomial operators of the model.  In the 
case of the nonseasonal model (i.e., the ARMA model of (7.3)), these π-weights may be 
computed from 
 

 (7.11) 

The values of  become the residuals of the fitted model if the π-weights are computed from 
the estimated parameters of the ARIMA model rather than from the known parameters of the 
“true” ARIMA model. 
 

To illustrate the filtering concept above and how a single outlier may appear in the 
residual series, we consider an AO imposed on the base AR(1) model (see Section 7.1.1).  
The “true” model for our original series is 

. 

As a result, from (7.11) we obtain 
 

It is informative to compare the filtered series we obtain by applying the above π(B) to both 
the original series,  and the contaminated series,   The series obtained from 

t te (B)= π

(B) (B) (B)θ π = φ

te

t t a(1 .6B)Z a , with 1.0− = σ =

(B) (B) (1 .6B)π = φ = −  

tZ , tY . t(B)Zπ  
 produces the produces the “tru ise series used in generating the data, while 

“residual” series by applying the true value of 
e” no t(B)Yπ

φ  (i.e., 0.6) to filter th   
These two series are plotted together in Figure 7.6.  The series are identical except at t=30 and 
t=31. 
 

Figure 7.6   Filtered series, π(B)Yt, for a simulated AR(1) process with 
  an AO; and filtered values when outlier is not present(O) 

e contaminated series.
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Although an AO only affects the observed series for one period, it affects the filtered 
(residual) series for more than one period.  Specifically, the information (affect) for an AO in 
the series et begins at the period in which the AO occurs, and then decays according to the π-
weights of the ARIMA model.  Hence we cannot detect an AO by simply looking for a single 
large outlier in the residual (filtered) series.  Similarly, the effect of a single IO, LS or TC is 
not the same in both the observed and residual series. 

The effect of a single outlier on residuals typically is not as “clean” as displayed above, 
since the outlier also affects the estimation results of our fitted model.  We can observe the 
influence that outliers have on parameter estimation by fitting an AR(1) model to the four 
simulated series that have been considered previously.  Table 7.1 lists the estimate of φ , its 
standard error, and the estimate of  for each of the four simulated series. 

 
Table 7.1   Estimation results for an AR(1) fit of the simulated AR(1) processes 

 
 Case 

aσ

φ̂  S.E. of φ̂  aσ̂  
 

 Without outlier .517 .105 0.900 
 AO  at t = 30 .340 .116 1.104 
 IO  at t = 30 474 .110 1.062 
 LS  at t = 30 954 .041 1.191 
 TC  at t = 30 620 .097 1.090 
 
 

Depending on the nature of the outlier present, we see different effects on the estimates 
of  and .  Except in the LS case, the estimates of φ aσ φ  are rather close to the true parameter.  
Due to the nature and the positioning of  the fitted model for s 

and the estimate of  is more inflated than that of the other cases. 
 

In all cases, except for that of the LS outlier, the residuals obtained have a plot similar to 
that of its associated  shown earlier.  Hence although the estimate of 

the LS outlier, tY  i
approximately 

t t(1 B)Y a− =  

 aσ

te φ  may be biased, the 
information we may expect to “extract” regarding outliers from these residuals is similar to 
that provided by e  w en  is known.  To illustrate this, in Figure 7.7 we plot the residual 

 contaminated with an AO.  We see the residual 
series are virtually identical to those displayed in Figure 7.6.  Hence the residuals of the 
contaminated series contain almost complete information for the detection and estimation of 
outliers. 

 

t h
series of both the original series and the series

φ
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Figure 7.7  Residual series for a simulated AR(1) process with an AO 
  (solid line) and that when outlier is not present (dashed line) 

 

Suppose we have a single outlier, say an AO at time T, in the series   We can obtain 
an analytic description of  by substituting (7.4) into (7.10).  Similar analytic descriptions 
can be derived for a single IO, LS, or TC in like manner.  The precise analytic descriptions of 

 for each type of outlier a e provided in Section 7.8.1. 

We may be able to use the analytic representation of  to test for the effect of an 
outlier.  If only one outlier occurs in a time series, then a least squares estimate for the effect 
of the outlier at time , and the statis ay be used for testing its 

ng, Tiao, and Chen, 1988, and Chen and Liu 
1990).  An adjusted series (i.e., one with the outlier effect removed) can also be obtained.  
However, some problems remain since: 

(1)  we do not know whether an outlier occurs, and if it occurs, the time of its occurrence; 
(2)  in the event there is an outlier, we do not know its type; 
(3)  there may be more than one outlier present in the series; and  
(4)  we do not know precisely what the “true” underlying model is, nor are we sure of the 

accuracy of the estimates of a correct model. 
 

Procedures to account for (1) - (3) above have been developed during the past few years.  
Most of these outlier detection procedures are based on the residuals from fitted models.  In 
this way, we can diagnostically check a fitted model for the presence of outliers.  An 
overview of such a procedure is provided below.  Recently, Chen and Liu (1990) developed 
an iterative procedure for the joint estimation of model parameters and outlier effects.  This 
procedure addresses problems (1) - (4) above more thoroughly.  

7.2.2   Detecting outliers from a fitted model 

In practice, the ARMA parameters and 

tY .
te

rte

te

tics that miˆt T, (i 1,2,3,4)= ω =
significance can be easily derived (see Cha

aσ  are unknown, but estimates for the model 
parameters and  can be obtained.  We may then use the residuals of the fitted model (i.e., 

 to ch rs in the series.  Cha 82), Hillmer, Bell, and Tiao (1983), and 
Chang, Tiao and Chen (1988) all provide a similar procedure for detecting outliers in such a 
case, as we now summarize.  

aσ
eck for outlietê ) ng (19
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Since we do not know when an outlier may occur nor its type, we first proceed 
sequentially through time and calculate four test statistics (one for each type of outlier) for 
each time index.  We maintain the largest test statistic (in absolute value) for each outlier type 
and retain its time index.  We then compare the largest (in absolute value) of all these 
statistics with some pre-specified critical value.  If the critical value is not exceeded, then it is 
concluded there is no outlier in the series.  

However, if the critical value is exceeded, then we have determined that an outlier has 
occurred and have identified its type.  The residuals are now adjusted for the presence of the 
detected outlier and a new estimate of aσ  is computed.  We again proceed through the 
adjusted residuals to see if another outlier can be detected.  We iteratively detect and adjust 
residuals until no additional outlier can be found. 

The critical value for such tests is dependent on the underlying ARIMA model and the 
sample size.  As a result, only broad guidelines can be provided for a general choice of the 
critical value.  In practice, the value 3.0 provides reasonable “sensitivity” to outliers.  Lower 
sensitivity is provided by using larger critical values and higher sensitivity is provided by 
using smaller critical values.  Often a value less than 3.0 is recommended for time series with 
a small number of observations (say fewer than 100 or so).  

Although the above procedure can be used as a simple device for the detection of 
outliers in a time series, two potential problems exist.  First, it may be argued that the iterative 
search for outliers may not be efficient.  Second, and more importantly, the detection 
procedure is completely dependent on the ARIMA model that has been identified and 
estimated based on the contaminated series, which often has biased parameter estimates. 

The OUTLIER paragraph of the SCA System employs a procedure similar to that 
described above to detect outliers in a fitted model.  Temporary changes (TC) are not 
considered in the current release of the OUTLIER paragraph.  The OFILTER paragraph 
employs a procedure described in Section 7.2.4 and may be used in lieu of the OUTLIER 
paragraph.  The OFILTER paragraph can detect all four types of outlier, and is discussed in 
more detail in Section 7.6. 

7.2.3   Adjustment of detected outliers using intervention models 

In Section 7.2.2, we outlined a procedure for the detection of outliers when the ARIMA 
parameters of a model are known (or have been estimated).  Such a procedure can be used as 
a diagnostic check of a fitted model.  We now address the issues for the detection and 
adjustment of outliers.  In doing so, we need to consider: 

(1)  Model re-estimation, to obtain better estimates of ARIMA parameters as well as 
checking on the general adequacy of the underlying ARIMA model, and  

 
(2)  Incorporation of outlier effects within a model, to estimate potential outlier effects 

jointly with the underlying ARMA model in order to check whether the outliers 
detected are real. 
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Two procedures are discussed.  Details regarding these procedures may be found in Chang, 
Tiao and Chen (1988), and Chen and Liu (1990). 
 

A straightforward procedure for outlier detection and adjustment is to sequentially 
employ the detection techniques described in Section 7.2.2 with intervention models 
described in Chapter 6.  A method for implementing the procedure is described in Chang, 
Tiao, and Chen (1988).  In this procedure, an ARIMA model is first identified and estimated 
assuming there are no outliers present.  The outlier detection procedure is applied to the 
residuals to check if any outliers are present.  If so, an adjusted model is estimated.  This 
model includes detected outliers as intervention components.  Outlier detection and 
adjustment continues as necessary after the intervention model is estimated.  This procedure 
apparently can be laborious and time consuming. 

The above procedure can be conducted in the SCA System using the TSMODEL, 
ESTIM and OUTLIER paragraphs.  Special considerations involving model specification 
must be taken in the event an IO is detected.  More details regarding employing such a 
procedure may be found in Pankratz (1991) and Wei (1990). 

7.2.4   An iterative procedure for joint estimation of model parameters and  
 outlier effects 
 

The intervention based procedure outlined above is useful to a certain extent.  However, 
such a procedure has some deficiencies.  Among these are: 

(1)  outliers may result in an inappropriately identified initial model, 
(2)  the efficiency of the outlier detection procedure may be affected by the bias in 

parameter estimates due to the presence of outliers, 
(3)  some outliers may be masked and not identified, and 
(4)  some spurious outliers may be detected. 

 
Chen and Liu (1990) propose an iterative procedure for the joint estimation of model 
parameters and outlier effects to address these concerns.  This procedure provides the basis of 
the SCA OESTIM paragraph for the estimation of a time series model in the presence of 
possible outliers. 
 

An outline of the steps of the procedure is presented in Section 7.8.2.  A more complete 
discussion of this joint estimation procedure can be found in Chen and Liu (1990).  As in the 
previous procedure of Chang, Tiao and Chen (1988), the procedure starts with a model having 
potentially biased parameter estimates.  An iterative outlier detection procedure is applied to 
the residuals of the empirically built model.  The original series is adjusted (to remove the 
effects of outliers) according to the types of the detected outliers and their effects.  The usual 
maximum likelihood estimation is applied to the adjusted series.  The residuals of the above 
estimated model are examined again.  The three steps (1) outlier detection, (2) outlier 
adjustment, and (3) parameter estimation based on the adjusted series are iterated until no 
outliers are found.  At this point, the accumulated information of outliers is employed to 
jointly estimate the outlier effects and produce a series of final adjusted observations.  After 
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this step, the maximum likelihood estimation is applied to the final adjusted series to obtain 
the final estimates of the parameters.  At the last step, the outlier detection procedure is 
applied to the residuals of the original series using the final parameter estimates of the model. 

This joint estimation procedure differs from that described in the previous section in 
several respects.  First, the outlier detection is conducted iteratively based on the adjusted 
residuals as well as the adjusted observations.  That is, once an outlier is detected, its effect 
can be removed from the observed series, just as it can be removed from the residuals of the 
estimated model.  By adjusting the observed series, the procedure avoids the need to 
formulate and estimate an intervention model.  Secondly, the outliers are detected based on 
robust estimates of model parameters.  Finally, in the new procedure the outlier effects are 
jointly estimated using multiple regression.  As a result, the new procedure produces more 
robust estimates of model parameters, and reduces spurious outliers and masking effects in 
outlier detection. 

Dampening factor in a temporary change 
 

In the outlier detection procedures discussed above, the dampening factor (δ) of a TC 
outlier is not estimated.  A  single value is used throughout the procedure.  The default value 
for  δ  is 0.7, the value recommended by Chen and Liu (1990).  The OESTIM paragraph 
permits the specification of a different value for  δ.  Since the value for δ is fixed, we see that 
only the  effects of TC outliers are estimated. 

7.3 Example: Production Process Data 

To illustrate outlier detection (using the OUTLIER paragraph) and outlier detection and 
adjustment (using the OESTIM paragraph), we re-consider the daily production data of an 
automotive component.  The data were used in Section 6.4 and are stored in the SCA 
workspace under the label PRODUCTN.  A plot of the series is given in Figure 7.8. 

 
Figure 7.8    Production process data 

iω

 
 

In Section 6.4 we noted that a process change occurred at t=47 causing a mean level 
change.  The fitted equation of the final intervention model estimated for this series was 

. (7.12) (47)
t tPRODUCTN 1794.5 483.1S= +
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To illustrate outlier detection and adjustment in the SCA System, we will now model 
PRODUCTN assuming we were unaware of the intervention that occurred.  We may first 
compute the ACF of PRODUCTN by entering 

-->ACF   PRODUCTN.   MAXLAG IS 12. 
 

 TIME PERIOD ANALYZED . . . . . . . . .  1  TO    85 
 NAME OF THE SERIES . . . . . . . . . .     PRODUCTN 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .           85 
 STANDARD DEVIATION OF THE SERIES . . .     323.4009 
 MEAN OF THE (DIFFERENCED) SERIES . . .    2016.4710 
 STANDARD DEVIATION OF THE MEAN . . . .      35.0778 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .      57.4857 
 
 AUTOCORRELATIONS  
 
  1- 12     .56  .52  .50  .43  .32  .31  .34  .34  .28  .34  .39  .38 
  ST.E.     .11  .14  .16  .18  .19  .20  .20  .21  .21  .22  .22  .23 
   Q       27.9 51.7 74.6 91.4  101  110  121  132  140  151  166  180 
 
          -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
            +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
  1    .56                      +    IXXXX+XXXXXXXXX            
  2    .52                    +      IXXXXXX+XXXXXX             
  3    .50                   +       IXXXXXXX+XXXXX             
  4    .43                  +        IXXXXXXXX+XX               
  5    .32                  +        IXXXXXXXX+                 
  6    .31                 +         IXXXXXXXX +                
  7    .34                 +         IXXXXXXXXX+                
  8    .34                 +         IXXXXXXXXX+                
  9    .28                 +         IXXXXXXX  +                
 10    .34                +          IXXXXXXXXX +               
 11    .39                +          IXXXXXXXXXX+               
 12    .38                +          IXXXXXXXXX +     
 

Based on the above ACF, we would conclude that PRODUCTN is not stationary.  We 
can obtain the ACF and PACF for the first difference of PRODUCTN using the IDEN 
paragraph (SCA output is edited for presentation purposes). 

-->IDEN   PRODUCTN.   DFORDER IS 1.   MAXLAG IS 12. 
 

                                             1 
 DIFFERENCE ORDERS. . . . . . . . . . . (1-B  )  
 TIME PERIOD ANALYZED . . . . . . . . .  1  TO    85 
 NAME OF THE SERIES . . . . . . . . . .     PRODUCTN 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .           84 
 STANDARD DEVIATION OF THE SERIES . . .     302.1284 
 MEAN OF THE (DIFFERENCED) SERIES . . .       4.4643 
 STANDARD DEVIATION OF THE MEAN . . . .      32.9649 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .        .1354 
 
 
          -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
            +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
  1   -.45                XXXXXX+XXXXI    +                     
  2   -.05                     +    XI     +                    
  3    .08                     +     IXX   +                    
  4    .05                     +     IX    +                    
  5   -.13                     +  XXXI     +                    
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  6   -.03                     +    XI     +                    
  7    .03                     +     IX    +                    
  8    .06                     +     IXX   +                    
  9   -.13                     +  XXXI     +                    
 10    .02                    +      IX     +                   
 11    .04                    +      IX     +                   
 12    .11                    +      IXXX   +    
 
PARTIAL AUTOCORRELATIONS  
 
          -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
            +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
  1   -.45                XXXXXX+XXXXI    +                     
  2   -.31                   XXX+XXXXI    +                     
  3   -.13                      + XXXI    +                     
  4    .03                      +    IX   +                     
  5   -.09                      +  XXI    +                     
  6   -.18                      +XXXXI    +                     
  7   -.17                      +XXXXI    +                     
  8   -.03                      +   XI    +                     
  9   -.12                      + XXXI    +                     
 10   -.15                      +XXXXI    +                     
 11   -.14                      +XXXXI    +                     
 12    .07                      +    IXX  +    

 
Since the ACF of the differenced series “cuts off” after the first lag and the PACF “dies 

out”, we would conclude that an ARIMA(0,1,1) model is appropriate for the series.  The 
sample EACF of PRODUCTN (not shown here) indicates that an ARMA(1,1) model is 
appropriate.  Here p=1 represents the differencing operator (i.e., (1 B)−φ  with  = 1).  The 
EACF of the first difference of PRODUCTN (not shown) confirms the use of a 
ARIMA(0,1,1) model. 

We will now specify and fit the model 
 

 (7.13) 

A constant term is included in the model as a slight over-parameterization.  The exact 
likelihood algorithm is employed in estimation since an MA parameter is present in the model 
(see Section 5.2).  SCA output is edited for presentation purposes. 
 

-->TSMODEL   PRODUCT1.  MODEL IS PRODUCTN(1)=CONST + (1-THETA*B)NOISE. 
 
-->ESTIM   PRODUCT1.   METHOD IS EXACT.   HOLD RESIDUALS(RESP). 

 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- PRODUCT1 
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1 
 PRODUCTN   RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1  CONST             CNST      1      0     NONE     6.2268    6.7046    .93  

φ

t t(1 B)Y C (1 B)a− = + −θ
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   2  THETA   PRODUCTN   MA       1      1     NONE      .7662     .0707  10.84  
 
  
 TOTAL SUM OF SQUARES . . . . . . . .   .888999E+07 
 TOTAL NUMBER OF OBSERVATIONS . . . .            85 
 RESIDUAL SUM OF SQUARES. . . . . . .   .522068E+07 
 R-SQUARE . . . . . . . . . . . . . .          .406 
 EFFECTIVE NUMBER OF OBSERVATIONS . .            84 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .621510E+05 
 RESIDUAL STANDARD ERROR. . . . . . .   .249301E+03  

 
The fitted equation for this model is 
 

 (7.14) 

with the estimate of the constant term not significantly different from zero at the 5% level.  
The residuals have been retained under the label RESP for diagnostic checking.  The ACF of 
the residual series does not indicate any anomalies. 
 

-->ACF   RESP.   MAXLAG IS 12. 
 

 TIME PERIOD ANALYZED . . . . . . . . .  2  TO    85 
 NAME OF THE SERIES . . . . . . . . . .         RESP 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .           84 
 STANDARD DEVIATION OF THE SERIES . . .     249.2195 
 MEAN OF THE (DIFFERENCED) SERIES . . .        .6841 
 STANDARD DEVIATION OF THE MEAN . . . .      27.1921 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .        .0252 
 
 AUTOCORRELATIONS  
 
  1- 12     .07  .03  .07 -.01 -.21 -.17 -.08 -.06 -.15 -.00  .09  .13 
  ST.E.     .11  .11  .11  .11  .11  .12  .12  .12  .12  .12  .12  .12 
   Q         .5   .5   .9  1.0  5.1  7.8  8.5  8.8 10.9 10.9 11.8 13.5 
 
          -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
            +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
  1    .07                      +    IXX  +                     
  2    .03                      +    IX   +                     
  3    .07                      +    IXX  +                     
  4   -.01                      +    I    +                     
  5   -.21                      XXXXXI    +                     
  6   -.17                     + XXXXI     +                    
  7   -.08                     +   XXI     +                    
  8   -.06                     +    XI     +                    
  9   -.15                     + XXXXI     +                    
 10    .00                     +     I     +                    
 11    .09                     +     IXX   +                    
 12    .13                     +     IXXX  +     

 
Based on the above fit and diagnostic check, we may conclude that an ARIMA(0,1,1) 

model (without a constant term) is an adequate model for PRODUCTN.  However, if we also 
use the OUTLIER paragraph as a diagnostic check, the following outliers are revealed. 
 -->OUTLIER   PRODUCT1.   TYPES ARE AO,IO,LS. 

  

t t(1 B)PRODUCTN 6.23 (1 .77B)a− = + −
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 INITIAL RESIDUAL STANDARD ERROR =   249.22 
 
  TIME    ESTIMATE   T-VALUE   TYPE 
    47    568.32      3.72      LS 
    24   -845.90     -4.01      IO 
    26   -651.29     -3.49      AO 
 
 ADJUSTED RESIDUAL STANDARD ERROR =   195.56 

 
A level shift (LS) outlier is detected at t=47, the time of the process change.  Two other 

outliers are also detected.  Based on this diagnostic check, we would be led to the intervention 
model used initially in Section 6.4 (with perhaps additional intervention components for t=24 
and t=26).  Hence we are directed toward the “correct” model. 

Alternatively, we could have estimated model PRODUCT1 using the OESTIM 
paragraph, rather than the ESTIM paragraph.  In this way the SCA System will 
simultaneously detect outliers and jointly estimate their effects with the MA parameter.  We 
may enter 

-->OESTIM   PRODUCT1.   METHOD IS EXACT. 
 

 THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN   1  THRU   85 
 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- PRODUCT1 
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING 
           VARIABLE   OR CENTERED 
                                         1 
 PRODUCTN   RANDOM     ORIGINAL     (1-B  ) 
 ----------------------------------------------------------------------- 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T 
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
  
   1  CONST             CNST      1      0     NONE     4.4042     .8804   5.00 
   2  THETA   PRODUCTN   MA       1      1     NONE      .9987     .0379  26.35 
 
 SUMMARY OF OUTLIER DETECTION AND ADJUSTMENT 
 
 ------------------------------------- 
  TIME    ESTIMATE   T-VALUE    TYPE 
 ------------------------------------- 
    24   -941.934     -6.45      TC 
    47    163.332      4.89      LS 
 ------------------------------------- 
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .            85 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .            84 
 RESIDUAL STANDARD ERROR (WITH OUTLIER ADJUSTMENT) . . .  0.203795E+03 
 RESIDUAL STANDARD ERROR (WITHOUT OUTLIER ADJUSTMENT). .  0.271831E+03  

 
The results of the OESTIM paragraph reveal two outliers, a TC at t=24 and an LS at 

t=47.  Moreover, with the incorporation of these outliers, the estimate of θ is close to 1.0, 
effectively cancelling the differencing operator.  We now will re-specify and re-fit the simpler 
model 

. (7.15) t tY a= µ +
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-->TSMODEL  PRODUCT2.   MODEL IS PRODUCTN=CONST+NOISE.  
 
-->OESTIM   PRODUCT2. 

 
 THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN   1  THRU   85 
 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- PRODUCT2 
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING 
           VARIABLE   OR CENTERED 
 
 PRODUCTN   RANDOM     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T 
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1  CONST             CNST      1      0     NONE  1856.1226   20.0614  92.52 
 
 SUMMARY OF OUTLIER DETECTION AND ADJUSTMENT 
 
 ------------------------------------- 
  TIME    ESTIMATE   T-VALUE    TYPE 
 ------------------------------------- 
    24   -800.962     -5.99      TC 
    47    420.947     14.05      LS 
 ------------------------------------- 
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .            85 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .            85 
 RESIDUAL STANDARD ERROR (WITH OUTLIER ADJUSTMENT) . . .  0.187163E+03 
 RESIDUAL STANDARD ERROR (WITHOUT OUTLIER ADJUSTMENT). .  0.360970E+03 

 
The estimation results indicate that the production data follow a simple mean model.  

Before t=47, the production varies around the mean level of 1856.  After t=47 this mean level 
increases to about 2277 (i.e., 1856+421).  There was some slight perturbation in the process at 
t=24. 

The fitted equation of the intervention model (7.12) implies the mean level is about 
1795 before t=47 and about 2277 (1794.5+483.1) thereafter.  The intervention results are in 
remarkable accord with the above fit (the higher mean level in PRODUCT2 prior to t=47 is 
attributed to the adjustment made for the TC detected at t=24).  We see that by use of the 
OESTIM paragraph, we both “discover” the intervention and produce a simpler model. 

7.4 Intervention Analysis in the Presence of Outliers  

In this section, we will demonstrate the use of outlier detection and adjustment in 
intervention analysis (see Chapter 6).  The essence of intervention analysis is to “isolate” the 
effect of an intervention from other occurrences and the underlying disturbance present in the 
series under study.  Within the framework of an intervention model, an observed series is 
described as the sum of various components.  These include the underlying ARIMA model 
and all known intervention effects. 
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As previously noted, undetected outliers in a time series can bias the parameter 
estimates of a model.  Hence outlier detection and adjustment are essential to the estimation 
of an intervention model.  By incorporating outlier detection within an intervention analysis, 
we can be more confident that we have not “missed” any important events that may influence 
the validity of our findings.  Moreover, outlier detection and adjustment may lead to changes 
in the parameter estimates and the significance levels of  intervention effects.  The latter may 
be the result of the improvement in the estimate of the residual standard deviation (causing a 
once not significant test statistic to become significant) or a change in the parameter estimate 
due to the adjustment of outlier effects. 

We illustrate the use of outlier detection and adjustment in intervention analysis by re-
estimating the last two intervention examples of Chapter 6. 

7.4.1   Example: The rate of change in the U.S. Consumer Price Index  

We will first consider the use of the OESTIM paragraph for the estimation of the 
intervention model employed for the monthly rate of change in the U.S. Consumer Price 
Index (see Section 6.5).  The time series was stored in the SCA workspace under the label 
RATECPI, and the intervention model used was 

t 1 t 2 t
1 BRATECPI PHASE1 PHASE2 a
1 B t
−θ

= ω +ω +
−

 

or equivalently,  
 

tθ  (7.16) 

where PHASE1 and PHASE2 were binary series generated to represent the periods at which 
Phase I and Phase II controls were in place.  The model described in (7.16) was specified 
through the TSMODEL paragraph and given the label CPIMODEL (see Section 6.5.3).  We 
can fit this model using the OESTIM paragraph by entering 
 

-->OESTIM   CPIMODEL.    METHOD IS EXACT. 
 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  CPIMODEL 
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING 
           VARIABLE   OR CENTERED 
                                         1 
   CPI      RANDOM     ORIGINAL     (1-B  ) 
                                         1 
  PHASE1    BINARY     ORIGINAL     (1-B  ) 
                                         1 
  PHASE2    BINARY     ORIGINAL     (1-B  ) 
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T 
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1    W1     PHASE1   NUM.      1      0     NONE     -.0027     .0013  -2.06 
   2    W2     PHASE2   NUM.      1      0     NONE     -.0010     .0011   -.86 
   3    TH      CPI      MA       1      1     NONE      .8665     .0317  27.35 

t 1 t 2 t(1 B)RATECPI (1 B)PHASE1 (1 B)PHASE2 (1 B)a− = ω − +ω − + −
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 SUMMARY OF OUTLIER DETECTION AND ADJUSTMENT 
 
 ------------------------------------- 
  TIME    ESTIMATE   T-VALUE    TYPE 
 ------------------------------------- 
    36      0.008      3.98      IO 
    57      0.007      3.38      AO 
   111      0.006      3.08      AO 
 ------------------------------------- 
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           234 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           233 
 RESIDUAL STANDARD ERROR (WITH OUTLIER ADJUSTMENT) . . .  0.199955E-02 
 RESIDUAL STANDARD ERROR (WITHOUT OUTLIER ADJUSTMENT). .  0.214010E-02  

 
Three outliers are detected and jointly estimated with the model parameters.  The 

estimates of  and  and  are virtually the same as those obtained in Section 6.5.  
However, by including the three detected outliers, the residual standard error decreases from 

1ω 2ω

.00214 to .00200, a reduction of about 7% in 

θ

aσ̂ .  Because of this reduction in the estimate of 
residual stan rror, the t-v lue for the ate of dard e a  estim 1ω  is now significant at the 5% level.  
By using OESTIM, a questionably significan ate has “become” significant. 

This is a clear illustration for the need to account for all possible spurious observations.  
The results obtained above are more valid than the ones obtained previously as we have more 
confidence that the intervention effects are not confounded with outlier effects and that the 
residual standard error is appropriately estimated. 

7.4.2   Example: Los Angeles ozone data  

As a second illustration of the use of the OESTIM paragraph for the estimation of an 
intervention model, we consider the intervention model used for the monthly average of the 
ozone (  level in downtown Los Angeles (see Section 6.6).  The data are stored in the 
variab ONE, and the intervention model employed was 

t estim

3O )
le OZ

12
2

t
−θ

 
or equivalently, 
 

t

More information regarding this model can be found in Section 6.6.  The above model was 
stored in the SCA workspace under the name OZONEMDL (see Section 6.6).  To estimate 
this model using the OESTIM paragraph, we may enter 
 

-->OESTIM  OZONEMDL.   METHOD IS EXACT. 
 

 THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN   1  THRU  216 
 

32 1
t 1 t t t12 12 12

(1 B)(1 B )OZONE INT1 INT2S INT2W a
1 B 1 B 1 B

ωω −θ
= ω + + +

− − −
 

12 12 12
t 1 t 2 t 3 t 1 2(1 B )OZONE (1 B )INT1 INT2S INT2W (1 B)(1 B )a− = ω − +ω +ω + −θ −θ  

 (7.17) 
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 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- OZONEMDL 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING 
           VARIABLE   OR CENTERED 
                                        12 
  OZONE     RANDOM     ORIGINAL     (1-B  ) 
                                        12 
  INTV1     BINARY     ORIGINAL     (1-B  ) 
 
  INTV2S    BINARY     ORIGINAL     NONE 
 
  INTV2W    BINARY     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T 
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1    W1     INTV1    NUM.      1      0     NONE    -1.5315     .1666  -9.20 
   2    W2     INTV2S   NUM.      1      0     NONE     -.2400     .0521  -4.61 
   3    W3     INTV2W   NUM.      1      0     NONE     -.0955     .0482  -1.98 
   4   TH1     OZONE     MA       1      1     NONE     -.2106     .0688  -3.06 
   5   TH2     OZONE     MA       2     12     NONE      .7627     .0412  18.51 
  
 SUMMARY OF OUTLIER DETECTION AND ADJUSTMENT 
 
 ------------------------------------- 
  TIME    ESTIMATE   T-VALUE    TYPE 
 ------------------------------------- 
    21      2.237      3.46      AO 
    39     -1.927     -3.52      TC 
    43     -1.889     -3.46      TC 
 ------------------------------------- 
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           216 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           204 
 RESIDUAL STANDARD ERROR (WITH OUTLIER ADJUSTMENT) . . .  0.703201E+00 
 RESIDUAL STANDARD ERROR (WITHOUT OUTLIER ADJUSTMENT). .  0.773795E+00 

 
Three outliers are detected: an AO at t=21 and temporary changes at t=39 and t=41.  

The positive value for the AO at t=21 corresponds to the extremely high ozone concentration 
recorded in September, 1956.  The two TC outliers at t=39 and t=43 both have negative signs.  
These outliers correspond to the unusually low ozone levels recorded in 1958.  The TC effects 
are observable in Figure 6.5.  It is uncertain what may be responsible for the low ozone level 
recordings in 1958, but we are sure it is not caused by the interventions under study.  We also 
observe that the inclusion of these three outliers reduces the estimate of aσ  from .774 to .703, 
a reduction of about 10%. 

If we compare the parameter estimates of (7.17) obtained using OESTIM above and 
ESTIM in Section 6.6, we observe that the point estimates of 2ω , 3ω ,  and 1θ 2θ  are 
approximately the same.  The estimates of 2ω  and 3ω  correspond to the second intervention, 
the regulations in engine designs.  We ere is an approxim te 0.24 unit reduction of 
ozone per year during the summer periods and a 0.10 unit reducti
periods.  These estimates are both significant at about the 5% le  
The standard errors of these estimates are larger in the ESTI ecause rger.  
Hence, the reduction in the winter period, 

 see th

3ˆ

a

M results b

on per year during the winter 
vel in the OESTIM results. 

aσ̂  is la
ω , is not significant at the 5 TIM 

results. 
% level in the ES
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The magnitudes of the estimate of 1ω  are different in the results of the OESTIM ( ω̂  = -
1.53) and of the ESTIM (  = -1.34) paragraphs.  The results of the OESTIM paragraph 
indicate the first intervention affects a permanent level reduction in ozone of about 1.53 units.  
This level reduction is only 1.34 units f ESTIM paragraph.  A smaller value is obtained 
in the ESTIM paragrap e TC at t=39 and t=43 are not accounted for.  That is, the 
estimate of  from the ESTIM paragraph is biased by the presence of outliers (the unusually 
low ozone levels) in 1958.  In the OESTIM paragraph, these outlier effects are accounted for.  
A more detailed discussion of intervention analysis with outlier adjustment can be found in 
Liu and Chen (1991). 

We see that the inclusion of the detection and adjustment of outliers in this example has 
a two-fold benefit.  First, a possible flaw in the analysis (confounding the low ozone level 
recordings of 1958 with the effect of the first intervention) is avoided.  Moreover, if outliers 
are not incorporated into the analysis, a potentially significant effect (

ω̂

h because th
or the 

1ω

3ω̂ ) is not revealed. 

7.5 Forecasting in the Presence of Outliers  

Depending upon the timing and the nature of an event, an outlier can substantially affect 
the forecasts of a model.  Forecasts are computed using the parameter estimates (obtained 
from all the data of the time series) and those observations near to the forecast origin that are 
necessary for the calculation of forecasts.  As a result, outliers that most affect forecasts are 
those at the end, or near the end, of the series.  

The OESTIM paragraph is useful for the detection and adjustment of outliers that can 
affect the parameter estimates of the underlying ARIMA model.  However, the effectiveness 
of outlier detection is more limited if outliers occur near the end of a time series.  Due to the 
nature of outliers, we often “require” a few observations after the time of the occurrence of an 
outlier in order to both detect it and identify its type.  For example, suppose the last 
observation of a series is an outlier.  We may be able to detect its presence (depending upon 
the size of its effect, ), but we cannot identify its type (i.e., AO, IO, LS, or TC) based on 
the data alone.  We ill be unable to do so empirically (i.e., based on data alone) until we 
have one or more additional observations.  The inability to empirically identify the type of the 
outlier at the end of a series will not affect parameter estimation for the ARMA model, but it 
can affect forecasting. 

The OFORECAST paragraph extends the outlier detection and adjustment  capabilities 
of the SCA System to the forecasting of a time series in the presence of outliers.  Unlike other 
forecasting capabilities that simply utilize the current parameter estimates and the data on 
hand to compute forecasts, the OFORECAST paragraph also performs its own outlier 
detection and adjustment.  As a result, it provides us with: 

(1) a closer scrutiny of the last few observations of a series, 

(2) the ability to incorporate our judgment on the nature of an outlier in the forecasting 
process, and 

iω
 w
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(3) the capability of effectively using updated information in forecasting without re-
estimating a model. 

More detailed discussions of forecasting with outliers can be found in Chen and Liu (1991). 

7.5.1   Outlier detection at the end of a series 

The OFORECAST paragraph uses the current estimates of the model parameters to 
derive the residuals of a series.  It then detects and adjusts for outliers before the forecasts are 
computed.  Forecasts are then computed using the estimated model with outlier adjustment.  
Usually the outliers detected are the same as those found by the OESTIM paragraph.  
However, the OFORECAST paragraph takes a more critical look at the end of the series than 
the OESTIM paragraph.  

The method used for outlier detection is the same in both paragraphs, but the 
OFORECAST paragraph reduces the critical value by 0.5 for the forecast origin (usually the 
end of the series) and the two observations preceding it.  In this manner, the paragraph is more 
sensitive to outliers at the end of the series (or the forecast origin) than the OESTIM 
paragraph.  We then have some assurance that forecasts are computed from both the “best” 
possible model and data.  

7.5.2   Handling end effects 

As noted above, when an outlier is the last observation of a series, it is not possible to 
identify its type.  However, its type is crucial to the forecasts that are made.  For example, an 
additive outlier will adversely affect the forecasts unless the last observation is properly 
adjusted for the AO effect.  If the last observation is determined to be an LS outlier, a 
permanent effect in all future forecasts is caused. 

The outlier type the OFORECAST paragraph assumes for the last observation of a series 
is specified in the TYPE sentence.  The TYPE sentence specifies the types of outliers to detect 
and other special actions to take.  The default is to detect all types of outliers (i.e., AO, IO, LS 
and TC).  A keyword specified after the slash (/) in the TYPE sentence dictates the action to 
take if the last observation of a series is detected to be an outlier.   If AO is specified, then an 
outlier at the end of a series is treated as an additive outlier.  Similar actions are taken if IO, 
TC or LS is specified.  If no specification is made, then the last observation is not treated as 
an outlier for forecasting purposes, even if it is detected as an outlier.  This is the default 
employed for forecasting using the OFORECAST paragraph.  In forecasting, treating an 
outlier at the end of a series as an ordinary observation is the same as assuming that it is an IO 
(see Ledolter 1989, Hillmer 1984, or Chen and Liu 1991). 

It may be the case that we have relevant information of the type of outlier at the time of 
forecasting; or we may wish to compute forecasts under a particular type of outlier that 
represents a “particular scenario”.  The OFORECAST paragraph permits us to specify how 
we want the outlier at the end of a series to be handled (see the description of the TYPE 
sentence in the syntax description at the end of this chapter). 
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7.5.3   Forecasts with updated data 

Sometimes it is the case that forecasts are updated as new data become available, but we 
do not wish to re-estimate the parameters of the underlying model.  The OFORECAST 
paragraph provides us with the capability to re-use the same estimated parameter values with 
updated data.  We can use the paragraph to forecast from all periods since the model was last 
estimated.  In this manner, the forecasts may be compared continually with the actual 
occurrences.  The OFORECAST paragraph will make automatic adjustment for any new 
outliers detected based on the specified model before a forecast is made from the last time 
origin (i.e., the last available data point). 

7.5.4  Example:  Airline data 

To illustrate the OFORECAST paragraph, we consider the monthly totals (in thousands) 
of international airline passengers from January 1949 through December 1960.  The data are 
Series G of Box and Jenkins (1970), and we modeled previously in Section 3 of Chapter 5.  
We have 144 observations in this series, but for this illustration we will reserve the last 12 
observations for post-sample comparisons.  As in our previous ARIMA modeling of the 
series, we will use the natural logarithm of the monthly totals to obtain a more homogenous 
variance.  These values are stored in the SCA workspace in the variable LNAIRPAS. 

In Section 5.3, we determined an appropriate model for this data to be an ARIMA 
 that is, 

 
t . (7.18) 

The above model was specified using the TSMODEL paragraph and held in the SCA 
workspace under the model name AIRLINE.  To estimate this model using the OESTIM 
paragraph (and only observations 1 through 132), we enter 
 

-->OESTIM   AIRLINE.   METHOD IS EXACT.   SPAN IS 1,132. 
 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- AIRLINE 
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING 
           VARIABLE   OR CENTERED 
                                         1      12 
  LNAIRPAS  RANDOM     ORIGINAL     (1-B  ) (1-B  ) 
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T 
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1   TH1     LNAIRPAS  MA       1      1     NONE      .3180     .0875   3.63 
   2   TH2     LNAIRPAS  MA       2     12     NONE      .4824     .0773   6.24 
 

12(0,1,1)x(0,1,1) ;

12 12
t 1 2(1 B)(1 B )LNAIRPAS (1 B)(1 B )a− − = −θ −θ
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 SUMMARY OF OUTLIER DETECTION AND ADJUSTMENT 
 
 ------------------------------------- 
  TIME    ESTIMATE   T-VALUE    TYPE 
 ------------------------------------- 
    29      0.095      4.08      AO 
    54     -0.097     -3.55      LS 
    62     -0.080     -3.44      AO 
 ------------------------------------- 
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           132 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           119 
 RESIDUAL STANDARD ERROR (WITH OUTLIER ADJUSTMENT) . . .  0.332230E-01 
 RESIDUAL STANDARD ERROR (WITHOUT OUTLIER ADJUSTMENT). .  0.384778E-01 

 
Three outliers are detected, none of them are near to the forecast origin we will use 

(t=132).  By correcting for these outliers, aσ̂  is reduced by about 14%.  We now use the 
OFORECAST paragraph to compute one-step-ahead forecasts for the forecast origins 132 
through 143 by entering 

-->OFORECAST  AIRLINE.   ORIGINS ARE 132 TO 143.   NOF IS 1.  @ 
-->      TYPES ARE AO,IO,LS,TC/AO. 

 
We include the TYPES sentence to specify that we wish to detect all possible types of 
outliers.  The specification of AO after the slash (/) indicates that we want an outlier detected 
at the forecast origin to be treated as an additive outlier. 
 

We are provided with a sequential summary of the detected outliers and adjustments that 
are made at each forecast origin before forecasts are made.  For example, at our first forecast 
origin (t = 132), we obtain 

 RESIDUAL STANDARD ERROR (USES DATA UP TO THE FIRST FORECAST ORIGIN)= .33223E-01 
 
  TIME    ESTIMATE   T-VALUE    TYPE 
    29       .095      4.08      AO   
    54      -.097     -3.55      LS   
    62      -.080     -3.44      AO   
 
 ---------------------------------- 
   1 FORECASTS, BEGINNING AT  132 
 ---------------------------------- 
 
  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
   133      6.0410       .0332      6.0331 

 
Here the outliers detected are the same as those detected by the OESTIM paragraph.  The 
computed forecast for t = 133 (with the indicated adjustments) is 6.0410.  The information 
provided for forecast origin t = 133 is  
 

  RESIDUAL STANDARD ERROR (USES DATA UP TO THE FIRST FORECAST ORIGIN)= .33223E-01 
 
  TIME    ESTIMATE   T-VALUE    TYPE 
    29       .095      4.08      AO   
    54      -.097     -3.55      LS   
    62      -.080     -3.44      AO   
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 ---------------------------------- 
   1 FORECASTS, BEGINNING AT  133 
 ---------------------------------- 
 
  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
   134      5.9846       .0332      5.9687 

We see that the same outliers are detected when the forecast origin is t = 134.  However, an 
additional outlier is detected when the forecast origin is t = 135.  Note that the detected outlier 
at t=135 has a t-statistic of 2.79 (in absolute value), which is greater than 2.5, but smaller than 
3.0. 

 RESIDUAL STANDARD ERROR (USES DATA UP TO THE FIRST FORECAST ORIGIN)= .33223D-01 
 
  TIME    ESTIMATE   T-VALUE    TYPE 
    29      0.095      4.08      AO 
    54     -0.097     -3.55      LS 
    62     -0.080     -3.44      AO 
   135     -0.093     -2.79      AO 
 
 ---------------------------------- 
   1 FORECAST , BEGINNING AT  135 
 ---------------------------------- 
 
  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
   136      6.1037      0.0332      6.1334 

 
The detected outlier is treated as an AO according to our specifications.  The forecast for t = 
136 is now based on the estimated model and the detected outliers.  No additional outliers are 
detected in the subsequent forecast origins, and the outlier at t = 135 is continually detected as 
an additive outlier. 
 

The summary of the one-step-ahead forecasts from the OFORECAST paragraph, the 
actual values, the forecast errors, and the resultant root mean squared error (RMSE) for the 
post-sample period are provided in Table 7.2.  Also presented in Table 7.2 are the one-step-
ahead forecasts we obtain for time indices 133 through 144 if we sequential employ the 
ESTIM and FORECAST paragraph in lieu of OESTIM and OFORECAST.  The parameter 
estimates obtained by ESTIM differ slightly from those obtained in Section 5.3.2 (since only 
the first 132 observations are used here).  The fitted model in the restricted time span is 

with  = .0362.  The actual values for the “forecast period” are also listed. 
  

12 12
t t(1 B)(1 B )LNAIRPAS (1 0.3488B)(1 0.5624B )a− − = − −  

σ̂
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Table 7.2   Forecasts of the airline data in the post-sample period 
 
 OFORECAST paragraph FORECAST paragraph 
 Actual Step-ahead Forecast Step-ahead Forecast 
   t  value  forecast error  forecast   error 
 
 133 6.0331  6.0410  -0.0079  6.0386  -0.0055 
 134 5.9687  5.9846  -0.0159  5.9851  -0.0164 
 135 6.0379  6.1306  -0.0927  6.1311  -0.0932 
 136 6.1334  6.1037   0.0297  6.0440   0.0894 
 137 6.1570  6.1715  -0.0145  6.1429   0.0141 
 138 6.2823  6.3052  -0.0229  6.2971  -0.0148 
 139 6.4329  6.4214   0.0115  6.4160   0.0169 
 140 6.4069  6.4446  -0.0377  6.4397  -0.0328 
 141 6.2305  6.2343  -0.0038  6.2391  -0.0086 
 142 6.1334  6.1018   0.0316  6.1030   0.0304 
 143 5.9661  5.9960  -0.0299  5.9945  -0.0284 
 144 6.0684  6.0810  -0.0126  6.0825  -0.0141 
       --------     -------- 
 RMSE .0343 .0416 
 
 

We see that the post-sample RMSE for the forecasts from the OFORECAST paragraph 
is about 17.5% less than that from the FORECAST paragraph.  The difference is almost 
entirely caused by the result of the one-step-ahead forecast for t = 136.  We were informed by 
the OFORECAST paragraph that an outlier occurs at t = 135.  As a result, the one-step-ahead 
forecast from either the OFORECAST or FORECAST paragraph is larger than the actual 
value by about the same amount.  However, by detecting the outlier at t=135, the 
OFORECAST for t = 136 is much more accurate than that from the FORECAST paragraph.  
Hence the OFORECAST paragraph is able to adapt to the occurrence of a new outlier and 
improve the accuracy of the forecasts. 

7.6 Outlier Detection with a Known Model:  The OFILTER Paragraph 

The OFILTER paragraph detects and adjusts for outliers based on a model that has been 
estimated previously.  The parameter estimates are not revised in this paragraph.  The 
OFILTER paragraph can then be used for a number of purposes including:  

 
(1)  Derivation of an adjusted residual series or adjusted observed series 
 

The OFILTER paragraph permits us to obtain an adjusted residual series or an adjusted 
observed series without the re-estimation of a model.  This can save computer time, 
particularly in the case when new data are acquired for the same series.  The results from the 
OFILTER paragraph and the adjusted residual series can be used to check for outliers and the 
validity of the model. 
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(2)  Outlier detection for a fitted model 
 

As noted previously, the OFILTER paragraph can be used in lieu of the OUTLIER 
paragraph to detect outliers in a model estimated using the ESTIM paragraph.  Thus, the 
OFILTER paragraph can be used as a diagnostic tool, much like the OUTLIER paragraph.  In 
this way we do not need to expend the computation time required to detect, adjust, and 
estimate the parameters using the OESTIM paragraph.  In addition, the OFILTER paragraph 
can detect a TC that the OUTLIER paragraph cannot.  

 
(3)  Quality control of a time dependent process 
 

In some situations a time dependent process may be monitored to assure that the 
attributes or the yield of a process are in a state of statistical control.  In most situations, it is 
not necessary to continually re-fit a model as new data are acquired.  As a result, a time series 
model may be estimated infrequently, but it may be continually employed for control 
purposes.  

Alwan and Roberts (1988) discuss how the residuals from a fitted time series model can 
be used to highlight special causes (Deming, 1982) of a process.  The OFILTER paragraph 
provides for the application of a fitted model as more data are acquired.  We may then be able 
to locate the occurrence of a special cause in the newly acquired data  by examining any new 
outliers that are detected.  We can also obtain an adjusted residual series for further study.  

Example:  Airline data 
 

To illustrate the OFILTER paragraph, we will consider the airline data used in the 
previous section.  The model AIRLINE was fit using the OESTIM paragraph based on the 
first 132 observations of the series LNAIRP.  Three outliers were identified at t=29, 54 and 
62.  We can now apply this model to the entire time series.  We will store the residuals 
derived from the OFILTER paragraph in the variable ADJRES and the adjusted observed 
series (adjusted for detected outliers) in the variable ADJY.  We can obtain this by entering  

 -->OFILTER  AIRLINE.   NEW ARE ADJRES, ADJY.   METHOD IS EXACT.   
 

 THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN   1  THRU  144 
  
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- AIRLINE 
 -----------------------------------------------------------------------   
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING 
           VARIABLE   OR CENTERED 
                                         1      12 
  LNAIRP    RANDOM     ORIGINAL     (1-B  ) (1-B  ) 
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T 
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1   TH1     LNAIRP    MA       1      1     NONE      .3180     .0875   3.63 
   2   TH2     LNAIRP    MA       2     12     NONE      .4824     .0773   6.24 
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 SUMMARY OF OUTLIER DETECTION AND ADJUSTMENT 
 
 -------------------------------------   
 
  TIME    ESTIMATE   T-VALUE    TYPE 
 
 -------------------------------------  
    29      0.094      4.30      AO 
    39     -0.078     -3.06      LS 
    54     -0.097     -3.80      LS 
    62     -0.075     -3.42      AO 
   135     -0.104     -4.09      AO 
 ------------------------------------- 
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           144 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           131 
 RESIDUAL STANDARD ERROR (WITH OUTLIER ADJUSTMENT) . . .  0.311761E-01 
 RESIDUAL STANDARD ERROR (WITHOUT OUTLIER ADJUSTMENT). .  0.388903E-01  

 
In addition to the previously detected outliers at t=29, 54, and 62, outliers are detected at 

t=135 and t=39.  The outlier at t=39 is marginal (t value = -3.06) and is caused by the 
reduction in the estimate of  (from 0.0332 to 0.0312).  This example shows that the 
OFILTER pa ers as new data are added to the time series. 

7.7 Modeling and Forecasting Time Series in the Presence   
 of Missing Observations 

One common assumption of time series analysis is that the series to be analyzed has no 
missing observations.  In practice, missing data may occur in a time series.  For example, 
there may be occasions in which no data are generated (e.g., occasional production line shut 
downs due to equipment malfunctions, re-tooling, or the like) or data may simply not be 
recorded, or lost.  Often the actual effect of missing data may be slight.  A simple time series 
plot of the data may indicate a likely (small) range of values for a missing data point, based 
either on the values assumed by neighboring points or points of the same periodicity. 

However, most modeling procedures tacitly assume all data are present.  The procedures 
will be still usable if the missing observations are “patched” appropriately.  As a result, ad hoc 
methods are often employed to recode missing observations with “suitable” replacement 
values.  Unfortunately, software usually does not possess the “visual extrapolation” ability of 
a time series analyst.  Many packages are limited to modeling or estimating only the longest 
sequential run of non-missing observations.  The SCA System provides the PATCH 
paragraph for the ad hoc replacement of missing observations before

aσ̂
ragraph can be used to detect outli

 the use of traditional 
modeling, estimation and forecasting procedures.  More complete information on the PATCH 
paragraph can be found in Appendix C. 

As noted previously in Section 5.4.2, new capabilities of the SCA System permit a 
direct analysis of a time series with missing data. Information necessary for model 
identification can be obtained using the ACF and PACF paragraphs provided the logical 
sentence MISSING is included in the paragraph. In this manner, the SCA System 
“anticipates” the presence of missing observations and makes proper “accommodations” 
whenever missing data are encountered. A tentatively identified model can then be estimated 
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and forecasted using the OESTIM and OFORECAST paragraphs, respectively. The OESTIM 
paragraph will provide estimates of missing values and will also automatically detect and 
estimate outliers in the time series jointly with model parameters. In the remainder of this 
section, we will illustrate the handling of missing data by the OESTIM and OFORECAST 
paragraphs. 

7.7.1   Characterization and estimation of missing data 

A natural characterization for a missing value is as an additive outlier (AO).  The AO 
characterization has been employed by a number of authors including Ljung (1989a, 1989b) 
and Liu and Chen (1991).  Recall (see Section 7.1.1) if we assume that an outlier occurs at 
time t=T, we can represent the series we observe by the model 

. (7.18) 

The value  represents the amount of deviation from the “true” value of   In this case 
Chen and Liu (1990) have shown that the adjusted value for  (i.e., after removing the 
outlier effect from  is: 
 

(T)
t t A tY Z P= +ω

Aω TZ .

TY
 TY )

n T j

j

− + −

π  (7.19) 

 
The adjusted value in (7.19) is an interpolated value based on the observations of the series 
preceding and following   The adjusted value has nothing to do with the observation   
This suggests we may be able to estimate missing data in a time series by treating any missing 
value as an AO. 
 

The procedure of Chen and Liu (1991) that utilizes (7.19) is iterative.  To begin the 
iteration, tentative values are assigned to the missing data.  Equation (7.19) is then employed 
to estimate the missing value.  The estimated missing value is only dependent upon the 
estimates of the model parameters and the observed values before and after it, but is not 
dependent upon the patching value itself.  It can be shown that the estimate given in (7.19) is 
the conditional expectation of the missing value given the observed values and the model 
parameters.  This implies that the procedure optimally employs all the relevant information to 
estimate the missing value.  When a consecutive sequence of missing data occurs, the 
estimated missing values may also be obtained based on the observed values and the 
estimated model parameters. 

As noted above, the iterative estimation procedure requires a tentative initial value for a 
missing observation.  The SCA System uses an intuitive initial “patching” value.  If s 
missing, the average of  and 
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seasonal (i.e., first order) differencing is needed.  If seasonal differencings are need
the average value of d 

ed, then 
T 1−  anY T 1Y +  is used, where i is the minimum value of the s

differencing orders em ilar patching scheme is used if consecutive observations 
are missing.  

easonal 
ployed.  A sim
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7.7.2   Example:  Airline data 

We now illustrate the modeling of a time series with missing observations, and contrast 
results with those obtained when no data are missing.  To accomplish this, we will use a data 
set that has no missing values, then “insert” missing values in various positions.  Specifically, 
we consider the monthly totals (in thousands) of international airline passengers from January 
1949 through December 1960.  The data are Series G of Box and Jenkins (1970), and have 
been used previously in Section 5.3 and 7.5.4.  The logged values of this series are held in the 
SCA workspace in the variable LNAIRPAS.  As in Section 7.5.4, we will reserve the last 12 
observations for a post-sample comparison of forecasts. 

Analysis with no missing data 
 

In section 5.3 we showed that an appropriate model for this time series is an ARIMA 
 that is,  

t . (7.20) 

The identification of the above model was based on the ACF of .  This ACF 
will be shown later, together with the ACF of the series with inserted missing observations. 
 

In Table 7.3 we summarize the estimation results of this model.  In using the OESTIM 
paragraph, we both detect outliers in the series and then estimate their effects jointly with 
ARMA parameters. 

Table 7.3   Estimation results for the airline model (7.20) using 
  conditional and exact likelihood functions and the 

ESTIM and OESTIM paragraphs (standard errors of 
estimates are in parentheses). 

   
 Outlier summary (if any) 

   
Paragraph Method 

12(0,1,1)x(0,1,1) ;
12 12

t 1 2(1 B)(1 B )LNAIRPAS (1 B)(1 B )a− − = −θ −θ

12
t(1 B)(1 B )Y− −

1θ̂  2θ̂  aσ̂  t Type Estimate t-value 
   
ESTIM Conditional  .327  .578 .0368 
  (.087) (.079) 
 
OESTIM Conditional  .275  .540 .0342  29 AO  .094  3.90 
  (.090) (.083)   54 LS -.095 -3.29 
      62 AO -.080 -3.35 
 
ESTIM Exact  .348  .563 .0362 
  (.086) (.073) 
 
OESTIM Exact  .318  .482 .0332  29 AO  .095  4.08 
  (.088) (.077)   54 LS -.097 -3.55 
      62 AO -.080 -3.44 
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aσ̂  For both the conditional and exact likelihood methods, the use of OESTIM reduces 
by 9%.  Three outliers are detected at time indices 29, 54 and 62.  

Analysis with missing data 
 

To illustrate the modeling of a univariate time series in the presence of missing data, we 
will re-analyze the above airline data after we recode the values of LNAIRPAS at t=48, 70 
and 110 to the SCA internal missing value code (the actual recoding is not shown).  A 
tentative model for LNAIRPAS can be identified based on the ACF of the series.  We can 
obtain the ACF of this modified series (i.e., with missing data) by simply entering 

 -->ACF  LNAIRPAS.  DFORDER IS 1, 12.  MISSING.  
 
The PACF can be obtained in like fashion.  The logical sentence MISSING is included so that 
ACF is computed in the usual manner except terms involving missing values are excluded.  In 
so doing, the effective number of observations used in the computation of a lagged 
autocovariance is dependent on the number of terms used in the computation at this specific 
lag.  If the MISSING sentence is not specified, the ACF is computed using the data span that 
begins with the first non-missing observation and ends with the observation that precedes the 
first missing value encountered (here t=48).  The ACF pattern for all data and for the 
modified series are given in Figure 7.9. 
 

Figure 7.9   ACF of LNAIRPAS 
 

No missing data 
 
 -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
   +----+----+----+----+----+----+----+----+----+----+ 
                            I 
 1   -.34          XXXXX+XXXI   +                      
 2    .11              +    IXXX +                     
 3   -.20              XXXXXI    +                     
 4    .02              +    IX   +                     
 5    .06              +    IX                         
 6    .03              +    IX                         
 7   -.06              +   XI                          
 8    .00              +    I                  
 9    .18              +    IXXXX+                     
10   -.08              +  XXI    +                     
11    .06              +    IXX  +                     
12   -.39         XXXXX+XXXXI    +                     
13    .15             +     IXXXX +                    
14   -.06             +    XI     +                    
15    .15             +     IXXXX +                    
16   -.14             +  XXXI     +                    
17    .07             +     IXX   +                    
18    .02             +     I     +                    
19   -.01             +     I     +                    
20   -.12             +  XXXI     +                    
21    .04             +     IX    +                    
22   -.09             +   XXI     +                    
23    .22             +     IXXXXXX                    
24   -.02             +     I     +                    
25   -.10             +  XXXI     +                    
26    .05             +     IX    +                    

Missing data at t = 48, 70 and 110 
 
 -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
   +----+----+----+----+----+----+----+----+----+----+ 
                            I 
 1   -.39         XXXXXX+XXXI   +                      
 2    .10              +    IXX  +                       
 3    .20              XXXXXI    +             
 4    .03              +    IX   +                     
 5    .04              +    IX   +                     
 6    .02              +    IX   +                     
 7   -.05              +   XI    +                     
 8   -.03              +   XI    +                     
 9    .21              +    IXXXXX                     
10   -.10             +   XXI     +                    
11    .09             +     IXX   +                    
12   -.38          XXX+XXXXXI     +                    
13    .14             +     IXXXX +                    
14   -.05             +    XI     +                    
15    .15             +     IXXXX +                    
16   -.15             + XXXXI     +                    
17    .12             +     IXXX  +                    
18    .04             +     IX    +                    
19   -.04             +    XI     +                    
20   -.13             +  XXXI     +                    
21    .05             +     IX    +                    
22   -.09             +   XXI     +                    
23    .23             +     IXXXXXX                    
24   -.04            +     XI      +                   
25   -.09            +    XXI      +                   
26    .06            +      IX     +                   

12(1 B)(1 B )− −
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27   -.03             +    XI     +                    
28    .05             +     IX    +                    
29   -.02             +     I     +                    
30   -.05             +    XI     +                    
31   -.05             +    XI     +                    
32    .20             +     IXXXXX+                    
33   -.12             +  XXXI     +                    
34    .08             +     IXX   +                    
35   -.15             + XXXXI     +                    
36   -.01             +     I     +     

27   -.04            +     XI      +                   
28    .05            +      IX     +                   
29   -.05            +     XI      +                   
30   -.05            +     XI      +                   
31   -.05            +     XI      +                   
32    .25            +      IXXXXXX+                   
33   -.15            +  XXXXI      +                   
34    .07            +      IXX    +                   
35   -.14            +   XXXI      +                   
36   -.03            +     XI      +   

 
We observe that the ACFs of both time series provide the same information for the 

identification of a tentative model.  We can now specify the airline model (7.20) and use the 
OESTIM paragraph for its estimation.  That is, we enter (some SCA output is suppressed for 
presentation purposes) 

 -->TSMODEL  AIRLINE. MODEL IS LNAIRPAS(1,12)=(1-TH1*B)(1-TH2*B**12)NOISE 
 

 -->OESTIM   AIRLINE.  SPAN 1,132. 
 

 THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN   1  THRU  132 
 
 THE   48-TH  OBSERVATION IS RECODED TO     5.20765     
 THE   70-TH  OBSERVATION IS RECODED TO     5.48249     
 THE  110-TH  OBSERVATION IS RECODED TO     5.77096     
 
 THE AVERAGE OF THE OBSERVATIONS THAT ARE 12  TIME PERIOD(S) 
 APART ARE USED AS AN INITIAL PATCH FOR THE MISSING VALUE(S) 
 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- AIRLINE  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1      12 
  LNAIRPAS  RANDOM     ORIGINAL     (1-B  ) (1-B  )  
 ----------------------------------------------------------------------- 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1   TH1     LNAIRPAS  MA       1      1     NONE      .3356     .0887   3.78  
   2   TH2     LNAIRPAS  MA       2     12     NONE      .5317     .0825   6.44  
 
 SUMMARY OF MISSING OBSERVATION ADJUSTMENT 
 --------------------- 
  TIME    ESTIMATE  
 --------------------- 
    48      5.265 
    70      5.441 
   110      5.762 
 --------------------- 
 
 SUMMARY OF OUTLIER DETECTION AND ADJUSTMENT 
 ------------------------------------- 
  TIME    ESTIMATE   T-VALUE    TYPE 
 ------------------------------------- 
    29       .093      3.79      AO   
    54      -.095     -3.37      LS   
    62      -.081     -3.32      AO   
 ------------------------------------- 
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 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           132 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           119 
 RESIDUAL STANDARD ERROR (WITH OUTLIER ADJUSTMENT) . . .   .342099E-01 
 RESIDUAL STANDARD ERROR (WITHOUT OUTLIER ADJUSTMENT). .   .390480E-01 

 
We are informed that the initial estimate of  is 5.20765, the average of  and 

(since the only seasonal difference is 12).  Sim  and  are recoded to 5.48249 and 
5.77096, respectively.  The final estimates for  and  are 5.265, 5.441 and 5.762, 
respectively.  The actual values for these observations are 5.268, 5.434 and 5.762, 
respectively.  Hence the missing values have been estimated appropriately.  

The conditional estimates of 

 48Y
ilarly, 

48Y , Y

36Y 60Y  
70Y

70

110Y
110Y

1θ  and 2θ  are .336 and .532, respectively; and are in 
agreement with the conditional estim tes displayed in Table 7.3.  The outliers detected are the 
same as before, and  is reduced by 9%

Using OESTIM with the conditional algorithm accomplishes two tasks.  First, we obtain 
good initial parameter estimates if we ultimately wish to use the exact algorithm.  Second, all 
missing data of LNAIRPAS are now estimated and recoded to the estimated values indicated 
in the above output.  We can now use the exact algorithm to obtain estimates of  and 

a
aσ̂ , as before.  

1θ 2θ  by 
entering  

-->OESTIM  AIRLINE.   METHOD IS EXACT.   SPAN 1,132. 
 
We obtain the following results: 
 

 THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN   1  THRU  132 
  
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- AIRLINE  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1      12 
  LNAIRPAS  RANDOM     ORIGINAL     (1-B  ) (1-B  )  
 ----------------------------------------------------------------------- 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1   TH1     LNAIRPAS  MA       1      1     NONE      .3244     .0873   3.72  
   2   TH2     LNAIRPAS  MA       2     12     NONE      .4770     .0775   6.16  
 
 SUMMARY OF OUTLIER DETECTION AND ADJUSTMENT 
 ------------------------------------- 
  TIME    ESTIMATE   T-VALUE    TYPE 
 ------------------------------------- 
    29       .095      4.08      AO   
    54      -.097     -3.57      LS   
    62      -.080     -3.45      AO   
 ------------------------------------- 
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           132 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           119 
 RESIDUAL STANDARD ERROR (WITH OUTLIER ADJUSTMENT) . . .   .332143E-01 
 RESIDUAL STANDARD ERROR (WITHOUT OUTLIER ADJUSTMENT). .   .384971E-01 

 
The results are in accord with those presented in Table 7.3.  Note that no missing values 

are estimated here since they have already been estimated and recoded to non-missing values 
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in the previous use of OESTIM.  If we desire, we can employ the EXACT algorithm directly 
after the model specification paragraph (TSMODEL) instead of the sequential use of the 
conditional and exact algorithms.  In such a case, we may affect the ARMA estimates slightly, 
and may also affect the outliers detected, their type, and their estimated effects.  Differences 
are due to the fact that the exact algorithm is more sensitive to initial patching values and 
outliers. 

It is also possible to obtain the estimates of missing data without performing outlier 
adjustment in the OESTIM paragraph.  To accomplish this task, the sentence 
OADJUSTMENT IS NONE must be included in the OESTIM paragraph. 

7.7.3   Forecasting with missing data 

Once a model has been estimated using the OESTIM paragraph, we can compute 
forecasts from it using the OFORECAST paragraph.  The OFORECAST paragraph provides 
us with the capability to re-use estimated parameter values with updated data.  In this manner, 
forecasts may be compared continually with actual occurrences, and the OFORECAST 
paragraph will make automatic adjustment for any new outliers detected based on the 
specified model (see Section 7.5). 

 As in Section 7.5.4, we illustrate the effectiveness of the OESTIM paragraph in 
handling and recoding missing data, we consider one-step-ahead forecasts from time origins 
132 through 136 for the estimated model of the airline data.  We use both the original series 
and the modified series with estimated missing data.  We compute forecasts, and perform 
outlier detection and adjustment during the post-sample period using the OFORECAST 
paragraph.  To obtain these results, we may enter 

-->OFORECAST  AIRLINE.  ORIGINS ARE 132 TO 136.  NOFS IS 1.  @  
-->     TYPES ARE AO,IO,LS,TC/AO. 

 
The output produced by the above paragraph for this data set is similar to that shown in 

Section 7.5.4 and is not shown here.  The differences between the results for outlier detection 
and adjustment using the estimated model (7.20) with the original airline data and the 
modified airline data (after recoding the missing observations with their estimates) are slight, 
and are due to the different estimates obtained for 1θ  and 2θ .  A summary of outliers detected 
and one-step-ahead forecasts for both tim able 7.4. 

 
 
  

e series is given in T



 OUTLIER DETECTION AND ADJUSTMENT 7.35
   

Table 7.4    Summary of outlier detection and forecasts for the airline model 
   of LNAIRPAS (original series and modified series) 
   

(A)  Outliers detected up to the forecast origins at t=132, 133 and 134 
       For original LNAIRPAS             For modified LNAIRPAS 
   ----------------------------   ------------------------------- 
    t  TYPE  ESTIMATE  t-value       t  TYPE  ESTIMATE  t-value 
   ----------------------------   ------------------------------- 
   29   AO     .095     4.08        29   AO      .095     4.08 
   54   LS    -.097    -3.57        54   LS     -.097    -3.55 
   62   AO    -.080    -3.44        62   AO     -.080    -3.45   

 
(B)  Outliers detected up to the forecast origins at t=135 and 136 

       For original LNAIRPAS      For modified and recoded LNAIRPAS 
   ----------------------------   -------------------------------- 
    t  TYPE  ESTIMATE  t-value       t  TYPE  ESTIMATE  t-value 
   ----------------------------   -------------------------------- 
   29   AO     .095     4.08        29   AO      .095     4.08 
   54   LS    -.097    -3.57        54   LS     -.097    -3.55 
   62   AO    -.080    -3.44        62   AO     -.080    -3.45 
  135   AO    -.093    -2.79       135   AO     -.093    -2.80 

 
(C)  One-step-ahead forecast summary (standard error = .0332 in all cases) 

     Forecast  Actual    Forecasted value for LNAIRPAS using 
      Origin   Value     Original Data     Modified Data   
    ---------------------------------------------------------- 
       132     6.0331        6.0410            6.0409 
       133     5.9687        5.9846            5.9846 
       134     6.0379        6.1306            6.1308 
       135     6.1334        6.1037            6.1038 
       136     6.1570        6.1715            6.1716 

 

7.8 Other Related Topics 

This section provides a brief overview of topics related to outlier detection and 
adjustment.  The material presented in this section can be considered “advanced” or of 
occasional use.  As a consequence, this section can be skipped, and referenced as necessary.  
The material presented, and the section containing it are: 

Section Topic 
 
7.8.1 Effect of an outlier on a filtered “residual” series when ARMA parameters are 

known 
 
7.8.2 Outline of the outlier detection and adjustment procedure of the OESTIM 

paragraph 
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7.8.1 Effect of an outlier on a filtered “residual” series when ARMA parameters 
are known 

In Section 7.2.1, we consider the case that the parameters of an underlying ARIMA 
model are known.  In order to observe the effect of an outlier on a residual series, the 
following filtered series was considered: 

Y , 

where π(B) is the polynomial operator in the π-weights of the ARIMA model.  The values of 
et become the residuals of the fitted model if the above π-weights are computed from an 
estimated ARIMA model rather than from known parameters. 
 

If we have a single outlier at time t = T, then  can be re-written according to the type 
of outlier present.  Specifically, 

O

O  (7.20) 
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The et series can also be expressed as 
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and for T+k (k = 1, 2, . . . , n-T) the value for x  is 

t T≤

t

; the value 1 for t = T; 

 

 (7.22) 

   

  

 
More information regarding the values in (7.22) can be found in Chen and Liu (1990). 
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for an IO: 0
k

j
j 1

for an LS: 1
=

− π∑
 k 1−

k k j
j k

j 1

for a TC: −

=

δ − δ π − π∑  
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7.8.2 Outline of outlier detection and adjustment procedure of the OESTIM 
paragraph 

A summary of the steps employed in the outlier detection and adjustment procedure 
used in the OESTIM paragraph is given below.  A more complete discussion of this detection 
and estimation procedure is found in Chen and Liu (1990). 

Stage 1  (initial detection and estimation)  
 

(1.1) Estimate the identified ARMA model using the most recently adjusted 
observed series.  (The procedure begins with no adjustment.)  Compute a 
residual series. 

 
(1.2) Employ the method described in Section 7.2.2 to determine if there is an 

outlier in the current residual series. 
 

(1.3) If a potential outlier is discovered, remove its postulated effect from the 
residuals and repeat step (1.2).  Otherwise, proceed to (1.4). 

 
(1.4) If no outlier has been discovered in the residuals of the original data, then we 

are done and the series is free from outlier effects.  However, if an outlier has 
been found, then adjust the observed data and repeat (1.1) - (1.3).  Continue to 
adjust the data and repeat (1.1) - (1.3) until no new outliers are found.  Now 
proceed to Stage 2. 

 
Stage 2  (joint estimation of outlier effects) 
 

(2.1) Estimate the effects of the existing identified outliers using a multiple 
regression model. 

 
(2.2) Standardize the estimated effects.  If the smallest (in absolute value) of these 

standardized effects is less than the critical level used in outlier detection (1.2), 
then delete the outlier from the existing set and return to (2.1).  Otherwise 
proceed to (2.3). 

 
(2.3) Obtain an adjusted set of observations based only on those outliers that are still 

significant. 
 

(2.4) Use the adjusted observations to estimate ARMA parameters.  If the model 
contains a constant term (or if requested by the user), compute a residual 
standard error and check to see if the relative change in its estimate exceeds a 
specified value.  If so, return to (2.1).  Otherwise (or if this check is not used), 
proceed to Stage 3. 

 



7.38 OUTLIER DETECTION AND ADJUSTMENT 

Stage 3  (final estimation of parameter and effects) 
 

(3.1) The last set of parameters estimates computed in (2.4) are the final estimates of 
the ARMA parameters. 

 
(3.2) Use the parameter estimates of (3.1) and the original set of observations to 

compute a residual series. 
 

(3.3) Repeat Stage 1 except that no ARMA parameters are re-estimated. 
 

(3.4) Repeat (2.1) and (2.2) of Stage 2 as necessary.  The estimates obtained in the 
final iteration of (2.1) are those of the outlier effects. 

  
Stage 1 is essentially the procedure of Chang, Tiao and Chen (1988) as described in 

Section 7.2.3.  The stepwise procedure of Stage 2 is used to evaluate outlier effects jointly and 
remove any spurious effects.  Once “true” outliers are determined and estimated, the series is 
adjusted and the ARMA parameters can be more properly estimated.  Now the residual series 
should be closer to et (described in Section 7.8.1 above) and outliers can be detected, 
estimated jointly and “re-evaluated”.  Hence when Stage 1 is repeated at step (3.3), it begins 
assuming no outliers are present and essentially “re-discovers” them (and any that may have 
been masked).  The re-application of Stage 2 re-estimates the effects. 
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SUMMARY OF THE SCA PARAGRAPHS IN CHAPTER 7 

 
This section provides a summary of those SCA paragraphs employed in this chapter.  

The syntax for the paragraphs is presented in both a brief and full form.  The brief display of 
the syntax contains the most frequently used sentences of a paragraph, while the full display 
presents all possible modifying sentences of a paragraph.  In addition, special remarks related 
to a paragraph may also be presented with the description.  It is recommended that the brief 
form of the syntax of a paragraph be used before employing any System capability that can be 
accessed only through the use of the full form of the paragraph syntax. 

Each SCA paragraph begins with a paragraph name and is followed by modifying 
sentences.  Sentences that may be used as modifiers for a paragraph are shown below and the 
types of arguments used in each sentence are also specified.  Sentences not designated 
required may be omitted as default conditions (or values) exist.  The most frequently used 
required sentence is given as the first sentence of the paragraph.  The portion of this sentence 
that may be omitted is underlined.  This portion may be omitted only if this sentence appears 
as the first sentence in a paragraph.  Otherwise, all portions of the sentence must be used.  The 
last character of each line except the last line must be the continuation character, “@”. 

The paragraphs to be explained in this summary are OESTIM, OFORECAST, 
OFILTER, and OUTLIER. 

Legend 

v : variable or model name r  : real value 
i  : integer   w : keyword 
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OESTIM Paragraph 
 

The OESTIM paragraph is used to estimate jointly the model parameters and outlier 
effects in an ARIMA or transfer function model (see Chapter 8).  This paragraph also creates 
a number of variables which are useful for further analyses. 

Syntax for the OESTIM paragraph 
 
Brief syntax 

 
Full syntax 

 
Sentences used in the OESTIM paragraph 
 
MODEL sentence 

The MODEL sentence is used to specify the label (name) of the model to be estimated.  
The label must be one specified in a previous TSMODEL paragraph.  It is a required 
sentence. 

OESTIM MODEL model-name.      @ 
TYPES  ARE  w1, w2, - - - .    @ 
DELTA  IS  r.      @ 
OSTOP  ARE  MXOUTLIERS(i1), CRITICAL(r). @ 
NEW-SERIES IN v1, v2.    @ 
HOLD RESIDUALS(v), FITTED(v), VARIANCE(v). 

 
Required sentence:   MODEL 

OESTIM MODEL model-name.     @ 
TYPES  ARE  w1, w2, - - - .           @ 
DELTA  IS  r.      @ 
OSTOP  ARE  MXOUTLIERS(i1), CRITICAL(r), @ 
           MXESTIM(i2).      @ 
NEW-SERIES IN v1, v2, v3, v4, v5.                     @ 
METHOD  IS  w.     @ 
STOP  ARE  MAXIT(i), LIKELIHOOD(r1),  @ 
           ESTIMATE(r2), STDEV(r3).   @ 
OADJUSTMENT  IS  w.    @ 
STDEV  IS  w(r).     @ 
SPAN  IS  i1, i2.     @ 
OUTPUT  IS  LEVEL(w), PRINT(w1, w2, - - -),  @ 
                   NOPRINT(w1, w2, - - -).   @ 
HOLD RESIDUALS(v), FITTED(v), VARIANCE(v). 

 
Required sentence:   MODEL 
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TYPE sentence 
The TYPE sentence is used to specify types of outliers to be detected.  The valid 
keywords are IO (innovative outlier), AO (additive outlier), LS (level shift), and TC 
(temporary change).  The default is IO, AO, TC, and LS. 

DELTA sentence 
The DELTA sentence is used to specify the δ value employed for the TC outlier (see 
Sections 7.1.4 and 7.2.4).  The default is δ=0.7. 

OSTOP sentence 
The OSTOP sentence is used to specify the stopping criterion for outlier detection.  
Parameter estimation and outlier detection and adjustment are done iteratively.  If any 
outlier is detected after a parameter estimation, the time series is adjusted for outliers and 
parameters are re-estimated.  The iteration stops if the maximum number of outliers that 
may be adjusted is reached, if the maximum number of re-estimations of parameters is 
reached; or if all outlier statistics are smaller than a specified critical value.  

The argument for the keyword MXOUTLIERS (i1) specifies the maximum number of 
outliers permitted to be detected and adjusted.  The default for i1 is equal to 10% of the 
number of observations. 

The argument for the keyword CRITICAL (r) specifies a critical value for testing the 
presence of outliers.  The recommended value for r is 3.50 for low sensitivity, 3.00 for 
medium sensitivity, and 2.70 for high sensitivity.  The default for r is 3.0. 

The argument for the keyword MXESTIM (i2) specifies the maximum number of re-
estimations of model parameters within each estimation.  The default for i2 is 3. 

NEW-SERIES sentence 
The NEW-SERIES sentence is used to specify the labels (names) of variables to be 
created for saving information of the outlier detection process.  Only those results desired 
to be retained need be named.  The default is that no variable is retained after the 
paragraph is executed.  The variables that may be retained (and the position a label must 
occupy in the sentence) are: 

v1: the name used to store the residuals after all outlier adjustments 

v2: the name used to store the adjusted series (i.e., the resultant series after removing 
 detected outlier effects from the original observations) 

v3: the name used to store an indicator variable designating the types of outliers, if any, 
 found during the outlier detection process.  The value of the t-th observation of this 
 variable is 0 if the t-th value of the time series is not an outlier; 2 if it is an innovative 
 outlier; 3 if it is an additive outlier; 4 if it is a temporary change; 5 if it is a level shift, 
 and 1 if its value is missing. 

v4: the name used to store the estimates of any detected outliers 

v5: the name used to store the effects of detected outliers on residuals 
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METHOD sentence 
The METHOD sentence is used to specify the method for the computation of the 
likelihood function used in model estimation.  The keyword may be CONDITIONAL for 
the “conditional” likelihood or EXACT for the “exact” likelihood function.  The default is 
CONDITIONAL. 

STOP sentence 
The STOP sentence is used to specify the stopping criterion for the nonlinear estimation 
of parameters.  This estimation is conditional on the most recent outlier adjustment. 

Estimation is terminated when the relative change in the value of the likelihood function 
or parameter estimates between two successive iterations is less than or equal to the 
convergence criterion, or if the maximum number of iterations is reached. 

The argument, i, for the keyword MAXIT specifies the maximum number of iterations.  
The default is i=10. 

The argument, r1, for the keyword LIKELIHOOD specifies the value of the relative 
convergence criterion on the likelihood function.  The default is r1 = 0.0001. 

The argument, r2, for the keyword ESTIMATE specifies the value of the relative 
convergence criterion on the parameter estimates.  The default is r2 = 0.001. 

The argument, r3, for the keyword STDEV specifies the value of the relative convergence 
criterion on the estimate of the standard deviation σa in the iteration. 

The last criterion (r3) is employed by the SCA System to provide further control of 
accuracy in parameter estimates.  The default is r3=0.001 when a constant term is present, 
and the criterion is disabled otherwise.  The criterion can be disabled by the user by 
specifying a negative value for r3.  The criterion is enabled if a positive value is specified 
for r3 even if no constant term is present. 

OADJUSTMENT sentence 
The OADJUSTMENT sentence is used to specify the method of outlier estimation and 
adjustment.  The keyword may be SEQUENTIAL for the detection and adjustment of 
outliers sequentially from largest effect to smallest (see Chang, Tiao and Chen 1988).  
JOINT specifies the detection and joint estimation of outlier effects (the default).  The use 
of NONE is equivalent to using ESTIM (except missing data are estimated). 

STDEV sentence 
The STDEV sentence is used to specify a method for the estimation of .  TRIM(r) 
specifies that an rx100% trimmed standard deviation is used (i.e., the top rx100% largest 
observations, according to absolute values, are excluded from the computation).  A 
specification of TRIM(0.0) indicates that 

aσ

aσ

o  aσ  ( edian 
absolute deviation).  For further information, see Chen and Liu (1990). 

aσ  = 1.483*m

 is computed at each observation (residual) 
using all data except the current observation.  TRIM(0.0) is the default.  MAD(r) specifies 
that the median absolute deviation is used f r the estimation of
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SPAN sentence 
The SPAN sentence is used to specify the span of time indices, i1 to i2, for which data are 
analyzed.  The default is the maximum span available for the series. 

OUTPUT sentence 
The OUTPUT sentence is used to control the amount of output displayed for selected 
statistics.  Control is achieved in a two stage procedure.  First, a basic LEVEL of output 
(default NORMAL) is designated.  Output may then be increased (decreased) from this 
level by use of PRINT (NOPRINT). 

The keywords for LEVEL and output displayed are: 

BRIEF  : estimates and their related statistics only 
NORMAL  : RCORR 
DETAILED : ITERATION, CORR, and RCORR 
 
where the keywords on the right denote: 

ITERATION : the parameter and covariance estimates for each iteration 

CORR : the correlation matrix for the parameter estimates 

RCORR : the reduced correlation matrix for the parameter estimates (i.e., a  
  display in which all values have no more than two decimal places and  
  those estimates within two standard errors of zero are displayed as  
  dots, ‘.’). 
 

HOLD sentence 
The HOLD sentence is used to specify those values computed for particular functions to 
be retained in the workspace until the end of the session.  Only those statistics desired to 
be retained need be named.  Values are placed in the variable named in parentheses.  The 
default is that none of the values of the above statistics will be retained after the paragraph 
is used.  The values that may be retained are: 

RESIDUALS: the residual series without outlier adjustment 
FITTED:  the one-step-ahead forecasts (fitted values) of the series 
VARIANCE: the variance of the noise 
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OFORECAST Paragraph 
 

The OFORECAST paragraph is used to compute the forecast of future values of a time 
series based on a specified ARIMA or transfer function model.  Unlike the FORECAST 
paragraph the OFORECAST paragraph handles outliers that may exist in the output time 
series.  The OFORECAST should be used in conjunction with a model estimated using the 
OESTIM paragraph. 

Syntax of the OFORECAST paragraph 
 
Brief syntax 

 
Full

 
Sen
 
MO

T
f

ORI
T
o

 
 
 
 
 

OFORECAST MODEL model-name.         @
NOFS  ARE  i1, i2, - - -.    @
TYPES  ARE  w1, w2, - - - /w.      @
DELTA  IS  r.      @
OSTOP  IS  MXOUTLIERS(i), CRITICAL(r1, r2). @
HOLD FORECASTS(v1, v2, ---), STD_ERRS(v1, v2, ---). 

 
Required sentence:   MODEL 
 syntax 

tences used in the OFORECAST paragraph 

DEL sentence 
he MODEL sentence is used to specify the label (name) of the model for the series to be 

orecasted.  The label must be one specified in a previous TSMODEL paragraph. 

GINS sentence 
he ORIGINS sentence is used to specify the time origins for forecasts.  The default is 
ne origin, the last observation. 

OFORECAST MODEL model-name.         @ 
ORIGINS  ARE  i1, i2, - - -.    @ 
NOFS  ARE  i1, i2, - - -.    @ 
TYPES  ARE  w1, w2, - - - /w.      @ 
DELTA  IS  r.      @ 
OSTOP  IS  MXOUTLIERS(i), CRITICAL(r1, r2), @ 
                  MXESTIM(i2).    @ 
METHOD  IS  w.     @ 
OADJUSTMENT  IS  w.    @ 
STDEV  IS  w(r).     @ 
HOLD FORECASTS(v1, v2, ---), STD_ERRS(v1, v2, ---). 

 
Required sentence:   MODEL 
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NOFS sentence 
The NOFS sentence is used to specify for each time origin the number of time periods 
ahead for which forecasts are generated.  The number of arguments in this sentence must 
be the same as that in the ORIGINS sentence.  The default is 24 forecasts for each time 
origin. 

TYPE sentence 
The TYPE sentence is used to specify types of outliers to be detected and how to treat the 
last observation should it be detected as an outlier.  The valid keywords are AO (additive 
outlier), IO (innovative outlier), LS (level shift), and TC (temporary change).  Those 
keywords specified before a slash ( / ) indicate the types of outlier to be detected.  The 
keyword, if any, specified after the slash indicates the type of outlier at the end of the 
series, should one be detected, for forecasting purposes.  If no keyword is specified after 
the slash, then the last observation is not treated as an outlier in the computation of 
forecasts.  The default is AO, IO, LS, TC, and the last observation is not treated as an 
outlier even if it has a significant test statistic. 

DELTA sentence 
The DELTA sentence is used to specify the δ value employed for the TC outlier (see 
Sections 7.1.4 and 7.2.4).  The default is δ=0.7. 

OSTOP sentence 
The OSTOP sentence is used to specify the stopping criterion for outlier detection.  
Parameter estimation and outlier detection and adjustment are done iteratively.  If any 
outlier is detected after a parameter estimation, the time series is adjusted for outliers and 
parameters are re-estimated.  The iteration stops if the maximum number of outliers that 
may be adjusted is reached, if the maximum number of re-estimations of parameters is 
reached; or if all outlier statistics are smaller than a specified critical value. 

The argument for the keyword MXOUTLIERS (i1) specifies the maximum number of 
outliers permitted to be detected and adjusted.  The default for i1 is equal to 10% of the 
number of observations. 

The argument for the keyword CRITICAL (r1, r2) specifies a critical values for testing the 
presence of outliers.  One or two values may be specified.  The critical value r1 is used for 
all observations except the forecast origin and the two observations preceding it.  The 
critical value r2 is used for these three observations.  If r2 is not specified, then the value 
r1-0.5 will be used.  The default value for r1 is 3.0 and the smallest value permitted for r2 
is 1.96.  The recommended value for r1 is 3.50 for low sensitivity, 3.00 for medium 
sensitivity, and 2.70 for high sensitivity. 

METHOD sentence 
The METHOD sentence is used to specify the likelihood function used in the calculation 
of residuals.  The keyword may be CONDITIONAL for the “conditional” likelihood or 
EXACT for the “exact” likelihood function.  The default is EXACT. 
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OADJUSTMENT sentence 
The OADJUSTMENT sentence is used to specify the method of outlier estimation and 
adjustment.  The keyword may be SEQUENTIAL for the detection and adjustment of 
outliers sequentially from largest effect to smallest (see Chang, Tiao and Chen 1988).  
JOINT specifies the detection and joint estimation of outlier effects (the default).  The use 
of NONE is equivalent to using ESTIM (except missing data are estimated). 

STDEV sentence 
The STDEV sentence is used to specify a method for the estimation of .  TRIM(r) 
specifies that an rx100% trimmed standard deviation is used (i.e., the top rx100% largest 
observations, according to absolute values, are excluded from the computation).  A 
specification of TRIM(0.0) indicates that 

aσ

aσ

o  aσ  ( edian 
absolute deviation). 

HOLD sentence 
The HOLD sentence is used to specify those values computed for particular functions to 
be retained in the workspace until the end of the session.  Only those statistics desired to 
be retained need be named.  Values are placed in the variable named in parentheses.  The 
default is that none of the values of the above statistics will be retained after the paragraph 
is used.  The values that may be retained are: 

FORECASTS: a new variable that stores the original values of the series up to the  
   forecast origin, and the forecasts after the origin. 

STD_ERRS: a new variable that stores the value 0.0 up to the forecast origin, and the 
   ndard errors of the forecasts after the forecast origin. 

Note that if the number of variables specified (say m) is fewer than the number of 
forecasting time origins, then only the forecasts and standard errors for the first m time 
origins will be held. 

 
 

aσ  = 1.483*m

 is computed at each observation (residual) 
using all data except the current observation.  TRIM(0.0) is the default.  MAD(r) specifies 
that the median absolute deviation is used f r the estimation of
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OFILTER Paragraph 
 

The OFILTER paragraph is used to perform outlier detection, generate residual time 
series with outlier adjustment, and the adjusted output time series.  This paragraph can be 
used in conjunction with fitted models from either the OESTIM or ESTIM paragraph. 

Syntax for the OFILTER paragraph 
 
Brief syntax 

 
Full syntax 

 
Sentences used in the OFILTER paragraph 
 
MODEL sentence 

The MODEL sentence is used to specify the label (name) of the model to be estimated.  
The label must be one specified in a previous TSMODEL paragraph.  It is a required 
sentence. 

NEW-SERIES sentence 
The NEW-SERIES sentence is used to specify the labels (names) of variables to be 
created for saving information of the outlier detection process.  Only those results desired 
to be retained need be named.  The default is that no variable is retained after the 
paragraph is executed.  The variables that may be retained (and the position a label must 
occupy in the sentence) are: 

v1: the name used to store the residuals after all outlier adjustments 

OFILTER MODEL  model-name.   @ 
NEW-SERIES IN v1, v2, v3, v4, v5. @ 
TYPES  ARE  w1, w2, - - - . 

 
Required sentence:   MODEL, NEW-SERIES 

OFILTER MODEL  model-name.    @ 
NEW-SERIES IN v1, v2, v3, v4, v5.  @ 
TYPES  ARE  w1, w2, - - - .          @ 
DELTA  IS  r.     @ 
OSTOP  IS  MXOUTLIERS(i1), CRITICAL(r), @ 
           MXESTIM(i2).     @ 
METHOD  IS  w.    @ 
OADJUSTMENT  IS  w.   @ 
STDEV  IS  w(r).    @ 
SPAN  IS  i1, i2. 

 
Required sentence:   MODEL, NEW-SERIES 
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v2: the name used to store the adjusted series (i.e., the resultant series after removing 
 etected outlier effects from the original observations) 

v3: the name used to store an indicator variable designating the types of outliers, if any, 
 found during the outlier detection process.  The value of the t-th observation of this 
 variable is 0 if the t-th value of the time series is not an outlier; 2 if it is an innovative 
 outlier; 3 if it is an additive outlier; 4 if it is a temporary change; 5 if it is a level shift, 
 and 1 if its value is missing. 

v4: the name used to store the estimates of any detected outliers 

v5: the name used to store the effects of detected outliers on residuals 

TYPES sentence 
The TYPES sentence is used to specify types of outliers to be detected.  The valid 
keywords are AO (additive outlier), IO (innovative outlier), LS (level shift), and TC 
(temporary change).  The default is IO, AO, TC, and LS. 

DELTA sentence 
The DELTA sentence is used to specify the δ value employed for the TC outlier (see 
Sections 7.1.4 and 7.2.4).  The default is δ=0.7. 

OSTOP sentence 
The OSTOP sentence is used to specify the stopping criterion for outlier detection.  
Parameter estimation and outlier detection and adjustment are done iteratively.  If any 
outlier is detected after a parameter estimation, the time series is adjusted for outliers and 
parameters are re-estimated.  The iteration stops if the maximum number of outliers that 
may be adjusted is reached, if the maximum number of re-estimations of parameters is 
reached; or if all outlier statistics are smaller than a specified critical value.  

The argument for the keyword MXOUTLIERS (i1) specifies the maximum number of 
outliers permitted to be detected and adjusted.  The default for i1 is equal to 10% of the 
number of observations. 

The argument for the keyword CRITICAL (r) specifies a critical value for testing the 
presence of outliers.  The recommended value for r is 3.50 for low sensitivity, 3.00 for 
medium sensitivity, and 2.70 for high sensitivity.  The default for r is 3.0. 

The argument for the keyword MXESTIM (i2) specifies the maximum number of re-
estimations of model parameters within each estimation.  The default for i2 is 3. 

METHOD sentence 
The METHOD sentence is used to specify the method for the computation of the 
likelihood function used in model estimation.  The keyword may be CONDITIONAL for 
the “conditional” likelihood or EXACT for the “exact” likelihood function.  The default is 
CONDITIONAL. 
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OADJUSTMENT sentence 
The OADJUSTMENT sentence is used to specify the method of outlier estimation and 
adjustment.  The keyword may be SEQUENTIAL for the detection and adjustment of 
outliers sequentially from largest effect to smallest (see Chang, Tiao and Chen 1988).  
JOINT specifies the detection and joint estimation of outlier effects (the default).  The use 
of NONE is equivalent to using ESTIM (except missing data are estimated). 

STDEV sentence 
The STDEV sentence is used to specify a method for the estimation of .  TRIM(r) 
specifies that an rx100% trimmed standard deviation is used (i.e., the top rx100% largest 
observations, according to absolute values, are excluded from the computation).  A 
specification of TRIM(0.0) indicates that 

aσ

aσ

o aσ  ( edian 
absolute deviation). 

SPAN sentence 
The SPAN sentence is used to specify the span of time indices, from i1 to i2, for which 
data are analyzed.  The default is the maximum span available for the series. 

 
 
OUTLIER Paragraph

aσ  = 1.483*m

 is computed at each observation (residual) 
using all data except the current observation.  TRIM(0.0) is the default.  MAD(r) specifies 
that the median absolute deviation is used f r the estimation of 

 
 

The OUTLIER paragraph is used for the detection of outliers in a time series using the 
detection procedure of Chang (1982) (as described in Section 7.2.2).  The OUTLIER 
paragraph can be used in conjunction with fitted models from the ESTIM paragraph.  This 
paragraph can be used for the detection of AO, IO and LS outliers only.  The OFILTER 
paragraph employs a procedure of Chen and Liu (1990), and may be used in lieu of the 
OUTLIER paragraph. 

Syntax for the OUTLIER paragraph 
 
Brief syntax 

 

OUTLIER MODEL  model-name.  @ 
TYPES  ARE  w1, w2, - - - . @ 
INDICATOR IN v. 

 
Required sentence:   MODEL 
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Full syntax 

 
Sen
 
MO

T
d
v
s

TYP
T
k
d

OLD
T
w
s

RES
T
d
r
f

IND
T
d
p
s
s

STO
T
M

 
 
 
 
 
 
 

OUTLIER MODEL  model-name.   @
TYPES  ARE  w1, w2, - - - .  @
OLD IN v.    @
RESIDUAL IN v.   @
INDICATOR IN v.   @
STOP  IS  MAXIT(i), CRITICAL(r). @
VARIANCE  IS  TRIMMED(r).  @
SPAIN  IS  i1, i2. 

 
Required sentence:   MODEL 
tences used in the OFILTER paragraph 

DEL sentence 
he MODEL sentence is used to specify the label (name) of a univariate time series model 
efined previously that will be used in the detection of outliers associated with the output 
ariable of the model or with the variable(s) specified in the OLD or RESIDUAL 
entence. 

ES sentence 
he TYPES sentence is used to specify types of outliers to be detected.  The valid 
eywords are AO (additive outlier), IO (innovative outlier), and LS (level shift).  The 
efault is AO, and IO. 

 sentence 
he OLD sentence is used to specify the name of the series for which outlier detection 
ill be performed.  If this sentence is omitted, the output variable of the univariate model 

pecified in the MODEL sentence will be used in outlier detection. 

IDUAL sentence 
he RESIDUAL sentence is used to specify the name of a residual series for which outlier 
etection will be performed.  Computationally, when this sentence is used, this specified 
esidual series, rather than that derived from the output series and the model, will be used 
or outlier detection.  However, some computations are still based on the specified model. 

ICATOR sentence 
he INDICATOR sentence is used to specify the label (name) for an indicator variable 
esignating the types of outliers, if any, that are determined during the outlier detection 
rocess.  The value of the t-th observation of this variable is 0 if the t-th value of the time 
eries is not an outlier, 2 if an additive outlier, 3 if an innovative outlier, and 4 if a level 
hift. 

P sentence 
he STOP sentence is used to specify the stopping criterion for the outlier detection.  
AXIT(i) specifies the maximum number of iterations (i) to be performed, and 
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CRITICAL(r) specifies a critical value for testing the presence of outliers.  The iteration 
stops if the maximum number of iterations is reached or if all outlier statistics are smaller 
than this critical value.  The recommended value for r is 3.50 for low sensitivity, 3.00 for 
medium sensitivity, and 2.50 for high sensitivity.  The default is 3.00 for r. 

VARIANCE sentence 
The VARIANCE sentence is used to specify the amount of trimming to be performed in 
the computation of robust residual variance.  For the ordered values of the residual series, 
r percent of both the smallest and largest values is removed in the computation  of 
variance.  The default is r=0.0, no trimming. 

SPAN sentence 
The SPAN sentence is used to specify the span of time indices, from i1 to i2, for which 
the data are analyzed.  The default is the maximum span available for the variables. 
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CHAPTER 8 

TRANSFER FUNCTION MODELING 

  
In Chapter 4, we discussed relating a response variable to one or more explanatory 

variables using linear regression models.  We observed the deficiency of regression analysis 
when the error terms of the model were serially correlated.  In order to account for the 
correlated structure of time series data, autoregressive-integrated moving average (ARIMA) 
models were introduced.  In Chapters 5 through 7, we presented aspects of the modeling and 
forecasting of a single time series.  Chapter 5 laid the foundations of ARIMA modeling.  In 
Chapter 6, we extended the ARIMA model to incorporate (deterministic) intervention 
components into the model.  Chapter 7 discussed the handling of outliers and missing data 
that may be present in a time series.  

The univariate modeling methods presented in Chapters 5 through 7 are useful for the 
analysis of a single time series.  In such a case, we basically limit our modeling to the 
information contained in the series own past, and we do not explicitly use the information 
contained in other related (stochastic) time series.  In many cases, we may be able to relate the 
response (i.e., the observed value) of one series to its own past values, and also to the past and 
present values of other time series.  In this manner we effectively merge the basic concepts of 
the regression model with that of ARIMA models. 

In this chapter we introduce a class of models known as transfer function models.  As 
will be seen, transfer function models are flexible time series models that can be used for a 
variety of applications.  A simple scheme for transfer function modeling is also presented.  An 
alternative to this simple scheme, the “classical” method for transfer function modeling, is 
contained in Section 8.7. 

8.1 Extending the Linear Regression Model:  Regression with  Serially 
 Correlated Errors 

As an introduction to transfer function models, we begin with the linear regression 
model.  A brief overview of linear regression is found in Section 4.1.  In Section 4.3, we 
illustrated the use of regression models for time dependent data in an analysis of three series 
related to the stock market.  The data consist of monthly observations (from January 1976 
through 1990) of 

(1)  The monthly average of the Standard and Poor’s 500 stock index,  

(2)  The monthly average of long term government security interest rates, and  

(3)  The monthly composite index of leading indicators.  
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The data, listed in Table 4.2 and shown in Figure 4.1, are stored in the SCA workspace under 
the labels, SP500, LONGTERM and LINDCTR, respectively.  In Chapter 4 we limited our 
analysis to only the first 141 observations.  The natural logarithms of the series were used in 
order to provide a more convenient interpretation.  Plots of the log transformed series used in 
the analysis are given in Figure 8.1.  The data analyzed are stored in the SCA workspace 
under the labels LNSP500, LNLONG and LNLEAD. 
 

Figure 8.1    Logged stock market data 
    (January 1976 through September 1987) 

 

 
 

 
 

 
 

8.1.1   Using the regression model to incorporate serial correlation 

In Chapter 4, a regression of LNSP500 on LNLONG and LNLEAD was performed.  
Serial  correlation was found in the residual series (see Section 4.3.1).  In an effort to account 
for serial correlation, a dynamic regression was considered (see Section 4.3.2).  Specifically, 
we indicated that we could regress the current monthly observation of LNSP500 on the 
current values of LNLONG and LNLEAD and on the values of LNLONG, LNLEAD and 
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LNSP500 that were observed in the prior month.  The fitted equation for this model can be 
written as 

t 1

t 0 1 t 2 t 1

3 t 4 t 1 5

LNSP500 b b LNLONG b LNLONG
b LNLEAD b LNLEAD b LNSP500 .

−

− −

= + +
+ + +

 (8.1) 

 
In (8.1) the serial correlation, or the “memory” maintained by the response variable 

LNSP500 is accounted for through the inclusion of the most recently observed value of 
LNSP500 as a regressor (i.e., an explanatory variable) in the regression.  We can create the 
three lagged explanatory variables by using the LAG paragraph (see Appendix C).  SCA 
output is suppressed.  

 -->LAG   LNSP500.   NEW IS LNSP1. 
 -->LAG   LNLONG.   NEW IS LNLONG1. 
 -->LAG   LNLEAD.   NEW IS LNLEAD1.  

 
We can obtain the fit for the model of (8.1) by entering 
 

 -->REGRESS   LNSP500,LNLONG,LNLONG1,LNLEAD,LNLEAD1,LNSP1.   DW.   @ 
 -->          HOLD RESIDUALS(RES). 

 
The residuals are maintained for diagnostic checking and the Durbin-Watson statistic (see 
Section 4.3.1) is printed as a check for first-order serial correlation in the residuals.  We 
obtain 
 

 REGRESSION ANALYSIS FOR THE VARIABLE  LNSP500 
 
 PREDICTOR       COEFFICIENT    STD. ERROR     T-VALUE  
 INTERCEPT          -.11961        .16073        -.74 
   LNLONG           -.34435        .06563       -5.25 
  LNLONG1            .33555        .06529        5.14 
   LNLEAD            .66127        .22363        2.96 
  LNLEAD1           -.63358        .22035       -2.88 
    LNSP1           1.00167        .01842       54.36 
 
 CORRELATION MATRIX OF REGRESSION COEFFICIENTS 
 
   LNLONG      1.00 
  LNLONG1      -.98     1.00 
   LNLEAD      -.09      .12     1.00 
  LNLEAD1       .11     -.13     -.98     1.00 
    LNSP1      -.04 .872E-02     -.22      .02     1.00 
             LNLONG  LNLONG1   LNLEAD  LNLEAD1    LNSP1 
 
 S =         .0294      R**2 =  99.3%      R**2(ADJ) =  99.3% 
 
 --------------------------- 
 ANALYSIS OF VARIANCE TABLE  
 --------------------------- 
   SOURCE     SUM OF SQUARES    DF    MEAN SQUARE     F-RATIO 
 REGRESSION           16.243     5          3.249    3754.316 
  RESIDUAL              .116   134           .001 
 ADJ. TOTAL           16.359   139 
 
   SOURCE      SEQUENTIAL SS    DF    MEAN SQUARE     F-RATIO 
   LNLONG               .398     1           .398     459.623 
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   LNLONG1              .045     1           .045      51.553 
   LNLEAD             13.228     1         13.228   15287.124 
   LNLEAD1              .015     1           .015      17.750 
   LNSP1               2.557     1          2.557    2955.528 
 
 DURBIN-WATSON STATISTIC = 1.73 

 
The value of the Durbin-Watson statistic does not indicate any first-order serial 

correlation in the residual series.  The ACF of the residuals (not shown here) is relatively 
“clean”.  The fitted equation obtained is 

 

t 1

t t t 1

t t 1

LNSP500 0.12 ( 0.34)LNLONG (0.34)LNLONG
(0.66)LNLEAD ( 0.63)LNLEAD (1.00)LNSP500 .

−

− −

= − + − +
+ + − +

 (8.2) 

 
If we collect like terms and use the backshift operator, we can re-write (8.2) as 
 
 

, (8.3) 

 
or approximately 
 

t .  (8.4) 

Equation (8.4) suggests that we model series comprised of the differences of the logged 
data rather than the original series.  We fit just such a model previously (see Section 4.3.3) 
and obtained almost identical estimates for the parameters associated with LNLONG and 
LNLEAD. 

8.1.2   A time series model for regression 

 With a slight generalization, equation (8.4) can also be interpreted as a fit of the model  
 

t . (8.5) 

If we treat  as a mathematical operator, we can divide all terms of (8.5) by it to obtain 
 

t t

t

(1 1.00B)LNSP500 0.12 (0.34 0.34B)LNLONG
(0.66 0.63B)LNLEAD

− = − − −
+ −

t t(1 B)LNSP500 0.12 (0.34)(1 B)LNLONG (0.66)(1 B)LNLEAD− = − − − + −

t 0 1 t 2 t(1 B)LNSP500 (1 B)LNLONG (1 B)LNLEAD a−φ = β +β −φ +β −φ +

(1 B)−φ

t 1 t 2 t
1LNSP500 C  LNLONG  LNLEAD a

1 B
= +β +β +

−φ

0C /(1 )= β −φ .  We can also represent the error component by 

t , (8.6) 

where  where 
 

  

tN ,

t t
1N a

1 B
=

−φ
   or equivalently   t t(1 B)N a−φ = . 

 
Equation (8.6) is of the same form as an intervention model (see Chapter 6), except 

LNLONG and LNLEAD are not deterministic binary series.  Here both LNLONG and 
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LNLEAD are stochastic series, that is, the series exhibit random variation.  We can fit the 
model specified in (8.6) using the TSMODEL and ESTIM paragraphs as follows (SCA output 
is edited for presentation purposes): 

 -->TSMODEL   STOCKMDL.   MODEL IS LNSP500 = CNST + (B1)LNLONG + (B2)LNLEAD   @ 
 -->                        + 1/(1-PHI*B)NOISE. 
 -->ESTIM   STOCKMDL 

 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- STOCKMDL 
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
 
 LNSP500    RANDOM     ORIGINAL     NONE 
  LNLONG    RANDOM     ORIGINAL     NONE 
  LNLEAD    RANDOM     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1  CNST              CNST      1      0     NONE     1.6103    1.2611   1.28  
   2    B1     LNLONG   NUM.      1      0     NONE     -.3349     .0638  -5.25  
   3    B2     LNLEAD   NUM.      1      0     NONE      .6601     .2134   3.09  
   4   PHI    LNSP500   D-AR      1      1     NONE     1.0092     .0087 116.52  
 
 TOTAL SUM OF SQUARES . . . . . . . .   .164869E+02 
 TOTAL NUMBER OF OBSERVATIONS . . . .           141 
 RESIDUAL SUM OF SQUARES. . . . . . .   .117639E+00 
 R-SQUARE . . . . . . . . . . . . . .          .993 
 EFFECTIVE NUMBER OF OBSERVATIONS . .           140 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .840279E-03 
 RESIDUAL STANDARD ERROR. . . . . . .   .289876E-01  

 
The results above are virtually identical to those of the above regression.  The only 

perceived difference is the estimate of the constant term, which is not significant.  The 
estimate of  is close to 1.  As a result the constant term in (8.6) may assume any value.  
Moreover, we may be better served by using a model involving differenced series.  Fitting 
such a model yields results that are identical to the regression fit given in Section 4.3.3 and is 
not presented here.  

By using the time series model representation of (8.6) for this example, we achieve a 
number of valuable results.  These include: 

(1)  Maximum likelihood estimates of the “regression” parameters together with an 
AR(1) adjustment of the disturbance term; 

(2)  A model that is easy to interpret; and 

(3)  A clear indication that we should analyze differenced series rather than the 
original (log transformed) series. 

 
Although the model in (8.6) has advantages, it also has some limitations.  The most 

obvious limitations are 

φ
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(1)  the use of only contemporaneous (i.e., lag 0) information from the explanatory 
series; and 

  (2) restricting the disturbance term to that of an AR(1) process only. 
 
It would be beneficial if we can appropriately extend the model.  We do so in the next section. 

8.2   The transfer function model 

 The basic form of the model given in (8.6) above is  
 

t , (8.7) 

where  represents a stationary ARMA process.  To avoid any notational confusions, we 
will develop the transfer function model from equation (8.7), but will restrict our discussion to 
a single explanatory variable.  Hence we first consider the model 
 

t . (8.8) 

In equation (8.8), the response (output) variable  is related to the current 
(contemporaneous) value of the explanatory (input) variable   We can extend (8.8) by 
replacing β1 with either a linear polynomial or a rational polynomial operator. 
 

Specifically, if we assume that the input and output variables are both stationary time 
series, the general form of the single-input, single-output transfer function model can be 
expressed as 

t 1 1t 2 2tY C X X N= +β +β +

tN

t 1 tY C X N= +β +

tY

tX .

t t
(B)Y C X N
(B)

ω
= + +

δ t , (8.9) 

where  follows an ARMA model (i.e., tN t t
(B)N a
(B)
θ

=
φ

, or t t(B)N (B)aφ = φ ), 

 
1 b , (8.10) 

and 
. (8.11) 

In practice, the number of terms in  is small and the value of r in (8.11) is usually 0 or 1.  
We can also represent the rational polynomial operator 

2 s
0 1 2 s 1(B) ( B B B )B−

−ω = ω +ω +ω + ⋅⋅⋅+ω

2 r
1 2 r(B) (1 B B B )δ = −δ −δ − ⋅⋅⋅− δ

(B)ω
(B) / (B)ω δ  with a linear operator 

v(B), where 
 

⋅ . (8.12) 

 
The polynomial operators are related according to 
 

2
0 1 2v(B) v v B v B= + + + ⋅⋅

(B)v(B)
(B)

ω
=
δ

 . 
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Since we assume the transfer function is stable (i.e., not explosive), the coefficients v0, v1, 
v2, . . . diminish to zero regardless the order of the (B)δ  polynomial.  If the linear operator 
v(B) is used, the model given in (8.9) can be written as 
 

t . (8.13) 

In the event that  (i.e., r=0), we have v(B)=ω(B) and v(B) has a finite number of 
terms.  In the case that  (i.e., r>0), then v(B) has an infinite number of terms.  For 
convenience, we will often use v(B) to denote either the linear or rational form of the transfer 
function in the remainder of this chapter.  A discussion of the terms of these operators is given 
in Section 8.2.1. 
 

 in the above models is referred to as the disturbance of the transfer function models.  
me interpretation as the disturbance of the intervention model of Chapter 6. 

The representation in (8.9) can be extended directly to the case of multiple-input transfer 
function models as 

t tY C v(B)X N= + +

(B) 1δ =
(B) 1δ ≠

tN
It has the sa

1 m
t 1t

1 m

(B) (B)Y C X X N
(B) (B)

ω ω
= + + ⋅⋅⋅+ +

δ δ mt t , (8.14) 

 
We can also use the linear form of the transfer function by writing (8.13) as  
 

t . (8.15) 

8.2.1   Interpreting the terms of the transfer function operators 

The value b in (8.10) represents the delay of response in the process.  The parameters of 
the numerator polynomial  describe the initial effects of the input (as well as any effects 
that follow no specific pattern).  The denominator polynomial 

t 1 1t 2 2t m mtY C v (B)X v (B)X v (B)X N= + + + ⋅⋅⋅+ +

(B)ω
 (B)δ  characterizes the decay 

pattern of initial eff nse.  As noted previous  and ects in the respo ly, the operators (B)ω (B)δ  
 are either usually consist of only a few terms.  The most frequent representations of 

 or 

The values v0, v1, v2, ... are either referred to as the transfer function (TF) weights or 
the impulse response weights for the input series  (see Chapter 9 of Box and Jenkins, 
1970).  These weights provide a measure of how the input series affects the output series, and 
the weight given to each time lag.  That is, v0 is a measure of how the current response is 
affected by the current value of the input series; v1 is a measure of how the current response 
is affected by the value of the input series one period ago; v2 is a measure of how the current 
response is affected by the value of the input series two periods ago; and so on.  The sum of 
all weights, usually represented by g, is called the steady state gain and represents the total 
change in the mean level of the response variable if we maintain the input at a single unit 
increase above its mean level. 

(B)δ
(B) 1δ = (B) 1 Bδ = −δ . 

tX
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8.2.2   Assumptions of the transfer function model 

 As noted previously, the general form of the transfer function model is  
 
 t , 
 
where v(B) describes the transfer function between  and  (either in a linear form or as a 
rational polynomial).  There are two principal assumptions of this model: 
 

(1)  The input series can affect the response variable, but not conversely (i.e., the 
relationship between  and  is unidirectional); and  

(2)  The input series is assumed to be independent of the disturbance. 
 
Another tacit assumption of the model is that the system being modeled is stable.  This is 
usually manifested as assuming the input and output series are stationary time series, and that 
the sum of the TF weights is finite. 
 

The assumption that the output series does not affect the input series is often appropriate 
for physical or engineering processes.  In these cases the input may be viewed as a controller 
mechanism that is used to maintain a certain level in the response variable.  If we model 
economic and business data, we may wish to use more dynamic models that allow for bi-
directional (or feedback) relationships.  Examples of such models include simultaneous 
transfer function (STF) models, vector ARMA models and numerous econometric models.  
These are not discussed here.  However, although the assumption of a unidirectional 
relationship may not be strictly true, transfer function models can still be used effectively in 
modeling business and economic data.  

8.2.3   Relationship of transfer function models to regression models 

As seen above, there are many similarities between transfer function and linear 
regression models.  The models differ in two important respects:  

(1)  The assumption regarding the disturbance (or error) term, and  

(2)  The complexity of the parameter representations.  
 
The first of these differences has been discussed.  Transfer function models are more general 
than regression models since they permit an ARMA representation for the disturbance 
component of the model.  
 
The second difference is also important.  If we consider the rational polynomial representation 
of the transfer function (i.e., ), then when 

t tY C v(B)X N= + +

tX tY

tX tY

(B) / (B)ω δ (B) 1δ =
for lagged relationships and correlated error).  If 

 we obtain the typical lagged 
regression model (that allows , we 
permit a nonlinear representation of the model; and may have a more effective utilization of 
parameters in a model. 

(B) 1δ ≠
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8.2.4   Some special cases of the transfer function model 

We have already indicated how the transfer function model is an extension of various 
other models.  For the sake of completeness, we now summarize some special cases of the 
transfer function model.  We relate these cases to the multiple-input transfer function model 
shown in (8.14). 

(A) Simple linear regression  
 
 If we let ; β  and 0C = β j j(B)ω = j (B) 1δ =  for each transfer function; and t tN a= , we 
have the classic linear regression model  
 

ta .  

(B) First-order autoregressive models

t 0 1 1t 2 2t m mtY X X X= β +β +β + ⋅⋅⋅+β +

  
 

If we assume  (equivalently, t tN {1/(1 B)}a= −φ t t(1 B)N a−φ =
on with a first-or

) in the representation 
above, then we have a si der autoregressive error 
process.  Cochrane and Orcutt (1949) and Hildreth and Lu (1960) proposed procedures for the 
estimation of

(C) Distributed lag and Koyck distributed lag model

 multiple linear regres

 in such a situation.  φ

 
 
The transfer function representation with t tN a=  is also known as a distributed lag model.  A 
special case of this model was considered by Koyck (1954).  We can obtain the Koyck model 
from the rational polynomial representation of a single-input equation by letting 
 

    and     .  

Using this representation, we have 
 

0(B)ω = ω (B) 1 Bδ = −δ

0(B)(B)
(B) 1 B

ωω
ν = =

δ −δ
. (8.16) 

 
If we now multiply both sides of (8.16) by (1 B)−δ  we obtain 
 

ω

or 
0 . (8.17) 

 
By expanding the left-hand side of (8.17), we obtain 
 

0 .  (8.18) 

 

0(B)(1 B)ν −δ =  

0 1 2 2( B B )(1 B)ν + ν + ν + ⋅⋅⋅ − δ = ω

2
0 1 0 2 1( )B ( )Bν + ν −δν + ν −δν + ⋅⋅⋅ = ω
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From (8.18), we see  and 10 0ν = ω  j j−ν = δν  for .  Hence 
 

In the Koyck model, there is a contemporaneous effect that then decays exponentially.  
The steady state gain of this model is 

 

j 1≥

2 k
0 0 1 0 2 0 k 0w ,  ,  ,  ....,  w ,  .....ν = ν = δω ν = δ ω ν = δ  

0
0 1 2 (1)

1
ω

ν + ν + ν + ⋅⋅⋅ = ν =
− δ

.  (8.19) 

 
We see from (8.19) that the steady state gain may be obtained by letting B=1 in the 
polynomial operators.  Hence 
 (1)g (1)

(1)
ω

= ν =
δ

. 

 
(D) ARIMA models 
 

If there are no explanatory variables, then the transfer function model is the ARIMA 
model discussed in Chapter 5.  

(E) Intervention models  
 

The intervention models discussed in Chapter 6 can be obtained directly if all input 
series are binary series (that is, series consisting of only the values 0 and 1).  

8.3 Transfer Function Modeling  

As in the case of intervention analysis (see Chapter 6), there are two distinct 
components in a transfer function model.  One component consists of the explanatory 
variables and the transfer function for each variable.  The disturbance term is the other 
component.  For intervention models, we need to identify a model for the disturbance while 
we postulate models for the rest.  However, for transfer function models, models are identified 
for both components based on the data. 

8.3.1   The iterative modeling strategy 

As in the case of ARIMA model building (see Chapter 5), there are three stages for 
transfer function modeling: identification, estimation, and diagnostic checking.  Here the most 
difficult of these stages is the identification of one or more reasonable transfer function 
models. 

Some preliminary modeling ordinarily precedes the determination of the form of the 
transfer function and the ARIMA model of the disturbance term.  Plots of the series are useful 
to detect any potential spurious observations, the need for a variance stabilizing 
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transformation, the possibility of the use of a stationary inducing operation (e.g., 
differencing), and perhaps the nature of the transfer function. 

Pankratz (1991, page 169) also states that it is good practice to construct separate 
ARIMA models for all series of our proposed model.  Such ARIMA modeling may be viewed 
as part of preliminary analysis in transfer function modeling.  An ARIMA model for the 
output (response) is particularly useful, and provides a measure for the relative performance 
of a transfer function model.  Models for all input series are necessary if we intend to compute 
forecasts from our estimated model.  In addition, separate ARIMA models may provide useful 
modeling information. 

8.3.2   The linear transfer function (LTF) identification method  

The identification stage of transfer function modeling can be divided into three parts: 

(1)  the estimation of a set of TF (transfer function) weights; 

(2)  the determination of the form of the ARMA model for the disturbance,  
and 

(3)  the determination of the form of a rational polynomial to represent the 
estimated TF weights if these weights display a “die-out pattern”. 

 
Two procedures have evolved for the realization of parts (1) and (2) above.  One 

procedure utilizes a cross correlation function and a filtering technique known as 
prewhitening.  This procedure has been termed the CCF method, and is discussed in Section 
8.7.1.  The other procedure, discussed below, directly utilizes the linear transfer form of the 
transfer function model and has been termed the LTF method.  The underlying rationale for 
each can be found in Box and Jenkins (1970).  However, Box and Jenkins only provided a 
comprehensive procedure for single-input transfer function modeling using the CCF method.  
As a result, the CCF method has been the only method discussed in most subsequent texts. 

The LTF method follows an approach proposed by Liu and Hanssens (1982) and is 
detailed in Liu et. al. (1986), Liu and Hudak (1985), Liu (1986, 1987), and Pankratz (1991).  
The LTF approach is appealing because it can be easily explained (as an extension to 
regression) and simplifies the identification stage by reducing the steps necessary to obtain 
required information.  Moreover, the LTF method can be generalized to multiple-input 
transfer function modeling easily.  Such a generalization using the CCF method is difficult. 

Since we assume the transfer function relationship to be stable, in practice the rational 
transfer function model in (8.9) can be approximated by the following linear model: 

t , (8.20) 

where k is a sufficiently large number.  The above linear transfer function model is the basis 
of the LTF method.  Whenever we estimate (8.20) we obtain information on both the TF 
weights and the series Nt.  Information on the latter can be used to identify an ARMA model 
for the disturbance process.  Hence it is possible to reduce our modeling steps if we exploit 

tN ;

2 k
t 0 1 2 k tY C (v v B v B v B )X N= + + + + ⋅⋅⋅+ +
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(8.20).  The general scheme of the LTF method consists of the steps given below.  The 
complete set of steps assumes that the input and output series are stationary.  Hence, the 
method includes a check for stationarity. 
 

(1)  Initially estimate (8.20) for a “sufficiently” large value of k and a 
“reasonable” approximation for   These are discussed below.  

(2) Examine the estimates of the parameters in the model for  and the residuals 
from the fitted equation.  The estimated parameters may indicate that 
differencing is necessary (see Section 8.3.3).  The residuals are used to 
discover any gross discrepancies in the model. 

(3) Use the estimated TF weights to determine the form of the transfer function 
(see Section 8.3.5).  In addition, examine the disturbance from the fitted 
model, that is, 

 
 t  , (8.21) 

  where  12, ...,  13 are estimated values.  We now may use standard ARMA 
techniques to determine an appropriate ARMA model for  

 
If, in step (2), it is determined that differencing is necessary, then the complete set of 

steps is repeated for differenced data.  Step (3) is only valid if the series are stationary. 

There are two key elements in the LTF method, the choice for the number of TF weights 
and the proxy used for the disturbance term.  The latter is discussed in more detail in Section 
8.3.3 below.  The choice for the number of TF weights is somewhat arbitrary, but can be 
based on practical considerations.  There should be enough weights to account for the longest 
lagged response between input and output.  This may be known based on prior knowledge, 
theory, or physical properties (e.g., seasonality) of the process under study.  Ultimately, the 
sample size will limit our choice for the number of weights.  A small sample size dictates that 
relatively few weights be used. 

8.3.3   Useful approximations for the disturbance term in the LTF method  

In the LTF method outlined above, the disturbance term should not assumed to be white 
noise.  That is, the approximation used for the model of  should not

tN .

tN

2 k
t t 0 1 2 k

ˆˆ ˆ ˆ ˆ ˆN Y C (v v B v B v B )X= − − + + + ⋅⋅⋅ +

tN .

tN t tN a= .
timtN ,

 be   If we use 
reasonable approximations for  we can both obtain more efficient es ates of the TF 
weights and obtain useful information regarding differencing in certain cases.  In particular, 
two useful representations of the disturbance term are:  

(a)  An AR(1) approximation when there is no seasonality present.  That is, 
 

t t
1N a

1 B
=

−φ
 . 
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(b)  A multiplicative AR approximation when we have seasonality (with seasonal 
period s).  Specifically, we use 

 

   t ts
1 2

1N a
(1 B)(1 B )

=
−φ −φ

. 

 
The usefulness of these approximations becomes clear after a short inspection.  For 

example, consider the AR(1) approximation for the nonseasonal case.  The approximation is 
useful since:  

(1)  it is correct if the disturbance is actually an AR(1) process;  

(2)  it is a reasonable approximation if the disturbance actually follows a pure MA 
process of low order; 

(3)  it provides an indication of differencing if  ˆ 1φ ≈  or if the ACF of  consists 
of positive values that die out slowly; and  

(4)  it validates a white noise representation for f  

tN

tN  i ˆ 0φ ≈ . 
 
A similar argument is true for the use of a multiplicative AR model when seasonality is 
present. 

8.3.4   An example of the LTF method: Stock market data 

To briefly illustrate the LTF method, we will continue to model the stock market data of 
Section 8.1 using a transfer function model.  Here the LTF method is applied in a multiple-
input model (two input variables in this case). 

We begin the analysis by extending the model used in Section 8.1.2.  Instead of limiting 
ourselves to contemporaneous terms only, we will first fit the model 

 

2 3 4
t 0 1 2 3 4 t

2 3 4
0 1 2 3 4 t

LNSP500 C (v v B v B v B v B )LNLONG
1(w w B w B w B w B )LNLEAD a

1 B

= + + + + +

+ + + + + +
−φ t

. 

The above model is an illustration of the first step in the LTF method.  Since the data are 
nonseasonal, an AR(1) approximation is used.  We fit 5 weights for each linear transfer 
functions (i.e., k=4).  We can specify this model by entering 

 -->TSMODEL   STOCKLTF.   MODEL IS LNSP500 = CONST +        @ 
 -->       (0 TO 4; V0 TO V4)LNLONG + (0 TO 4; W0 TO W4)LNLEAD + 1/(1)NOISE. 

 
The specification above uses a shorthand notation for all operators (see Sections 5.4.5, 

8.4.2 and 8.7.6).  Note that no variable label is used to maintain the estimate of .  We do this 
deliberately to force the initial value used for 

 φ
φ  to be 0.1 whenever the m it.  In this 

way, we will not begin the estimation process with a value of 
odel is f

φ  that may be inappropriate.  
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However, it is useful to maintain estimates of the TF weights (see Sections 8.4.4 and 8.7.5).  
The SCA output for this specification has been suppressed. 

We can estimate the model STOCKLTF, and retain the residuals and estimated 
disturbance term, by entering the following command (SCA output is edited for presentation 
purposes): 

 -->ESTIM   STOCKLTF.   HOLD RESIDUALS(RES), DISTURBANCE(NT) 
 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- STOCKLTF 
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
 
 LNSP500    RANDOM     ORIGINAL     NONE 
 
  LNLONG    RANDOM     ORIGINAL     NONE 
 
  LNLEAD    RANDOM     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1  CONST             CNST      1      0     NONE     7.4864   44.9031    .17  
   2    V0     LNLONG   NUM.      1      0     NONE     -.2940     .0730  -4.03  
   3    V1     LNLONG   NUM.      1      1     NONE     -.1146     .0819  -1.40  
   4    V2     LNLONG   NUM.      1      2     NONE     -.1304     .0882  -1.48  
   5    V3     LNLONG   NUM.      1      3     NONE      .1568     .0838   1.87  
   6    V4     LNLONG   NUM.      1      4     NONE      .0121     .0778    .16  
   7    W0     LNLEAD   NUM.      1      0     NONE      .6136     .2381   2.58  
   8    W1     LNLEAD   NUM.      1      1     NONE      .1557     .2474    .63  
   9    W2     LNLEAD   NUM.      1      2     NONE     -.1741     .2479   -.70  
  10    W3     LNLEAD   NUM.      1      3     NONE      .3298     .2377   1.39  
  11    W4     LNLEAD   NUM.      1      4     NONE     -.0557     .2278   -.24  
  12          LNSP500   D-AR      1      1     NONE      .9990     .0092 108.20  
 
 
 TOTAL SUM OF SQUARES . . . . . . . .   .164869E+02 
 TOTAL NUMBER OF OBSERVATIONS . . . .           141 
 RESIDUAL SUM OF SQUARES. . . . . . .   .105722E+00 
 R-SQUARE . . . . . . . . . . . . . .          .993 
 EFFECTIVE NUMBER OF OBSERVATIONS . .           136 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .777366E-03 
 RESIDUAL STANDARD ERROR. . . . . . .   .278813E-01 

 
The estimate of  is virtually 1 (in accord with previous estimations).  Hence we will 

now re-specify and estimate the same model as above, with all series differenced.  We may 
enter the following sequence of commands (SCA output is edited for presentation purposes): 

 -->TSMODEL   STOCKLTF.   MODEL IS LNSP500(1) = CONST +                     @ 
 -->      (0 TO 4; V0 TO V4)LNLONG(1) + (0 TO 4; W0 TO W4)LNLEAD(1)  +     @ 
 -->      1/(1)NOISE. 
 
 -->ESTIM  STOCKLTF.   HOLD RESIDUALS(RES), DISTURBANCE(NT). 

 

φ
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 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- STOCKLTF 
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1 
  LNSP500    RANDOM     ORIGINAL     (1-B  )  
                                         1 
  LNLONG    RANDOM     ORIGINAL     (1-B  )  
                                         1 
  LNLEAD    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1  CONST             CNST      1      0     NONE      .0065     .0032   2.03  
   2    V0     LNLONG   NUM.      1      0     NONE     -.3194     .0730  -4.38  
   3    V1     LNLONG   NUM.      1      1     NONE     -.0998     .0766  -1.30  
   4    V2     LNLONG   NUM.      1      2     NONE     -.1470     .0827  -1.78  
   5    V3     LNLONG   NUM.      1      3     NONE      .1533     .0785   1.95  
   6    V4     LNLONG   NUM.      1      4     NONE      .0262     .0767    .34  
   7    W0     LNLEAD   NUM.      1      0     NONE      .5423     .2367   2.29  
   8    W1     LNLEAD   NUM.      1      1     NONE      .1780     .2379    .75  
   9    W2     LNLEAD   NUM.      1      2     NONE     -.1610     .2381   -.68  
  10    W3     LNLEAD   NUM.      1      3     NONE      .3053     .2260   1.35  
  11    W4     LNLEAD   NUM.      1      4     NONE      .0200     .2250    .09  
  12          LNSP500   D-AR      1      1     NONE      .1773     .0865   2.05  
 
 TOTAL SUM OF SQUARES . . . . . . . .   .164869E+02 
 TOTAL NUMBER OF OBSERVATIONS . . . .           141 
 RESIDUAL SUM OF SQUARES. . . . . . .   .102399E+00 
 R-SQUARE . . . . . . . . . . . . . .          .994 
 EFFECTIVE NUMBER OF OBSERVATIONS . .           135 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .758515E-03 
 RESIDUAL STANDARD ERROR. . . . . . .   .275411E-01    

 
We have achieved a fitted stationary model.  Before we use the results of this model, we 

should examine the ACF of the residuals to see if there are any gross discrepancies that still 
need to be corrected.  We obtain the ACF for the residuals (stored in RES) by entering 

 -->ACF   RES.    MAXLAG IS 12. 
 

 TIME PERIOD ANALYZED . . . . . . . . .  7  TO   141 
 NAME OF THE SERIES . . . . . . . . . .          RES 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          135 
 STANDARD DEVIATION OF THE SERIES . . .        .0275 
 MEAN OF THE (DIFFERENCED) SERIES . . .        .0000 
 STANDARD DEVIATION OF THE MEAN . . . .        .0024 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .        .0000 
 
 
 AUTOCORRELATIONS  
 
  1- 12    -.01  .08 -.01  .09  .06 -.00  .04  .02  .04 -.06  .09 -.13 
  ST.E.     .09  .09  .09  .09  .09  .09  .09  .09  .09  .09  .09  .09 
   Q         .0   .9  1.0  2.1  2.7  2.7  2.8  2.9  3.2  3.7  4.9  7.4 
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          -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
            +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
  1   -.01                       +   I   +                      
  2    .08                       +   IXX +                      
  3   -.01                       +   I   +                      
  4    .09                       +   IXX +                      
  5    .06                       +   IXX +                      
  6    .00                       +   I   +                      
  7    .04                       +   IX  +                      
  8    .02                       +   IX  +                      
  9    .04                       +   IX  +                      
 10   -.06                       + XXI   +                      
 11    .09                       +   IXX +                      
 12   -.13                       +XXXI   +      

 
No anomalies are apparent.  Hence, we can use the estimated response weights and 

estimated disturbance term to determine a form for the transfer function model.  Note we 
should not always expect an ACF pattern as clean as the one above.  Since we are roughly 
approximating  we may anticipate some significant lags in the ACF of the residuals.  We 

 the residual series is grossly different from a white noise 
process. 

We see that the TF weights associated with LNLEAD “cut off” after the 
contemporaneous lag (i.e., lag 0).  Moreover, only the estimate of the weight associated with 
the contemporaneous lag for LNLONG is significant at the 5% level.  The t-value of V3 is 
near significance. 

Since the transfer function weights for both inputs cut-off, there is no need to 
incorporate the denominator polynomial 

tN ,
only need to be concerned when

(B)δ .  In this case (B) 1δ =
ear significance, we m

 for each transfer 
function and .  Because the value of V3 is n ay wish to 
explore either of the m dels 

t+

or 
t+ . 

The former model is more plausible than the latter, unless there is a possible reason that 
the current percent change in the S&P's 500 index is influenced by the percent change in long 
term government security interest rates three months ago. 

We can now use the estimated disturbance term, stored in the variable NT, to determine 
a model for   We can compute the ACF and PACF by entering 

 -->IDEN   NT.    MAXLAG IS 12. 
 

 TIME PERIOD ANALYZED . . . . . . . . .  6  TO   141 
 NAME OF THE SERIES . . . . . . . . . .           NT 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          136 
 STANDARD DEVIATION OF THE SERIES . . .        .0279 
 MEAN OF THE (DIFFERENCED) SERIES . . .       -.0001 
 STANDARD DEVIATION OF THE MEAN . . . .        .0024 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .       -.0355 

i iv (B)ω =
o

t 0 t 0 t(1 B)LNSP500 C (v )(1 B)LNLONG (w )(1 B)LNLEAD N− = + − + −  

3
t 0 3 t 0(1 B)LNSP500 C (v v B )(1 B)LNLONG (w )(1 B)LNLEAD N− = + + − + −

tN .
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 AUTOCORRELATIONS  
   1- 12     .18  .12  .02  .11  .08  .02  .04  .04  .04 -.04  .06 -.11 
   ST.E.     .09  .09  .09  .09  .09  .09  .09  .09  .09  .09  .09  .09 
    Q        4.3  6.2  6.3  8.0  8.9  9.0  9.2  9.4  9.7  9.9 10.5 12.2 
 
           -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
             +----+----+----+----+----+----+----+----+----+----+ 
                                      I 
   1    .18                       +   IXXXX                      
   2    .12                       +   IXXX+                      
   3    .02                       +   IX  +                      
   4    .11                       +   IXXX+                      
   5    .08                       +   IXX +                      
   6    .02                       +   I   +                      
   7    .04                       +   IX  +                      
   8    .04                       +   IX  +                      
   9    .04                       +   IX  +                      
  10   -.04                       +  XI   +                      
  11    .06                       +   IXX +                      
  12   -.11                      + XXXI    +       
 
 PARTIAL AUTOCORRELATIONS  
   1- 12     .18  .09 -.01  .10  .05 -.02  .03  .02  .02 -.06  .07 -.14 
   ST.E.     .09  .09  .09  .09  .09  .09  .09  .09  .09  .09  .09  .09 
 
           -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
             +----+----+----+----+----+----+----+----+----+----+ 
                                      I 
   1    .18                       +   IXXXX                      
   2    .09                       +   IXX +                      
   3   -.01                       +   I   +                      
   4    .10                       +   IXXX+                      
   5    .05                       +   IX  +                      
   6   -.02                       +  XI   +                      
   7    .03                       +   IX  +                      
   8    .02                       +   I   +                      
   9    .02                       +   I   +                      
  10   -.06                       +  XI   +                      
  11    .07                       +   IXX +                      
  12   -.14                       +XXXI   +       

 
Both the ACF and PACF “cut-off” after the first lag.  Hence we can consider using 

either an MA(1) or AR(1) representation for Nt.  We can also observe the EACF for NT by 
entering 

 -->EACF   NT.    MAXLAG IS 12. 
 

 TIME PERIOD ANALYZED . . . . . . . . .  6  TO   141 
 NAME OF THE SERIES . . . . . . . . . .           NT 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          136 
 STANDARD DEVIATION OF THE SERIES . . .        .0279 
 MEAN OF THE (DIFFERENCED) SERIES . . .       -.0001 
 STANDARD DEVIATION OF THE MEAN . . . .        .0024 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .       -.0355 
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 THE EXTENDED ACF TABLE  
 
 (Q-->)   0    1    2    3    4    5    6    7    8    9   10   11   12 
 ------------------------------------------------------------------------ 
 (P= 0)  .18  .12  .02  .11  .08  .02  .04  .04  .04 -.04  .06 -.11  .01 
 (P= 1) -.39  .08 -.02  .06  .06 -.03  .02 -.01  .04  .00 -.00 -.10 -.01 
 (P= 2)  .12 -.15 -.10  .07  .07 -.05  .00  .03  .02  .01  .00 -.09  .04 
 (P= 3)  .10 -.44 -.43  .02  .02 -.06  .01  .04  .01 -.01  .02 -.05 -.04 
 (P= 4) -.38  .29 -.36  .14  .01 -.01  .02  .05 -.01 -.02  .03 -.03 -.03 
 (P= 5)  .37 -.13 -.36 -.10 -.08  .00 -.00  .03  .03 -.01 -.00 -.04 -.03 
 (P= 6)  .44 -.27 -.20 -.20 -.08  .01 -.00  .03  .03 -.00 -.00 -.07  .00 
 
 SIMPLIFIED EXTENDED ACF TABLE (5% LEVEL)  
 
 (Q-->)  0  1  2  3  4  5  6  7  8  9 10 11 12 
 -----------------------------------------------    
 (P= 0)  X  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 1)  X  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 2)  O  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 3)  O  X  X  O  O  O  O  O  O  O  O  O  O 
 (P= 4)  X  X  X  O  O  O  O  O  O  O  O  O  O 
 (P= 5)  X  O  X  O  O  O  O  O  O  O  O  O  O 
 (P= 6)  X  X  X  O  O  O  O  O  O  O  O  O  O   

 
The EACF seems to support an MA(1) representation for   Hence we may consider 

fitting either the model 

tθ , 
 
or simplified variations of this model.  Estimation results for various models are presented 
below. 
 

Estimates (and t-values) for various transfer 
function models of (1-B)LNSP500t 

  

tN .

3
t 0 3 t 0 t(1 B)LNSP500 C (V V B )(1 B)LNLONG (W )(1 B)LNLEAD (1 B)a− = + + − + − + −

t(1 B)LNLONG−  t(1 B)LNLEAD−  
 Constant 0v  3v  0w  aσ  θ  
 

Model 1 
 

.006 
(2.21) 

-.329 
(-4.92) 

.145 
(2.11) 

.724 
(3.26) 

-1.44 
(-1.64) .0285 

 
Model 2 

 

.006 
(2.41) 

-.333 
(-5.20) 

.142 
(2.12) 

.826 
(3.73)  .0288 

 
Model 3 

 

.007 
(2.71) 

-3.42 
(-5.31)  .700 

(3.26)  .0291 

 
The ACF of all the models above are relatively clean.  Due to the similar values of a, we 

may likely choose the simplest model 

t t+ . 

The above model is virtually identical to that obtained in Section 4.3.3. 

 

t t(1 B)LNSP500 0.007 0.342(1 B)LNLONG 0.700(1 B)LNLEAD a− = − − + −
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8.4   Example: Series M of Box and Jenkins 

As an illustration of the complete transfer function modeling procedure using the LTF 
method, we consider the data of Series M of Box and Jenkins (1970).  The output series 
(response) consists of sales data, and the input series (explanatory variable) is a leading 
indicator.  There are 150 observations in each series.  The data are listed in Table 8.1 and are  
displayed in Figure 8.2.  The data are stored in the SCA workspace under  the labels SALES 
and LEADING. 

Table 8.1   Data of Series M of Box and Jenkins (1970) 
 
 

 Output variable:  Sales data (read across a line) 
 
  200.1 199.5 199.4 198.9 199.0 200.2 198.6 200.0 200.3 201.2 201.6 201.5 
  201.5 203.5 204.9 207.1 210.5 210.5 209.8 208.8 209.5 213.2 213.7 215.1 
  218.7 219.8 220.5 223.8 222.8 223.8 221.7 222.3 220.8 219.4 220.1 220.6 
  218.9 217.8 217.7 215.0 215.3 215.9 216.7 216.7 217.7 218.7 222.9 224.9 
  222.2 220.7 220.0 218.7 217.0 215.9 215.8 214.1 212.3 213.9 214.6 213.6 
  212.1 211.4 213.1 212.9 213.3 211.5 212.3 213.0 211.0 210.7 210.1 211.4 
  210.0 209.7 208.8 208.8 208.8 210.6 211.9 212.8 212.5 214.8 215.3 217.5 
  218.8 220.7 222.2 226.7 228.4 233.2 235.7 237.1 240.6 243.8 245.3 246.0 
  246.3 247.7 247.6 247.8 249.4 249.0 249.9 250.5 251.5 249.0 247.6 248.8 
  250.4 250.7 253.0 253.7 255.0 256.2 256.0 257.4 260.4 260.0 261.3 260.4 
  261.6 260.8 259.8 259.0 258.9 257.4 257.7 257.9 257.4 257.3 257.6 258.9 
  257.8 257.7 257.2 257.5 256.8 257.5 257.0 257.6 257.3 257.5 259.6 261.1 
  262.9 263.3 262.8 261.8 262.2 262.7 
 
 
 Input series:  A leading indicator (read across a line) 
 
  10.01 10.07 10.32  9.75 10.33 10.13 10.36 10.32 10.13 10.16 10.58 10.62 
  10.86 11.20 10.74 10.56 10.48 10.77 11.33 10.96 11.16 11.70 11.39 11.42 
  11.94 11.24 11.59 10.96 11.40 11.02 11.01 11.23 11.33 10.83 10.84 11.14 
  10.38 10.90 11.05 11.11 11.01 11.22 11.21 11.91 11.69 10.93 10.99 11.01 
  10.84 10.76 10.77 10.88 10.49 10.50 11.00 10.98 10.61 10.48 10.53 11.07 
  10.61 10.86 10.34 10.78 10.80 10.33 10.44 10.50 10.75 10.40 10.40 10.34 
  10.55 10.46 10.82 10.91 10.87 10.67 11.11 10.88 11.28 11.27 11.44 11.52 
  12.10 11.83 12.62 12.41 12.43 12.73 13.01 12.74 12.73 12.76 12.92 12.64 
  12.79 13.05 12.69 13.01 12.90 13.12 12.47 12.47 12.94 13.10 12.91 13.39 
  13.13 13.34 13.34 13.14 13.49 13.87 13.39 13.59 13.27 13.70 13.20 13.32 
  13.15 13.30 12.94 13.29 13.26 13.08 13.24 13.31 13.52 13.02 13.25 13.12 
  13.26 13.11 13.30 13.06 13.32 13.10 13.27 13.64 13.58 13.87 13.53 13.41 
  13.25 13.50 13.58 13.51 13.77 13.40 
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Figure 8.2   Sales data of SERIES M of Box and Jenkins (1970) 
 

Leading indicator data of SERIES M 

 
 

Sales data of SERIES M 

 
  

The sales data were modeled previously using an ARIMA model (see Section 5.2).  In 
this section, we will only use the first 126 observations for model building and estimation.  In 
Section 8.4.1 we will provide the revised estimates of the ARIMA model for SALES for this 
span of data.  Estimated models for both SALES alone and the transfer function model 
involving SALES and LEADING will be used to compute one-step-ahead forecasts from time 
origins 126 through 149.  We can then compare transfer function and ARIMA results with 
actual values. 

8.4.1   Preliminary modeling phase 

As noted in Section 8.3.1, some preliminary exploratory analysis and modeling should 
precede the construction of a transfer function model.  This preliminary stage involves 
inferences drawn from plots or other sources and the development of separate ARIMA models 
for (possibly) all series involved in our proposed model. 

We can use the plots of Figure 8.2 to make some initial observations regarding SALES 
and LEADING.  We see that 

(1)  there are no apparent aberrations in either series, 

(2)  the variation present in each series appears to be constant over time, 

(3)  both series display non-stationary behavior as there is no fixed mean level, 
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(4)  the LEADING series appears to be a good indicator for the SALES series as 
its “peaks”, “valleys” and “turning points” are seen in SALES after a short 
delay.  

 
ARIMA models for SALES and LEADING 
 

An ARIMA model was constructed for SALES in Section 5.2.  This model was based 
on all 150 observations of the series.  The same model is found if only the first 126 
observations are used (details not shown here). The fitted model obtained in this case is 

, (8.22) 

with .  These results are almost identical to those obtained in Section 2 of Chapter 5. 
 

An ARIMA model is now constructed for LEADING using only the first 126 
observations, but only the results are given here.  The fitted model for LEADING is found to 
be  

, (8.23) 

with e = 0.30.  The error series associated with the ARIMA model for LEADING is distinct

t t(1 0.89B)(1 B)SALES (1 0.64B)a− − = −

a 1.41σ =

t t(1 B)LEADING (1 0.44B)e− = −

 
from the error series associated with the disturbance of the transfer function model since the 
series LEADINGt and Nt are assumed to be independent.  The model information for 
LEADING is stored in the SCA workspace under the label LEADMDL. 
 

From the time series plots of LEADING and SALES and the results from individual 
ARIMA model building, we may conclude that differencing will be used in our transfer 
function model and that the underlying disturbance for SALES (i.e.,  may contain a 
moving average term.  We will verify this in the identification stage using the LTF method. 

8.4.2   Transfer function identification using the LTF method 

We will now use the LTF method to identify a transfer function model.  Since there is 
no apparent seasonality in the data, we will use an AR(1) approximation for Nt.  Although we 
suspect that differencing is necessary, we will initially examine the original series.  Based on 
the plots in Figure 8.2, we may detect a delay in the process (of about 2 to 5 time periods).  
We will begin the LTF method with 11 TF weights (i.e., the 0th through 10th lags inclusive).  
We may decide to adjust the number of weights later.  Hence the model we will fit is 

t . (8.23) 

We can specify this model by entering  
 

 -->TSMODEL   SALESMDL.   MODEL IS SALES = CNST + (0 TO 10; V0 TO V10)LEADING    @ 
 -->          + 1/(1)NOISE. 

 

tN )

10
t 0 1 10 tSALES C (v v B v B )LEADING {1/(1 B)}a= + + + ⋅⋅⋅+ + −φ
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We used a shorthand notation in the above model specification (see Section 5.4.5).  That 
is, 1/(1)NOISE indicates an AR(1) representation for Nt; and 

 (0 TO 10; V0 TO V10)  
 
in the above specification is equivalent to entering  
 
 (VO + V1*B + V2*B**2 + V3*B**3 + V4*B**4 + V5*B**5 
      + V6*B**6 + V7*B**7 + V8*B**8 + V9*B**9 + V10*B**10) 
 
We suppressed the SCA output generated by the above paragraph.  To estimate this model, we 
may enter  
 

 -->ESTIM   SALESMDL.    HOLD  RESIDUALS(RES), DISTURBANCE(NT). 
 
The estimates of all parameters will be held in the SCA workspace under the labels designated 
in the previous TSMODEL paragraph.  The HOLD sentence is used above to designate that 
the residuals of the fitted model will be retained in the variable RES and the estimated 
disturbance (i.e., ) will be retained in the variable NT.  We obtain the following (the SCA 
output is edited for presentation purposes)  
 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- SALESMDL 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
 
  SALES     RANDOM     ORIGINAL     NONE 
 
 LEADING    RANDOM     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1   CNST             CNST      1      0     NONE    84.0082  169.4053    .50  
   2    V0    LEADING   NUM.      1      0     NONE     -.0818     .0879   -.93  
   3    V1    LEADING   NUM.      1      1     NONE     -.0732     .0964   -.76  
   4    V2    LEADING   NUM.      1      2     NONE     -.0094     .0976   -.10  
   5    V3    LEADING   NUM.      1      3     NONE     4.7920     .0971  49.34  
   6    V4    LEADING   NUM.      1      4     NONE     3.4797     .0979  35.55  
   7    V5    LEADING   NUM.      1      5     NONE     2.3791     .0976  24.38  
   8    V6    LEADING   NUM.      1      6     NONE     1.8208     .0980  18.59  
   9    V7    LEADING   NUM.      1      7     NONE     1.2588     .0973  12.94  
  10    V8    LEADING   NUM.      1      8     NONE     1.1099     .0977  11.35  
  11    V9    LEADING   NUM.      1      9     NONE      .6659     .0963   6.91  
  12   V10    LEADING   NUM.      1     10     NONE      .3237     .0876   3.69  
  13           SALES    D-AR      1      1     NONE      .9979     .0112  89.36  
 
 TOTAL SUM OF SQUARES . . . . . . . .   .444823E+05 
 TOTAL NUMBER OF OBSERVATIONS . . . .           126 
 RESIDUAL SUM OF SQUARES. . . . . . .   .819994E+01 
 R-SQUARE . . . . . . . . . . . . . .         1.000 
 EFFECTIVE NUMBER OF OBSERVATIONS . .           115 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .713038E-01 
 RESIDUAL STANDARD ERROR. . . . . . .   .267028E+00   

 

tN̂
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Our attention is drawn immediately to the estimate of the AR parameter.  This value is 
essentially 1, as we anticipated.  Hence we may conclude that we should employ differencing 
to achieve stationarity.  We can also confirm this by computing the ACF of the estimated 
disturbance, NT. 

 -->ACF   NT.   MAXLAG IS 12. 
 

 TIME PERIOD ANALYZED . . . . . . . . . 11  TO   126 
 NAME OF THE SERIES . . . . . . . . . .           NT 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          116 
 STANDARD DEVIATION OF THE SERIES . . .       2.2808 
 MEAN OF THE (DIFFERENCED) SERIES . . .     -38.3571 
 STANDARD DEVIATION OF THE MEAN . . . .        .2118 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .    -181.1284 
 
 AUTOCORRELATIONS  
 
  1- 12     .96  .92  .88  .85  .81  .77  .73  .69  .66  .62  .58  .55 
  ST.E.     .09  .16  .20  .23  .25  .28  .29  .31  .32  .33  .34  .35 
   Q        109  210  304  392  472  546  613  674  729  779  823  863 
 
 
          -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
            +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
  1    .96                      +    IXXXX+XXXXXXXXXXXXXXXXXXX  
  2    .92                   +       IXXXXXXX+XXXXXXXXXXXXXXX   
  3    .88                 +         IXXXXXXXXX+XXXXXXXXXXXX    
  4    .85                +          IXXXXXXXXXX+XXXXXXXXXX     
  5    .81               +           IXXXXXXXXXXX+XXXXXXXX      
  6    .77              +            IXXXXXXXXXXXX+XXXXXX       
  7    .73             +             IXXXXXXXXXXXXX+XXXX        
  8    .69            +              IXXXXXXXXXXXXXX+XX         
  9    .66           +               IXXXXXXXXXXXXXXXX          
 10    .62           +               IXXXXXXXXXXXXXXXX          
 11    .58          +                IXXXXXXXXXXXXXXX +         
 12    .55          +                IXXXXXXXXXXXXXX  +    

 
We will now alter the model being fit to include differencing in the disturbance.  That is, 

we want to consider the model 

t . (8.24) 

We cannot fit the model of (8.23) directly since a differencing operator may not be specified 
in a denominator (see Section 6.5.3).  The above model is equivalent to 
 

t . (8.25) 

We can specify and estimate this revised model in the same manner as we used above.  That 
is, we can enter the following commands (SCA output is edited for presentation purposes). 
 

 -->TSMODEL   SALESMDL.   MODEL IS SALES(1) = CNST +             @ 
 -->          (0 TO 10; V0 TO V10)LEADING(1) + 1/(1)NOISE. 
 
 -->ESTIM     SALESMDL.   HOLD RESIDUALS(RES), DISTURBANCE(NT). 

 

 10
t 0 1 10 tSALES C (v v B v B )LEADING {1/(1 B)(1 B)}a= + + + ⋅⋅⋅+ + −φ −

10
t 0 10 t(1 B)SALES C (v v B )(1 B)LEADING {1/(1 B)}a− = + + ⋅⋅⋅+ − + −φ
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 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- SALESMDL 
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1 
  SALES     RANDOM     ORIGINAL     (1-B  )  
                                         1 
 LEADING    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1   CNST             CNST      1      0     NONE      .0771     .0213   3.62  
   2    V0    LEADING   NUM.      1      0     NONE     -.0715     .0844   -.85  
   3    V1    LEADING   NUM.      1      1     NONE     -.0802     .0860   -.93  
   4    V2    LEADING   NUM.      1      2     NONE     -.0168     .0859   -.20  
   5    V3    LEADING   NUM.      1      3     NONE     4.8043     .0855  56.18  
   6    V4    LEADING   NUM.      1      4     NONE     3.4728     .0862  40.28  
   7    V5    LEADING   NUM.      1      5     NONE     2.3710     .0859  27.60  
   8    V6    LEADING   NUM.      1      6     NONE     1.8128     .0864  20.98  
   9    V7    LEADING   NUM.      1      7     NONE     1.2433     .0860  14.45  
  10    V8    LEADING   NUM.      1      8     NONE     1.1346     .0867  13.09  
  11    V9    LEADING   NUM.      1      9     NONE      .6734     .0855   7.88  
  12   V10    LEADING   NUM.      1     10     NONE      .3834     .0838   4.57  
  13           SALES    D-AR      1      1     NONE     -.2554     .0896  -2.85  
 
 TOTAL SUM OF SQUARES . . . . . . . .   .444823E+05 
 TOTAL NUMBER OF OBSERVATIONS . . . .           126 
 RESIDUAL SUM OF SQUARES. . . . . . .   .749880E+01 
 R-SQUARE . . . . . . . . . . . . . .         1.000 
 EFFECTIVE NUMBER OF OBSERVATIONS . .           114 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .657789E-01 
 RESIDUAL STANDARD ERROR. . . . . . .   .256474E+00   

 
The estimates of the first three TF weights (V0, V1 and V2) cannot be statistically 

distinguished from 0.  Hence there is a delay of three time periods in the process.  This is 
consistent with what was observed in the time series plots.  The values of the estimated TF 
weights for the remaining lags are significant, but exhibit a die-out pattern.  As a result, we 
may be able to use a rational polynomial representation for the transfer function.  If we use a 
linear transfer function form, we will need to include many lags. 

The above speculation regarding the TF weights is only valid if the estimated weights 
are to some degree “correct”.  One means to assess the validity of the fit is to compute the 
ACF of the residuals from this fit.  It is important to note that the residuals are distinct from 
the estimated disturbance.  The estimated disturbance is “what is left over” after accounting 
for a constant term and transfer function components.  The residual series represents the error 
remaining after accounting for all components of the model.  We have the following  

 -->ACF  RES.  MAXLAG IS 12. 
 

 TIME PERIOD ANALYZED . . . . . . . . . 13  TO   126 
 NAME OF THE SERIES . . . . . . . . . .          RES 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          114 
 STANDARD DEVIATION OF THE SERIES . . .        .2565 
 MEAN OF THE (DIFFERENCED) SERIES . . .        .0000 
 STANDARD DEVIATION OF THE MEAN . . . .        .0240 
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 T-VALUE OF MEAN (AGAINST ZERO) . . . .        .0001 
 
 
 AUTOCORRELATIONS  
   1- 12    -.00  .04  .07 -.04  .13  .10 -.09  .09 -.07  .07  .05  .03 
   ST.E.     .09  .09  .09  .09  .09  .10  .10  .10  .10  .10  .10  .10 
    Q         .0   .2   .8  1.0  2.9  4.1  5.1  6.1  6.7  7.4  7.6  7.8 
 
          -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
            +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
  1    .00                      +    I    +                     
  2    .04                      +    IX   +                     
  3    .07                      +    IXX  +                     
  4   -.04                      +   XI    +                     
  5    .13                      +    IXXX +                     
  6    .10                      +    IXXX +                     
  7   -.09                      +  XXI    +                     
  8    .09                      +    IXX  +                     
  9   -.07                      +  XXI    +                     
 10    .07                      +    IXX  +                     
 11    .05                      +    IX   +                     
 12    .03                      +    IX   +       

 
The above ACF indicates that the residuals are consonant with white noise.  Hence the 

estimated transfer function weights may be used to identify the form of the transfer function.  
We will do this in Section 8.4.4.  Before we do that we will obtain a model for the disturbance 
term. 

8.4.3   Obtaining a model for the disturbance term 

So far, we have used an AR(1) approximation of the disturbance term,   Although 
the residual series of our last fit appear to be white noise and the estim eter 
is statistically significant, we may not have the most appropriate model for e can now 
use the estimated disturbance series, maintained in the variable NT, to determine an ARIMA 
model for   If we compute the ACF and PACF (not shown here), we will see that both the 
ACF and the PACF “cut-off” after lag 1.  Due to relatively small ma  the value of 
the lag 1 ACF and lag 1 PACF, we may conclude we can represent R(1) or 
MA(1) process.  However, if we compute the EACF of  we obtain 

 TIME PERIOD ANALYZED . . . . . . . . . 12  TO   126 
 NAME OF THE SERIES . . . . . . . . . .           NT 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          115 
 STANDARD DEVIATION OF THE SERIES . . .        .2680 
 MEAN OF THE (DIFFERENCED) SERIES . . .        .0034 
 STANDARD DEVIATION OF THE MEAN . . . .        .0250 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .        .1342 
 
 THE EXTENDED ACF TABLE  
 (Q-->)   0    1    2    3    4    5    6    7    8    9   10   11   12 
 ------------------------------------------------------------------------ 
 (P= 0) -.26  .09  .04 -.08  .11  .09 -.12  .13 -.13  .12  .01  .05 -.05 
 (P= 1)  .10  .14  .06  .00  .09  .11 -.03  .01  .00  .10 -.03  .03  .00 
 (P= 2) -.30  .27  .09 -.01  .07  .12  .02  .03  .00  .07  .08  .01 -.01 
 (P= 3)  .48 -.34 -.12  .09 -.00  .12 -.11 -.02  .01  .07  .07  .03 -.02 
 (P= 4)  .46 -.12 -.41  .10 -.01  .11 -.04 -.03  .01  .06  .08 -.03  .01 
 (P= 5) -.41  .34 -.45  .18  .29  .16 -.10  .05 -.07  .10  .04 -.03  .02 

tN .
ate of the AR param

t .  W

 either as an A

N

gnitude of
tN .

tN
tN
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 (P= 6)  .43 -.05  .11 -.04 -.30 -.22  .01  .00 -.04 -.02  .02  .01 -.01 
 
 SIMPLIFIED EXTENDED ACF TABLE (5% LEVEL)  
 (Q-->)  0  1  2  3  4  5  6  7  8  9 10 11 12 
 -----------------------------------------------   
 (P= 0)  X  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 1)  O  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 2)  X  X  O  O  O  O  O  O  O  O  O  O  O 
 (P= 3)  X  X  O  O  O  O  O  O  O  O  O  O  O 
 (P= 4)  X  O  X  O  O  O  O  O  O  O  O  O  O 
 (P= 5)  X  X  X  O  X  O  O  O  O  O  O  O  O 
 (P= 6)  X  O  O  O  X  O  O  O  O  O  O  O  O      

 
The EACF supports an MA(1) process.  As a result, we will use the MA(1) representation in 
the remainder of this analysis. 

8.4.4   Obtaining a model for the transfer function 

As noted in Section 8.4.2, if we wish to use the linear form of the transfer function, then 
we will need a relatively large number of terms, beginning with lag 3.  However, a decay 
pattern appears to be present in the TF weights.  As a result, we may consider using 

  

in the denominator of the rational polynomial to represent this decay.  There are many 
significant transfer function weights beginning at lag 3.  It may not be clear how many terms 
to include in .  For example, if we use only one term in 

(B) 1 Bδ = −δ

 (B)ω (B)ω  we have 
 

,    and    . (8.26) 

In this case, we have a form of the Koyck (1954) distributed lag model (see Section 8.1.6 and 
Section 4.2 of Pankratz 1991) with a three period delay.  
 

Often a visual inspection of the estimated TF weights is sufficient to determine a 
reasonable and parsimonious representation for the transfer function, v(B).  Any delay in the 
process can be seen in any initial estimated weights that are statistically indistinguishable 
from 0.  If there is a cut-off pattern in the estimated weights, then we are well served by using 
the linear transfer function form for v(B).  That is, we can use v(B) = V(B), where V(B) is 
comprised of only the significant terms that have been estimated.  

If the estimated weights have a die-out pattern, then we may be well served by using the 
rational polynomial representation for v(B).  In some cases it may be relatively easy to 
determine appropriate forms for  and 

3
3(B) Bω = ω (B) 1 Bδ = −δ

(B)ω (B)δ .  However, often it is difficult to “read” a 
pattern in the weights.  In such cases, the corner method proposed by Liu and Hanssens 
(1982) can be used to determine the orders of these operators. 
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The corner method 
 
When a set of estimated TF weights exhibits a die-out pattern, we can use the corner method 
to identify the orders in a corresponding rational transfer function,  (B) / (B)ω δ .  The method 
employs a corner table that we will now describe. 
 

The corner table proposed by Liu and Hanssens (1982) consists of determinants of 
matrices composed of the TF weights.  For the row f (f = 0, 1, 2, ... ) and column g (g = 1, 2, 
3, ... ) the value in position (f,g) is the determinant of a matrix using  through f g 1v − + f g 1v + − .  
The specific form of this matrix can be found in Liu and Hanssens (1982) or Appendix 5A of 
Pankratz (1991).  

If the orders associated with (B)ω  and (B)δ  are b, s, and r (as defined in equations 
(8.13) and (8.14) ), then the corner table has the following pattern:  

 

                g 

  f 
    1          2  ⋅   ⋅   ⋅          r     r+1 r+2  ⋅   ⋅   ⋅ 

0 0 0 ⋅   ⋅   ⋅ 0 0 0 ⋅   ⋅   ⋅ 
1 0 0 ⋅   ⋅   ⋅ 0 0 0 ⋅   ⋅   ⋅ 

⋅ ⋅ ⋅  ⋅ ⋅ ⋅  

⋅ ⋅ ⋅  ⋅ ⋅ ⋅  

⋅ ⋅ ⋅  ⋅ ⋅ ⋅  

  
 
 

b








 

b-1 0 0 ⋅   ⋅   ⋅ 0 0 0 ⋅   ⋅   ⋅ 

b x x ⋅   ⋅   ⋅ x x x ⋅   ⋅   ⋅ 

⋅ ⋅ ⋅  ⋅ ⋅ ⋅  

⋅ ⋅ ⋅  ⋅ ⋅ ⋅  

s+b-1 x x ⋅   ⋅   ⋅ x x x ⋅   ⋅   ⋅ 

s+b x x ⋅   ⋅   ⋅ x 0 0 ⋅   ⋅   ⋅ 
s+b+1 x x ⋅   ⋅   ⋅ x 0 0 ⋅   ⋅   ⋅ 

⋅ ⋅ ⋅  ⋅ ⋅ ⋅  

s






 

⋅ ⋅ ⋅  ⋅ ⋅ ⋅  

 
 

 
 

r
144424443

 

The symbol ‘x’ denotes a term that may be different from 0, while the symbol ‘0’ 
denotes a term that is not significantly different from 0.  Note that in the above table, the 
elements in the first b rows and in the lower right-hand corner (beginning at the row labeled 
s+b and column r+1) are all zeros.  

The CORNER paragraph produces a table of values (not symbols).  The values are 
normalized so that the largest value of the first column is 1.00.  In practice, the estimated 
values of the TF weights are subject to random error.  As a result, we will usually find some 
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small values instead of the indicated zero values.  However, we will note either sudden 
increases in values (in going from the row labeled b-1 to the row labeled b) or sudden 
decreases (in going into the lower right-hand corner).  Further, because of sampling 
fluctuations, the corner table may not have a clear cut pattern.  However, we may still be able 
to determine some good  candidates for b, s and r.  We should always apply the principal of 
parsimony in such cases and try to rely on a small number of parameters in whatever models 
we determine from the table.  It is useful to note that in practice it is typically the case that the 
order of  (i.e., the r value) is seldom greater than 1. 

To illustrate the use of the corner table in the SCA System, we will construct a table 
from the estimated weights V0 through V10.  The CORNER paragraph will construct and 
display the table.  In the CORNER paragraph, the TF weights need to be the values of a single 
variable.  We can append the estimates V0 through V10 together using the JOIN paragraph 
(see Appendix B) and then request a corner table by sequentially entering the following 
commands (SCA output is edited for presentation purposes, and lines are superimposed in the 
corner table displayed): 

 -->JOIN   OLD ARE V0 TO V10.   NEW IS TFWEIGHTS. 
 -->CORNER   TFWEIGHTS 

 
CORNER TABLE FOR THE TRANSFER FUNCTION WEIGHTS IN TFWEIGHT 
 
      1     2     3     4     5 
 0    -.01   .00   .00   .00   .00 
 1    -.02   .00   .00   .00   .00 
 2     .00   .02  -.01   .00   .00     
 3    1.00  1.00  1.00  1.01  1.01   
 4     .72   .03   .04   .03   .06 
 5     .49  -.03   .00   .00   .00 
 
NOTE: "*****" (IF ANY) MEANS THAT THE ENTRY CANNOT BE COMPUTED   

 
We observe three rows of zero values, indicating a delay of b=3.  The row of non-zero 

values begin in the row labeled 3.  A corner begins in the row labeled 4 and column labeled 2.  
As a result, the value of r is 1, and the value of s is 4-3 = 1.  Hence the operators in the 
rational polynomial representation are  

  and    

(B)δ

3(B) Bω = ω  (B) 1 Bδ = −δ .  
 
These operators are the same as those in (8.26).  Moreover, V3 provides an initial estimate for 
the parameter . 
 

8.4.5   Specifying and estimating the identified model  

In Sections 8.4.3 and 8.4.4 above, we have identified the following model  

 

ω

3

t t
B(1 B)SALES C (1 B)LEADING (1 B)a

1 B
 ω

− = + − + −θ − δ 
t . (8.27) 
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We have reasonable initial estimates of C and ω in CNST and V3, respectively.  We can 
specify (8.27) in a straightforward manner (and utilize the estimates obtained previously) by 
entering  
 

 -->TSMODEL   SALESMDL.   MODEL IS SALES(1) = CNST +                  @ 
 -->    (V3*B**3)/(1-D1*B)LEADING(1) + (1-THETA*B)NOISE. 

 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- SALESMDL 
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED            
                                         1 
  SALES     RANDOM     ORIGINAL     (1-B  )  
                                         1 
 LEADING    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1   CNST             CNST      1      0     NONE      .0771                   
   2    V3    LEADING   NUM.      1      3     NONE     4.8043                   
   3    D1    LEADING   DENM      1      1     NONE      .1000                   
   4  THETA    SALES     MA       1      1     NONE      .1000    

 
We can estimate this model using the EXACT method for θ (and retain the residual and 

estimated disturbance terms for diagnostic checking purposes) by entering the following 
commands (SCA output is edited, and only the final estimation summary is provided): 

 -->ESTIM   SALESMDL. 
 
 -->ESTIM   SALESMDL.   METHOD IS EXACT.     HOLD  RESIDUALS(RES). 

 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- SALESMDL 
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1 
  SALES     RANDOM     ORIGINAL     (1-B  )  
                                         1 
 LEADING    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1   CNST             CNST      1      0     NONE      .0350     .0091   3.85  
   2    V3    LEADING   NUM.      1      3     NONE     4.7263     .0535  88.32  
   3    D1    LEADING   DENM      1      1     NONE      .7239     .0038 192.77  
   4  THETA    SALES     MA       1      1     NONE      .6261     .0730   8.58  
 
 TOTAL SUM OF SQUARES . . . . . . . .   .444823E+05 
 TOTAL NUMBER OF OBSERVATIONS . . . .           126 
 RESIDUAL SUM OF SQUARES. . . . . . .   .572508E+01 
 R-SQUARE . . . . . . . . . . . . . .         1.000 
 EFFECTIVE NUMBER OF OBSERVATIONS . .           116 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .493541E-01 
 RESIDUAL STANDARD ERROR. . . . . . .   .222158E+00    
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8.4.6   Diagnostic checks of a transfer function model 

The fitted values for  and  are consistent with our prior estimates or conjectures.  In 
addition the estimate of θ is highly significant.  At this time, we need to diagnostically check 
our model.  We do this in much the same manner as for an ARIMA model (see Section 5.1.5).  
Our two basic concerns remain the same as before.  That is, 

(1)  Is the model statistically consonant with our assumptions, and  

(2)  Does the model make sense?  
 
Since we have more model assumptions than in the ARIMA case, our checks relating to (1) 
increase (as discussed below).  Moreover, since we are using more variables in our model, it 
is also useful to consider  
 

(3) Does our model perform “better” than either a simple ARIMA model or other 
simple alternative models? 

 
The checks under (2) and (3) relate to model interpretation and model performance.  

They may not relate directly to the more basic checks for adherence to model assumptions, 
but they can be important when more than one model are considered for a problem.  Often the 
“checks” employed here relate to specific concern(s) of the practitioner.  If inferences based 
on the structure of the process are important, then appropriate checks may include the signs 
and magnitudes of estimates, or how well a model adheres to known or assumed axioms that 
apply to the problem at hand.  If forecasting is a concern, then post-sample forecasts may be 
made from various models.  A post-sample check can be conducted when we withhold a 
portion of data (at the end of the series) from modeling, then examine how well a model 
forecasts these values.  

Regardless how we treat (2) and (3) above, we must be concerned with how well a 
model adheres to the assumptions of the model.  As in the case of ARIMA models, we 
employ two basic tools for this purpose:  

(a)  Visual inspection of residuals (i.e., plots of the residuals), and  

(b)  Checks for correlation.  
 

In a diagnostic check of an ARIMA model, the only check for correlation was the ACF 
of the residual series.  This again is an important check of a transfer function model.  In 
addition, we need to check for the presence of correlation between our explanatory variables 
and the residual series.  This check is necessary due to our assumption of independence 
between the explanatory variables and the disturbance.  The cross correlation function is used 
as a check here.  It is discussed in more detail below. 

Another natural check (related to (a) above) is a check for outliers that may have 
affected the form of our model or biased the estimates.  Other diagnostic checks are discussed 
in Section 11.3 of Box and Jenkins (1970) and Chapter 6 of Pankratz (1991). 

0ω δ
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For the current example, we will focus on the following three important checks:  a 
visual inspection of the residuals, checks of correlation, and an outlier check.  A plot of the 
residual series for our current model is shown in Figure 8.3.  No obvious pattern, nor spurious 
observation, is readily apparent. 

 
Figure 8.3    Time plot of residuals from transfer function model for SALES 

 
 
Correlation functions involving the residual series 
 

The ACF of the residuals is computed and displayed below to examine if there is any 
overall inadequacy of the transfer function model.  Since all sample autocorrelations are 
within a 95% confidence limit of zero, this part of diagnostic checking reveals no model 
inadequacy. 

 -->ACF   VARIABLE IS RES.    MAXLAG IS 12. 
 

 TIME PERIOD ANALYZED . . . . . . . . . 11  TO   126 
 NAME OF THE SERIES . . . . . . . . . .          RES 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          116 
 STANDARD DEVIATION OF THE SERIES . . .        .2219 
 MEAN OF THE (DIFFERENCED) SERIES . . .       -.0010 
 STANDARD DEVIATION OF THE MEAN . . . .        .0206 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .       -.0488 
 
 AUTOCORRELATIONS  
 
   1- 12     .01  .01 -.09 -.04  .13  .10 -.11 -.02 -.11  .08  .00 -.04 
   ST.E.     .09  .09  .09  .09  .09  .10  .10  .10  .10  .10  .10  .10 
    Q         .0   .0   .9  1.1  3.2  4.4  5.8  5.9  7.5  8.5  8.5  8.7 
 
 
          -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
            +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
  1    .01                      +    I    +                     
  2    .01                      +    I    +                     
  3   -.09                      +  XXI    +                     
  4   -.04                      +   XI    +                     
  5    .13                      +    IXXX +                     
  6    .10                      +    IXX  +                     
  7   -.11                      + XXXI    +                     
  8   -.02                      +   XI    +                     
  9   -.11                      + XXXI    +                     
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 10    .08                      +    IXX  +                     
 11    .00                      +    I    +                     
 12   -.04                      +   XI    +      

 
The ACF provides a measure of our currently observed values (or residuals) of a time 

series are related to values at prior time periods (lags).  We can also construct a measure of 
association between the currently observed values (or residuals) of one series with the values 
of another series at current and prior time periods.  One such measure is the cross correlation 
function (CCF).  For an integer , the lag  cross correlation between  and s the 
correlation between  and .  

According to the definition of the CCF, it should be immediately apparent that there is a 
difference between the lag l cross correlation between  and  and the lag l cross 
correlation between  and   For positive values of l, the lag l cross correlation between 

 and w the series  is a leadin r  while the lag l 
cross correlation between  is a measure of how the series  is a leading indicator 

e n between  is the same as the 
lag -l cross correlation between nd   Hence we can compute the CCF between two 
series for both positive and negative lags.  The 
“leading” and “lagging” series.  When the computation of the CCF for two variables is 
requested, the SCA System computes both the lag -l and lag l values of the CCF. 

Since the (stationary) input variables of a transfer function are assumed to be 
independent of the disturbance, the CCF between such a series and at should have no 
significant values.  This provides us with a diagnostic check of our fitted model.  If the model 
is adequate, then there should be no significant cross correlations between an input series and 
the residuals, except for those attributable to sampling variation.  If significant cross 
correlations are found, especially at low lags, then we have an indication of an inadequate 
model. 

In practice, we compute the CCF between the residuals of the transfer function model 
(stored here in RES) and the residuals of the ARIMA model of an input series.  In this way we 
are certain of computing the CCF between two (assumed) stationary series.  As noted in 
Section 8.4.1, an ARIMA model was fit for LEADING.  The residuals of this model were 
stored in RESLEAD.  We can compute the CCF between RES and RESLEAD by entering 

 -->CCF   RES, RESLEAD.   MAXLAG IS 12. 
 

 TIME PERIOD ANALYZED . . . . . . . . . 11  TO   126 
 NAMES OF THE SERIES  . . . . . . . . .          RES       RESLEAD 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          116           116 
 STANDARD DEVIATION OF THE SERIES . . .        .2219         .2957 
 MEAN OF THE (DIFFERENCED) SERIES . . .       -.0010         .0456 
 STANDARD DEVIATION OF THE MEAN . . . .        .0206         .0275 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .       -.0488        1.6603 
 
 CORRELATION       BETWEEN  RESLEAD     AND      RES IS   -.09 
 
 CROSS CORRELATION BETWEEN      RES(T)  AND  RESLEAD(T-L) 
 
   1- 12    -.13 -.01  .03  .09 -.15 -.01 -.15  .19  .00  .01 -.01  .06 
   ST.E.     .09  .09  .09  .09  .09  .10  .10  .10  .10  .10  .10  .10 

l l tY tX  i
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 CROSS CORRELATION BETWEEN  RESLEAD(T)  AND      RES(T-L) 
 
   1- 12    -.01 -.09  .02  .00 -.08 -.14  .10 -.11  .06 -.12 -.10  .04 
   ST.E.     .09  .09  .09  .09  .09  .10  .10  .10  .10  .10  .10  .10 

 
        -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
             +----+----+----+----+----+----+----+----+----+----+ 
                                      I 
 -12    .04                      +    IX   +                     
 -11   -.10                      + XXXI    +                     
 -10   -.12                      + XXXI    +                     
  -9    .06                      +    IXX  +                     
  -8   -.11                      + XXXI    +                     
  -7    .10                      +    IXXX +                     
  -6   -.14                      + XXXI    +                     
  -5   -.08                      +  XXI    +                     
  -4    .00                      +    I    +                     
  -3    .02                      +    I    +                     
  -2   -.09                      +  XXI    +                     
  -1   -.01                      +    I    +                     
   0   -.09                      +  XXI    +                     
   1   -.13                      + XXXI    +                     
   2   -.01                      +    I    +                     
   3    .03                      +    IX   +                     
   4    .09                      +    IXX  +                     
   5   -.15                      +XXXXI    +                     
   6   -.01                      +    I    +                     
   7   -.15                      +XXXXI    +                     
   8    .19                      +    IXXXXX                     
   9    .00                      +    I    +                     
  10    .01                      +    I    +                     
  11   -.01                      +    I    +                     
  12    .06                      +    IX   +        

 
Note we obtain summary information on both series, RES and RESLEAD, the lag 0 

correlation (i.e., a measure of any contemporaneous association), and the lagged correlations 
when RESLEAD “leads” RES and when RES “leads” RESLEAD.  The CCF gives no reason 
to doubt the adequacy of the model.  

We can obtain the ACF and CCF simultaneously by computing cross correlation 
matrices (CCM).  The CCM paragraph between residual series produces a sequences of such 
matrices.  The diagonal elements are the values of the ACF of each series and the off-diagonal 
elements of these matrices are the values of the CCF (presented according to which series 
leads the other).  We expect all values of these matrices to be insignificant.  Additional 
information concerning the CCM paragraph may be found in Liu et al (1986). 

Outlier detection and estimation 
 

Another valuable diagnostic tool is a check for outliers in the model.  As noted in 
Chapter 7, outliers can have an important effect in an analysis.  We should be aware of any 
outliers, and take appropriate actions.  If we desire, we can use the OESTIM paragraph in lieu 
of the ESTIM paragraph in the fitting of our transfer function models.  If the OESTIM 
paragraph is used, then the SCA System will automatically check for outliers and then 
estimate their effects jointly with the parameters of the model.  If the OESTIM paragraph is 
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used to estimate (8.27), we obtain the following (SCA output is edited for presentation 
purposes): 

 -->OESTIM   SALESMDL. 
 
 -->OESTIM   SALESMDL.   METHOD IS EXACT.   HOLD RESIDUALS(RES). 

 
 THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN   1  THRU  126 
 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- SALESMDL 
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING 
           VARIABLE   OR CENTERED 
                                         1 
  SALES     RANDOM     ORIGINAL     (1-B  ) 
                                         1 
 LEADING    RANDOM     ORIGINAL     (1-B  ) 
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T 
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1   CNST             CNST      1      0     NONE      .0351     .0094   3.73 
   2    V3    LEADING   NUM.      1      3     NONE     4.7348     .0528  89.63 
   3    D1    LEADING   DENM      1      1     NONE      .7234     .0038 191.81 
   4  THETA    SALES     MA       1      1     NONE      .5955     .0750   7.94 
 
 SUMMARY OF OUTLIER DETECTION AND ADJUSTMENT 
 
 ------------------------------------- 
  TIME    ESTIMATE   T-VALUE    TYPE 
 ------------------------------------- 
    92     -0.596     -3.10      AO 
 ------------------------------------- 
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           126 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           116 
 RESIDUAL STANDARD ERROR (WITH OUTLIER ADJUSTMENT) . . .  0.215154E+00 
 RESIDUAL STANDARD ERROR (WITHOUT OUTLIER ADJUSTMENT). .  0.223063E+00 

 
An additive outlier is detected at t=92.  Since there is only one outlier and its effect is 

not large, we obtain essentially the same parameter estimates as before. 

We can also use the OFILTER or OUTLIER paragraph to detect outliers in a fitted 
model.  If we use the OFILTER paragraph for the above fitted model, we obtain the same 
outlier (and the same effect) as shown above.  However, if we use the OUTLIER paragraph 
after the ESTIM paragraph, we do not detect any outlier if only AO and IO are considered, 
and obtain the following result if AO, IO, and LS are considered. 

 -->OUTLIER  SALESMDL.  TYPES ARE AO,IO,LS. 
 

 INITIAL RESIDUAL STANDARD ERROR =   .24440 
 
 TIME    ESTIMATE   T-VALUE   TYPE 
   10      -.70     -3.75      LS   
 
 ADJUSTED RESIDUAL STANDARD ERROR =   .23197 
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The discrepancies occur because the OESTIM and OFILTER paragraphs use a more 

elaborate algorithm than the OUTLIER paragraph, and the outlier at t=92 is only marginally 
greater than 3.  The level shift at t=10 detected by the above OUTLIER paragraph is not 
reliable since it is too close to the beginning of the series.  When outliers have large effects, 
the OUTLIER paragraph usually produces similar results to those of the OESTIM and 
OFILTER paragraphs.  When the results are different, those obtained from the OESTIM and 
OFILTER paragraphs are usually more reliable. 

8.4.7   Forecasting from a transfer function model  

Our current estimated model appears to be adequate, we may now wish to use it for 
forecasting.  In the case of an ARIMA model, we are able to use the FORECAST paragraph 
directly for this purpose since only one variable is involved.  In the case of an intervention 
model, we can also use the FORECAST paragraph directly assuming that information is 
provided for all necessary binary (intervention) series.  As in the case of an intervention 
model, the forecasts of the output (response) variable are dependent on the forecasts (or 
known values) of any input variables.  

In our current example, we have retained the last 24 observations of both series for the 
purpose a post-sample check of forecasts for SALES from the ARIMA model alone and from 
the transfer function model.  This is presented in Section 8.4.8.  In the remainder of this 
section we will pretend that there are only 126 observations for each series.  In order to obtain 
forecasts of SALES for this case, we also must obtain forecasts for our input variable, 
LEADING.  Values forecasted for LEADING will be used to forecast SALES according to 
the estimated transfer function model.  

In order to forecast LEADING, we need to construct an ARIMA model for it.  This was 
done in the preliminary modeling phase of our transfer function model building process (see 
Section 8.4.1).  It was found that LEADING was well represented as an ARIMA(0,1,1) 
process.  The model information for LEADING is stored under the label LEADMDL. 

We can use the SFORECAST paragraph to produce forecasts from both the model 
LEADMDL and SALESMDL.  The SFORECAST paragraph (for the computation of 
forecasts from a simultaneous transfer function model) is discussed in Liu et al (1986).  Here 
we will use the FORECAST paragraph twice in order to forecast SALES.  First, we will 
forecast 24 values from the end of the LEADING series.  Since we will use these values in the 
forecast of SALES, we will append the forecasted values to the end of LEADING.  We can 
accomplish this by entering  

 -->FORECAST   LEADMDL.   NOFS IS 24.   JOIN. 
 

 NOTE: THE EXACT METHOD FOR COMPUTING RESIDUALS IS USED 
 
 ---------------------------------- 
  24 FORECASTS, BEGINNING AT  126 
 ---------------------------------- 
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  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
 
  127     13.1474       .2952 
  128     13.1474       .3385 
  129     13.1474       .3769 
  130     13.1474       .4117 
  131     13.1474       .4438 
  132     13.1474       .4738 
  133     13.1474       .5019 
  134     13.1474       .5286 
  135     13.1474       .5539 
  136     13.1474       .5782 
  137     13.1474       .6015 
  138     13.1474       .6239 
  139     13.1474       .6455 
  140     13.1474       .6665 
  141     13.1474       .6868 
  142     13.1474       .7065 
  143     13.1474       .7257 
  144     13.1474       .7443 
  145     13.1474       .7626 
  146     13.1474       .7804 
  147     13.1474       .7978 
  148     13.1474       .8148 
  149     13.1474       .8315 
  150     13.1474       .8478    

 
Now that we have computed forecasts for LEADING, we can forecast SALES using the 

model SALESMDL by entering  

 -->FORECAST   SALESMDL.   IARIMA IS LEADING(LEADMDL).   NOFS IS 24. 
 

 NOTE: THE EXACT METHOD FOR COMPUTING RESIDUALS IS USED 
 
 ---------------------------------- 
  24 FORECASTS, BEGINNING AT  126 
 ---------------------------------- 
 
  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
 
  127    257.6489       .2222 
  128    257.8108       .2372 
  129    257.0870       .2513 
  130    256.8912      1.4200 
  131    256.7592      2.2888 
  132    256.6732      3.0947 
  133    256.6207      3.8507 
  134    256.5923      4.5599 
  135    256.5814      5.2252 
  136    256.5832      5.8501 
  137    256.5941      6.4380 
  138    256.6117      6.9926 
  139    256.6341      7.5173 
  140    256.6599      8.0153 
  141    256.6883      8.4892 
  142    256.7185      8.9415 
  143    256.7500      9.3746 
  144    256.7825      9.7902 
  145    256.8157     10.1901 
  146    256.8493     10.5757 
  147    256.8833     10.9483 
  148    256.9176     11.3091 
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  149    256.9521     11.6590 
  150    256.9867     11.9988    

 
The IARIMA sentence is used to specify the name of the ARIMA model associated with 

each input series.  Here we specify that the name of the ARIMA model associated with 
LEADING is LEADMDL.  Since we have already appended forecasted values to LEADING, 
it may appear that the IARIMA sentence is redundant.  This is not the case for two important 
reasons.  First, we are able to distinguish stochastic series from deterministic series (since we 
can also incorporate interventions into our transfer function model if we so desire).  If we do 
not specify an ARIMA model for an input series through the IARIMA sentence, then that 
series will be treated as a deterministic series.  A second reason for the use of IARIMA is to 
provide the SCA System with necessary information for the computation of the standard 
errors of the forecasts.  These standard errors will depend on the transfer function model, its 
residual standard error, and the residual standard error of each ARIMA model of the input 
series.  The values of SALES, its forecasts and standard error limits are displayed in Figure 
8.4. 

Figure 8.4   Forecast plot of SALES from a transfer function model 
 

 

8.4.8    Comparing forecasts of SALES from an ARIMA and transfer function model 

We have constructed two models for the series SALES.  One is an ARIMA(0,1,1) model 
and the other is the transfer function model obtained above.  It is useful to compare the 
forecasting performance of these two models.  Since we have reserved the last 24 
observations of SALES, we may conduct a post-sample check of forecasting performance. 

In Table 8.2, we list the one-step ahead forecasts made from origins 126 through 149 
obtained for SALES using both the ARIMA(0,1,1) model and the transfer function model.  A 
plot of these forecasts, together with the actual values of SALES in the period, is given in 
Figure 8.5.  The one-step-ahead forecasts of SALES using the ARIMA(0,1,1) model may be 
obtained by entering 

 -->FORECAST   SALESM.   NOFS IS 1.   ORIGINS ARE 126 TO 149. 
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The output from this paragraph is suppressed.  Similarly, we can use either the SFORECAST 
paragraph or sequentially obtain one-step-ahead forecasts of LEADING and SALES using the 
transfer function SALESMDL from origins 126 though 149.  The SCA commands and output 
for the latter are not presented here. 
 

From Table 8.2 and Figure 8.5, it is immediately evident that the transfer function 
forecasts better track the data as compared to the ARIMA forecasts.  The better transfer 
function forecasts occur because the auxiliary information enables the model to better 
anticipate the movement of sales.  Since the univariate model for sales has no leading 
indicator, it cannot “anticipate” its own changes, hence its forecasts amount to a reflection of 
the amount of sales in the prior historical data. 

 
Table 8.2   Comparison of one-step-ahead forecasts 

of SALES using different methods 
 

Time 
Index 

Actual 
Sales 

ARIMA 
forecast 

Forecast 
error 

T.F. 
forecast 

Forecast 
error 

127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 

257.7 
257.9 
257.4 
257.3 
257.6 
258.9 
257.8 
257.7 
257.2 
257.5 
256.8 
257.5 
257.0 
257.6 
257.3 
257.5 
259.6 
261.1 
262.9 
263.3 
262.8 
261.8 
262.2 
262.7 

256.88 
257.44 
257.79 
257.20 
257.15 
257.58 
259.21 
257.72 
257.63 
257.03 
257.47 
256.60 
257.55 
256.91 
257.69 
257.28 
257.54 
260.15 
261.83 
263.81 
263.98 
263.11 
261.75 
262.27 

.82 

.46 
-.39 
.10 
.45 

1.32 
-1.41 
-.02 
-.43 
.47 
-.67 
.90 
-.56 
.69 
-.39 
.22 

2.06 
.95 

1.08 
-.51 

-1.18 
-1.31 
.46 
.44 

257.65 
257.83 
257.13 
257.47 
257.93 
259.18 
257.72 
257.86 
257.28 
257.54 
257.04 
257.51 
256.78 
257.58 
257.07 
257.60 
259.64 
260.86 
263.22 
263.15 
262.68 
261.60 
262.05 

262.77 

.05 

.07 

.27 
-.17 
-.33 
-.28 
.08 
-.16 
-.08 
-.04 
-.24 
-.01 
.22 
.02 
.23 
-.10 
-.04 
.24 
-.32 
.15 
.12 
.20 
.15 
-.07 

 Root mean squared error = 0.858 
 Maximum absolute error = 2.06 

 Root mean squared error = 0.179 
 Maximum absolute error = 0.33 
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 Figure 8.5    Comparison of one-step-ahead forecasts of SALES 
  using different methods 

 

8.5   Transfer Function Identification With Several Explanatory Variables 

A modeling strategy was presented in Section 8.3 and illustrated for the case of a single-
input transfer function.  In the case of a multiple-input transfer function, we assume a model 
of the general form  

t , (8.28) 

where  is the transfer function (either in linear or rational polynomial form) for the input 
series  is the disturbance.  
 

The general modeling strategy for multiple-inputs is the same as that of a single-input.  
In particular, the preliminary investigation, estimation, diagnostic checking and forecasting 
portions of the process are exactly the same as that outlined in Sections 8.3 and 8.4.  The LTF 
method for model identification for two inputs was illustrated in Section 8.3.4. 

In addition to the assumption of uni-directional relationships, a basic assumption of 
transfer function models is that all input series are independent of the disturbance term.  
However, the input series (explanatory variables) themselves may be correlated.  If the input 

t 1 1t 2 2t m mtY C (B)X (B)X (B)X N= + ν + ν + ⋅⋅⋅+ ν +

iv (B)

itX  and tN
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series are uncorrelated with one another, then the estimated TF weights for each input series 
will be virtually the same if they are obtained separately or jointly (using either the LTF 
method employed in Section 8.3.2 or the CCF method described in Section 8.7.1). 

If the input series are correlated, then model identification can become more 
complicated.  The CCF method is extremely difficult to use in the multiple-input case when 
the input series are correlated.  The LTF method can still be applied, but some care should be 
taken.  The number of transfer function weights estimated for each series should not be too 
large as these estimates can be highly correlated.  Also, it is a good idea to delete insignificant 
terms or input variables whenever possible.  Altering components of a transfer function model 
is discussed in Section 8.7.3. 

8.6   Adjustments for Trading Days and Calendar Variation 

In this section, we demonstrate an application of a transfer function model.  Many 
economic and business data are compiled and reported on a monthly basis.  Such data are 
often subjected to variation related to the composition of the calendar, as well as the 
occurrence of traditional festivals or holidays.  The first phenomenon is known as “trading 
day variation” (Young, 1965).  This type of variation arises because the activity of a time 
series varies with the days of the week.  Examples of such monthly series are retail and 
wholesale sales, and telephone or traffic volumes. 

The second phenomenon, a holiday effect, occurs because consumer behavior patterns 
and business activities vary depending upon whether a particular month contains a specific 
holiday or not.  Some traditional holidays (e.g., Easter, Chinese New Year and Passover) are 
set according to lunar calendars and their occurrences typically vary between two adjacent 
months from year to year.  Information to adjust for these effects must be incorporated in the 
model.  Other fixed date holiday effects (e.g., Christmas and New Year's) can be accounted 
for in a model with the inclusion of a seasonal component. 

If calendar variation is not considered in the modeling process, unsatisfactory results 
may occur.  A number of authors including Hillmer, Bell and Tiao (1981), Hillmer (1982), 
Cleveland and Grupe (1983), Salinas (1983), Bell and Hillmer (1983), and Salinas and 
Hillmer (1987b) have proposed simple methods to account for trading day variation in 
ARIMA modeling.  Liu (1980, 1986) suggested modifications of ARIMA models to account 
for calendar variation and recommended the LTF method for model identification. 

The following model has been employed for a time series,  (possibly transformed), 
subject to calendar variation:  

t , (8.29) 

where f is a function of , a vector of parameters, and , a vector of fixed independent 
variables observed at tim  t, and  is the disturbance term he model.  We can see that the 
form of (8.29) is similar to that of a transfer function model (depending on the functional form 
of f), except the function is specified rather than identified.  

tY

t tY f ( ,X ) N= ω +
%%

ω
%

e
tX
%
 of ttN
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Trading Day Effects 
 

Trading day effects can be handled in a straightforward manner.  If we let  i = 1, 2, 
... , 7, represent the number of times the day i occurs in month t, then the function f can be 
written as  

7t . (8.30) 

If we substitute (8.30) into (8.29), we see that we have a transfer function model in the form 
of a regression with serially correlated error terms (see Section 8.1).  
 

It has been shown that the above representation can result in multicollinearity and a 
transformation of the values Wit should be used (Hillmer, 1982 or Bell and Hillmer, 1983).  
One useful transformation is  

,   i = 1, 2, ... , 6 , 

.  

In this transformation  (i = 1, 2, ... , 6) reflects the number of occurrences of a day of a 
week relative to the nu er of Sundays in the month, while  reflects the total number of 
days in the month.  Further discussions regarding the parameters associated with these terms 
can be found in Hillmer (1982), Bell and Hillmer (1983), and Liu (1986).  
 
Holiday Effects

itW ,

t 1 1t w 2t 7f ( ,X ) W W Wω = ω +ω + ⋅⋅⋅+ ω
%%

it it 7 tD W W= −

7t 1t 2t 7tD W W W= + + ⋅⋅⋅+

itD
mb 7tD

 
 

If the effect due to a specific holiday is relatively constant over the years, then the 
function f can be represented as 

1t , (8.31) 

where  represents the proportion of the holiday in the t-th month.  If the holiday effect 
increases or decreases linearly over time, then 
 

2t , (8.32) 

where .   is 1 for observations in the first year, 2 for observations in the 
second year, and so on.  Again, the use of either (8.31) or (8.32) in (8.29) is a representation 
of regression with correlated errors. 
 
Example:  Monthly Outward Station Movements

t 1f ( ,X ) Hω = ω
%%

1tH

t 1 1t 2f ( ,X ) H Hω = ω +ω
%%

2t 1t tH H *K= tK

 
 

To illustrate the incorporation of trading days into an ARIMA model, we consider the 
monthly outward station movements (i.e., disconnections) of the Wisconsin Telephone 
Company from January 1951 through October 1968.  The data are listed in Table 8.3 and a 
plot of the data is given in Figure 8.6.  The series was studied by Thompson and Tiao (1971) 
and Liu (1986).  The data are stored in the SCA workspace under the name CALLOUT.  
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Table 8.3  Monthly outward station movements of the Wisconsin 
  Telephone Company (January 1951 - October 1968) 
  (Read data across a line) 

   
   8291   7874   8026   8761   9379  11018   9838  10976   9900  11965  10227   8109  
   7606   7900   8972   9157   9171  11012  10640  10465  11698  12225   9569   9096 
   7049   7709   8988   9146   9175  12275  10890  10695  12286  11159  10519   9560 
   7429   8334  10319  10182   9838  13408  10934  12199  12489  11971  12284   9992 
   8568   9345  10872  10863  11738  14278  12209  13777  14374  13220  12624  10459 
   9681   9720  10717  11463  12753  15485  14205  15172  14589  15607  12969  11068 
  11037  10845  11389  13265  14189  15622  15835  15927  15505  16936  13743  12971 
  11732  12045  12678  13548  14502  18070  16473  15901  17888  16509  13563  13635 
  10786  11059  12635  13532  13438  18577  16289  16391  19588  16673  15572  13263 
  10607  12190  13600  13005  15547  20257  16469  20119  19625  17428  17637  13041 
  13892  13904  14420  13529  17323  20367  16994  20198  18041  19396  16392  13052 
  13838  12653  13052  15231  16857  20956  19794  21423  19002  19946  17574  13338 
  13850  13383  13632  16201  17739  20503  21503  21921  21226  20799  16648  15157 
  14398  12308  15307  15507  16010  24656  20678  21647  23468  18843  18141  15654 
  11912  14010  17269  16205  15742  27795  20525  24868  24512  19064  19267  15674 
  14625  14556  17114  16893  18937  30260  21816  28004  25685  21088  20179  15937 
  16138  15245  16184  16173  20760  31371  22376  27167  25645  23712  20641  16690 
  17822  17275  16902  16686  23702  30940  27551  28164  26328  23369 

 
 
 

Figure 8.6    Monthly outward station movements of the Wisconsin 
  Telephone Company (January 1951 - October 1968) 

 
  

All but the last two years of data are used for modeling.  The last two years of data are 
reserved for evaluation of forecasting performance.  Thompson and Tiao (1971) analyzed the 
natural logarithm of the data in order to obtain a more homogeneous variance.  We can use an 
analytic statement (see Appendix A) to transform the data (not shown here).  The logged data 
are stored in LNCALL. 

The ACF of LNCALL for the first 190 observations depicts nonstationary behavior 
(output not shown).  We now consider the ACF using both first and twelfth differencing for 
the first 190 observations.  SCA output shown below is edited. 
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 -->ACF   LNCALL.   DFORDER IS 1, 12.   SPAN IS 1, 190. 
 
                                             1      12 
 DIFFERENCE ORDERS. . . . . . . . . . . (1-B  ) (1-B  )  
 TIME PERIOD ANALYZED . . . . . . . . .  1  TO   190 
 NAME OF THE SERIES . . . . . . . . . .       LNCALL 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          177 
 STANDARD DEVIATION OF THE SERIES . . .        .1051 
 MEAN OF THE (DIFFERENCED) SERIES . . .        .0011 
 STANDARD DEVIATION OF THE MEAN . . . .        .0079 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .        .1339 
 
          -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
            +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
  1   -.56             XXXXXXXXXX+XXXI   +                      
  2   -.12                      + XXXI    +                     
  3    .43                      +    IXXXX+XXXXXX               
  4   -.35                  XXXX+XXXXI    +                     
  5    .04                     +     IX    +                    
  6    .23                     +     IXXXXXX                    
  7   -.25                     XXXXXXI     +                    
  8   -.02                     +     I     +                    
  9    .31                     +     IXXXXX+XX                  
 10   -.40                 XXXX+XXXXXI     +                    
 11    .30                     +     IXXXXX+X                   
 12   -.02                    +      I      +                   
 13   -.33                   X+XXXXXXI      +                   
 14    .38                    +      IXXXXXX+XX                 
 15   -.13                    +   XXXI      +                   
 16   -.14                    +   XXXI      +                   
 17    .21                    +      IXXXXX +                   
 18   -.06                    +     XI      +                   
 19   -.15                    +  XXXXI      +                   
 20    .24                    +      IXXXXXX+                   
 21   -.09                    +    XXI      +                   
 22   -.22                    + XXXXXI      +                   
 23    .39                   +       IXXXXXXX+XX                
 24   -.29                   +XXXXXXXI       +                  
 25   -.02                   +      XI       +                  
 26    .27                   +       IXXXXXXX+                  
 27   -.25                   + XXXXXXI       +                  
 28    .03                   +       IX      +                  
 29    .17                   +       IXXXX   +                  
 30   -.17                   +   XXXXI       +                  
 31   -.02                   +       I       +                  
 32    .22                   +       IXXXXXX +                  
 33   -.25                   + XXXXXXI       +                  
 34    .08                   +       IXX     +                  
 35    .17                   +       IXXXX   +                  
 36   -.30                   XXXXXXXXI       +                  

 
The differencing operators appear to achieve stationarity, but the pattern of the ACF is 

confusing.  The final model determined and fit by Thompson and Tiao (1971) had the form 

t . (8.33) 

This model is not easy to interpret.  Thompson and Tiao (1971) suggest that φ1 and  θ1 may 
be due to the accounting procedure adopted by the Wisconsin Telephone Company.  
However, they also remark that an analyst of Bell Canada thought that these may be the result 
of “the variation in the number of working days in the months covered by the data”.   As a 

3 12 9 12 13
1 2 t 1 2 3(1 B )(1 B )Y (1 B B B )a−φ −φ = −θ −θ −θ
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result, it may be informative to model LNCALL in the presence of possible trading days (i.e., 
working days). 
 

We will work with the model of equation (8.29) with functional representation given in 
(8.30) and the transformed number of trading days per month.  We can generate the necessary 
trading day information through the DAYS paragraph (see Appendix C.1.1) by entering  

 -->DAYS   VARIABLES ARE D1 TO D7.   BEGIN 1951, 1.  END 1968,10.  TRANSFORM. 
 
The trading day information is stored in the SCA workspace in the variables D1 through D7 
(the SCA output to the above command is not shown here).  Because of our prior knowledge 
regarding differencing, we postulate that our transfer function model has the form 
 

7t t . (8.34) 

Our model identification procedure is an application of the LTF method for the case of 
multiple-inputs.  Here it is reasonable to assume the TF weights for each input involve only 
the contemporaneous term.  Hence the purpose of using the LTF method is to verify the 
existence of the trading days effects and to determine a model for Nt. 

We have no direct knowledge of the model to use for   Following the LTF method 
outlined in Section 8.3.2, we will estimate (8 roximate  with a 
multiplicative AR(1) and AR(12) model.  We can then ex ine the estim e 
term to construct an ARIMA model for   We may proceed with the following SCA 
commands (although the output from these commands is suppressed for presentation 
purposes) 

 -->TSMODEL   CALLMDL.  MODEL IS LNCALL(1,12) = (0)D1(1,12) + (0)D2(1,12)  @ 
 -->          + (0)D3(1,12) + (0)D4(1,12) + (0)D5(1,12) + (0)D6(1,12)       @ 
 -->          + (0)D7(1,12) + 1/(1-PHI1*B)(1-PHI2*B**12)NOISE. 
 
 -->ESTIM   CALLMDL.   SPAN IS 1,190.   HOLD  RESIDUALS(RES), DISTURBANCE(NT). 

 
The model specification used in the TSMODEL paragraph above uses a shorthand 

notation (see Section 8.7.6).  The ACF of RES (not shown) is not “clean”, but no severe 
anomalies are found.  Hence we have some confidence in the estimated TF weights for each 
input series.  We now examine the ACF of the estimated disturbance series (held in the SCA 
workspace under the name NT).  The SCA output has been edited slightly.  

 -->ACF   NT 
 

 TIME PERIOD ANALYZED . . . . . . . . . 14  TO   190 
 NAME OF THE SERIES . . . . . . . . . .           NT 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          177 
 STANDARD DEVIATION OF THE SERIES . . .        .0574 
 MEAN OF THE (DIFFERENCED) SERIES . . .        .0008 
 STANDARD DEVIATION OF THE MEAN . . . .        .0043 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .        .1791 
 
  

12 12
t 1 1t 2 2t 7(1 B)(1 B )Y (1 B)(1 B )( D D D ) N− − = − − ω +ω + ⋅⋅⋅+ ω +

tN .
.34) and initially app

am
tN

ated disturbanc
tN .
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         -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
            +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
  1   -.49               XXXXXXXX+XXXI   +                      
  2   -.01                       +   I   +                      
  3    .09                       +   IXX +                      
  4   -.08                       + XXI   +                      
  5    .02                      +    IX   +                     
  6   -.03                      +   XI    +                     
  7    .05                      +    IX   +                     
  8   -.08                      +  XXI    +                     
  9    .07                      +    IXX  +                     
 10   -.09                      +  XXI    +                     
 11    .31                      +    IXXXX+XXX                  
 12   -.41                 XXXXX+XXXXI    +                     
 13    .09                      +    IXX  +                     
 14    .13                      +    IXXX +                     
 15   -.15                      +XXXXI    +                     
 16    .12                      +    IXXX +                     
 17   -.04                      +   XI    +                     
 18    .03                      +    IX   +                     
 19   -.01                      +    I    +                     
 20    .00                      +    I    +                     
 21   -.05                      +   XI    +                     
 22    .10                      +    IXXX +                     
 23   -.13                      + XXXI    +                     
 24    .02                     +     I     +                    
 25    .13                     +     IXXX  +                    
 26   -.18                     +XXXXXI     +                    
 27    .16                     +     IXXXX +                    
 28   -.09                     +   XXI     +                    
 29    .02                     +     I     +                    
 30    .00                     +     I     +                    
 31   -.01                     +     I     +                    
 32    .04                     +     IX    +                    
 33    .01                     +     I     +                    
 34   -.08                     +   XXI     +                    
 35    .12                     +     IXXX  +                    
 36    .00                     +     I     +      

 
The above ACF is that of the “classic airline model” (see Section 5.3).  Hence we 

should model Nt with multiplicative MA(1) and MA(12) factors.  We will now use the 
TSMODEL to change our NOISE component, then estimate the model.  Since we have MA 
parameters, we will first use the conditional likelihood algorithm, then the exact method.  We 
show all SCA commands below, but only provide the results from the final fitted model. 

 -->TSMODEL   CALLMDL.   CHANGE (1-THETA1*B)(1-THETA2*B**12)NOISE. 
 
 -->ESTIM   CALLMDL.   SPAN IS 1,190. 
 
 -->ESTIM   CALLMDL.   SPAN IS 1,190.  METHOD IS EXACT.  HOLD RESIDUALS(RES). 

 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- CALLMDL  
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1             D1     NUM.      1      0     NONE      .0262     .0058   4.53  
   2             D2     NUM.      1      0     NONE      .0230     .0057   4.02  
   3             D3     NUM.      1      0     NONE      .0208     .0058   3.59  
   4             D4     NUM.      1      0     NONE     -.0043     .0058   -.74  
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   5             D5     NUM.      1      0     NONE      .0121     .0057   2.11  
   6             D6     NUM.      1      0     NONE     -.0494     .0057  -8.64  
   7             D7     NUM.      1      0     NONE     -.0330     .0173  -1.91  
   8  THETA1   LNCALL    MA       1      1     NONE      .6912     .0536  12.90  
   9  THETA2   LNCALL    MA       2     12     NONE      .4896     .0684   7.16  
 
 
 TOTAL SUM OF SQUARES . . . . . . . .   .167642E+02 
 TOTAL NUMBER OF OBSERVATIONS . . . .           190 
 RESIDUAL SUM OF SQUARES. . . . . . .   .301054E+00 
 R-SQUARE . . . . . . . . . . . . . .          .981 
 EFFECTIVE NUMBER OF OBSERVATIONS . .           177 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .170087E-02 
 RESIDUAL STANDARD ERROR. . . . . . .   .412416E-01   

 
The diagnostic checks of this model reveal no inadequacies.  This fitted model is 

simpler than that of Thompson and Tiao, and accounts for working days in a month.  To 
evaluate the forecasting performance of the above model with that of Thompson and Tiao, the 
root mean squared error (RMSE) of one-step-ahead forecasts during the post-sample period 
(November 1966 through October 1968) are considered.  In order to compute this value, we 
need to use the FORECAST paragraph to compute 24 one-step-ahead forecasts.  We can 
accomplish this, and retain the necessary forecasts in the SCA workspace by entering 

 -->FORECAST   CALLMDL.   ORIGINS ARE 190 TO 213.   NOFS ARE 1 FOR 24.  @ 
 -->        HOLD FORECASTS(F1 TO F24). 

 
 We obtain the following (SCA output is edited) 
 

 TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
 
  191      9.9579       .0412      9.9124 
  192      9.6751       .0412      9.6764 
  193      9.6871       .0412      9.6889 
  194      9.6574       .0412      9.6320 
  195      9.7979       .0412      9.6918 
  196      9.7009       .0412      9.6911 
  197      9.9073       .0412      9.9408 
  198     10.2840       .0412     10.3536 
  199     10.0348       .0412     10.0157 
  200     10.2382       .0412     10.2098 
  201     10.1312       .0412     10.1521 
  202     10.0595       .0412     10.0737 
  203      9.9387       .0412      9.9350 
  204      9.6886       .0412      9.7226 
  205      9.7847       .0412      9.7882 
  206      9.6553       .0412      9.7570 
  207      9.7328       .0412      9.7352 
  208      9.9231       .0412      9.7223 
  209      9.9227       .0412     10.0733 
  210     10.3150       .0412     10.3398 
  211     10.2250       .0412     10.2238 
  212     10.2233       .0412     10.2458 
  213     10.2688       .0412     10.1784 
  214     10.1465       .0412     10.0592   

 
The RMSE for the above model is 0.0687, and the RMSE for that of Thompson and 

Tiao (1971) is 0.0711.  Hence the forecasting performances of the two models are similar, but 
the model with trading day effects is simpler and easier to interpret. 
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8.7 Other Transfer Function Related Topics  

This section provides an overview of topics related to transfer function models and 
modeling.  Much of the material presented in this section can be considered “advanced” or of 
occasional use.  As a result, this section can be skipped, and selected topics referenced as 
required.  The material presented, and the section containing it, are: 

 Section Topic  
 
 8.7.1  CCF method for transfer function identification  

 8.7.2  Determining what is wrong in a transfer function model  

 8.7.3  Modifying a transfer function model  

 8.7.4  Constraints on model parameters  

 8.7.5  Estimations of transfer functions containing a denominator polynomial  

 8.7.6  Notational shorthands  

 8.7.7  Simulation of a transfer function model 

 8.7.8  Computing the transfer function weights of a transfer function model 

8.7.1   The CCF method for transfer function identification  

In Section 8.3.2 we noted that there are two distinct procedures for the determination of 
the TF weights of an input series and the form of the disturbance term Nt.  We explained the 
LTF method in Section 8.3.2 and used it in the remainder of the section.  Box and Jenkins 
(1970) proposed a method for the single-input case.  We refer to this procedure the CCF 
method and it is now discussed.  This procedure has a number of significant difficulties and 
should be used with caution.  However, since it was the only procedure detailed by Box and 
Jenkins (1970) and has often been cited in subsequent texts, it remains a frequently used 
method. 

The CCF method is based on the cross correlation function (described in Section 8.4.6).  
The method was employed by Box and Jenkins (1970, page 370) as a means to obtain 
necessary modeling information without estimating many parameters.  Information in this 
method is obtained sequentially, rather than jointly as in the LTF method. 

An important basis of the CCF method is the fact that if the input series  is a white noise 
process, then the values of positive lags of the CCF between  and  are proportional to 
the TF weights of v(B).  Since  is usually not a white noise process, we need to create one.  
 

We assume we can represent  with an ARIMA model.  That is, (ignoring a constant 
term for simplicity) we have   

t . (8.35) 

tX

tY tX

tX

tX

x t x(B)X (B)eφ = θ
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If we let  be a rational polynomial filter where (B)α x x(B) { (B) / (B)}α = φ θ , then from (8.35) 
we have  
 

x
t t

x

(B)(B)X X e
(B)

φ
α = =

θ t . (8.36) 

 
The filter  effectively transforms  to a white noise process.  Suppose we now apply 
this filter to all series in the transfer function model (again omitting the constant term for 
simplicity) 
 

t . (8.37) 

We obtain the following 
 

t . (8.38) 

or  
t , (8.39) 

where Y  and .  In equation (8.39) we have created a new transfer 
function m del having the sam  transfer function form as in (8.37) (i.e., v(B) ), but with an 

 process.  Hence if we compute the CCF of 
and  obtain d ation on the TF weights of v(B).  If we multiply th  

the standard error of  and then divide the 
rd e ., multiply the CCF values by 

(B)α  tX

t tY v(B)X N= +

t t(B)Y v(B)[ (B)X ] (B)Nα = α +α
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result by
ty
/y eσ σ ), then we obtain 

estimates for the transfer function weights of v(B). 
 

The process of creating a white noise series from the input series in (8.36) is known as 
prewhitening.  The component  of (8.39) is referred to as the prewhitened input series, 
and the component  is referred to as the fitted output series.  Unfortunately, novices to 
transfer function m that is prewhitened with the series that is 
filtered.  As a result, sometimes it is believed that both series represent white noise processes. 

 In its application,  is the residual series for the ARIMA model built for the input 
series   If we replac  by  in such an ARIMA model, we will filter  in the same 
ma   The resultant ser es is used with the previously obtained residual series to 
com tes of eights.  The filtered series is not used thereafter. 

The estimated TF weights are used to determine a rational polynomial representation for 
v(B).  A transfer function model is then fitted using this rational polynomial representation 
and with .  The residuals from this fit are examined in order to determine a model for 

 

To illustrate prewhitening and the estimation of the TF weights using the CCF method, 
we will consider Series M data used in Section 8.4.  Standard ARIMA modeling techniques 
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indicate that an ARIMA(0,1,1) model may be appropriate for LEADING.  We can specify and 
estimate this model by sequential entering (SCA output is suppressed or edited)  

 -->TSMODEL   LEADMDL.   MODEL IS LEADING(1) = (1-TH*B)NOISE. 
 -->ESTIM     LEADMDL.   HOLD  RESIDUALS(RESLEAD). 

 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- LEADMDL  
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1 
 LEADING    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1    TH    LEADING    MA       1      1     NONE      .4386     .0796   5.51   
 
 TOTAL SUM OF SQUARES . . . . . . . .   .152667E+03 
 TOTAL NUMBER OF OBSERVATIONS . . . .           126 
 RESIDUAL SUM OF SQUARES. . . . . . .   .108912E+02 
 R-SQUARE . . . . . . . . . . . . . .          .928 
 EFFECTIVE NUMBER OF OBSERVATIONS . .           125 
 RESIDUAL VARIANCE ESTIMATE . . . . .   .871297E-01 
 RESIDUAL STANDARD ERROR. . . . . . .   .295177E+00       

 
The residuals from the above fit are stored in the SCA workspace under the label 

RESLEAD.  We can now filter the output variable SALES using the above model, 
LEADMDL, by entering (SCA output is suppressed) 

 -->FILTER   LEADMDL.   OLD IS SALES.   NEW IS FSALES. 
 

As a result of the above command, our filtered series is stored in the SCA workspace 
under the name FSALES.  We can compute the cross correlation function for FSALES and 
RESLEAD by entering 

 -->CCF   FSALES, RESLEAD.   MAXLAG IS 12.   HOLD CCF(VCCF).  
 

The HOLD sentence is used in order to retain the values of the CCF that are computed 
in the SCA workspace.  In the above command, we specify that these values be stored under 
the label VCCF.  We obtain  

 TIME PERIOD ANALYZED . . . . . . . . .  2  TO   126 
 NAMES OF THE SERIES  . . . . . . . . .       FSALES       RESLEAD 
 EFFECTIVE NUMBER OF OBSERVATIONS . . .          125           125 
 STANDARD DEVIATION OF THE SERIES . . .       2.0464         .2918 
 MEAN OF THE (DIFFERENCED) SERIES . . .        .8277         .0447 
 STANDARD DEVIATION OF THE MEAN . . . .        .1830         .0261 
 T-VALUE OF MEAN (AGAINST ZERO) . . . .       4.5218        1.7130 
 
 CORRELATION       BETWEEN  RESLEAD     AND   FSALES IS    .09 
 
 CROSS CORRELATION BETWEEN   FSALES(T)  AND  RESLEAD(T-L) 
 
   1- 12     .09  .02  .69  .44  .33  .26  .27  .20  .18  .08  .15  .05 
   ST.E.     .09  .09  .09  .09  .09  .09  .09  .09  .09  .09  .09  .09 
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 CROSS CORRELATION BETWEEN  RESLEAD(T)  AND   FSALES(T-L) 
 
  1- 12     .11  .01  .03 -.01  .03 -.07 -.00  .03 -.06 -.08 -.07 -.04 
  ST.E.     .09  .09  .09  .09  .09  .09  .09  .09  .09  .09  .09  .09 
 
          -1.0  -.8  -.6  -.4  -.2   .0   .2   .4   .6   .8  1.0 
            +----+----+----+----+----+----+----+----+----+----+ 
                                     I 
-12   -.04                      +   XI    +                     
-11   -.07                      +  XXI    +                     
-10   -.08                      +  XXI    +                     
 -9   -.06                      +  XXI    +                     
 -8    .03                      +    IX   +                     
 -7    .00                      +    I    +                     
 -6   -.07                       + XXI   +                      
 -5    .03                       +   IX  +                      
 -4   -.01                       +   I   +                      
 -3    .03                       +   IX  +                      
 -2    .01                       +   I   +                      
 -1    .11                       +   IXXX+                      
  0    .09                       +   IXX +                      
  1    .09                       +   IXX +                      
  2    .02                       +   I   +                      
  3    .69                       +   IXXX+XXXXXXXXXXXXX         
  4    .44                       +   IXXX+XXXXXXX               
  5    .33                       +   IXXX+XXXX                  
  6    .26                       +   IXXX+XXX                   
  7    .27                      +    IXXXX+XX                   
  8    .20                      +    IXXXXX                     
  9    .18                      +    IXXXXX                     
 10    .08                      +    IXX  +                     
 11    .15                      +    IXXXX+                     
 12    .05                      +    IX   +       

 
We note that the values of the CCF when FSALES “leads” RESLEAD (i.e., the negative 

lags above) are all statistically indistinguishable from zero.  This confirms the validity of a 
uni-directional representation for our model.  In addition, the summary information of 
FSALES and RESLEAD provides us with the standard error of each series, 2.0464 and 
0.2918, respectively.  If we multiply the CCF values by the quotient (2.0464/0.2918), we will 
have estimates for the TF weights.  We can use an SCA analytic statement (see Appendix A) 
for this purpose.  We can then print the last 13 values of the resultant variable, as these are the 
estimated values of  through  

 -->WEIGHTS = VCCF*(2.0464/0.2918) 
 -->PRINT   WEIGHTS.    SPAN IS 13, 25. 

 
 .617   .603   .129   4.814   3.094   2.302   1.827 
1.924  1.414  1.282    .580   1.018    .362 

 
 In Section 8.4.2 we used the LTF method to estimate the above values from the model  
 

0v 13v .

10
t 0 10 t

1(1 B)SALES C (v v B )(1 B)LEADING a
1 B

− = + + ⋅⋅⋅+ − +
−φ

ates of the 11 TF weights using this model were 

t . 

The estim
 

 -0.0715  -0.0802  -.0168   4.8043   3.4728   2.3710   1.8128 
  1.2433   1.1346  0.6734   0.3834 
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The two sets of estimates are in good agreement.  We can use the estimated weights obtained 
using the CCF method in the CORNER paragraph to determine orders for the rational 
polynomial representation of the transfer function.  Again, we only wish to use the last 13 
estimated weights.  The variable containing the estimated weights, here named WEIGHTS, is 
edited using the SELECT paragraph (see Appendix B) before we construct a corner table.  
The SCA output that follows has been edited, and lines have been superimposed on the corner 
table.  
 

 -->SELECT   WEIGHTS.   SPAN IS (13,25). 
 -->CORNER   WEIGHTS 

 
 CORNER TABLE FOR THE TRANSFER FUNCTION WEIGHTS IN WEIGHTS  
 
      1     2     3     4     5     6 
 0     .13   .02   .00   .00   .00   .00 
 1     .13   .01   .02   .00   .00   .00 
 2     .03  -.12   .13   .00  -.02   .02    
 3    1.00   .98   .96   .93   .90   .87    
 4     .64  -.07   .03  -.10  -.06  -.03 
 5     .48  -.02  -.01   .01   .00  -.01 
 6     .38  -.05   .01   .00   .00   .00 
 
 NOTE: "*****" (IF ANY) MEANS THAT THE ENTRY CANNOT BE COMPUTED 

 
The above table indicates that b=3 and r=s=1, the same as was determined in Section 8.4.4. 

The CCF method has produced the similar estimates for the TF weights associated with 
the input series LEADING as the LTF method.  The effort required to produce these values 
using the LTF method (see Section 8.4.2) consisted of fitting two models.  The results from 
the first fitted model indicated the need for differencing (based on the estimate of the AR 
parameter and the ACF of the estimated disturbance term).  The second fit (with differencing) 
provided us with more refined estimates of the transfer function weights.  Moreover, the 
estimated disturbance term from the fit can be immediately used to determine an ARIMA 
model for  

More effort was required for transfer function identification using the CCF method.  
First an ARIMA model was constructed and estimated for the input series LEADING.  Next 
the output series SALES was filtered by this model.  The CCF of the filtered output and 
prewhitened input series (i.e., the residuals of the ARIMA model for LEADING) was 
produced.  The values of the CCF were then scaled to obtain the estimated TF weights.  
Moreover, the CCF method has not yet provided any information on   We still must 
estimate a transfer function to obtain a useful series for the identification of odel for   

We have stated that there are some significant drawbacks with the CCF method, as 
compared to the LTF method, for the identification of a transfer function model.  Clearly, the 
effort required is a drawback of the CCF method.  Another important obstacle for the CCF 
method is its sequential approach.  Any misstep in the process (e.g., incorrect ARIMA model 
for the input series, inadequate prewhitening of the input series, or determining a less than 
adequate representation of the transfer function) affects all future work.  Moreover, and 

tN .

tN .
 a m tN .
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perhaps most importantly, the CCF method cannot be extended directly to the multiple-input 
case.  For these reasons, we recommend the use of the LTF method for transfer function 
modeling. 

8.7.2   Determining what is wrong in a transfer function model 

Some diagnostic checks of an estimated transfer function model were given in Section 
8.4.6.  Such checks provide us with information on whether a fitted model is adequate or not.  
In the event that our model is not adequate, it is useful to know which component(s) of the 
model require corrective action.  In this section we provide some insight into the diagnostic 
measures that direct us toward this end. 

(A) Structure for the transfer function is correct, but the structure for the disturbance 
term is not 

 
In single-equation transfer function models, the input series is assumed to be 

independent of the errors of the disturbance term.  As a result the CCF between the series 
should be “clean” (i.e., insignificant).  In the case of the sales data, we observed that the CCF 
between the residuals of the ARIMA model for LEADING (i.e., RESLEAD) and the residuals 
of the fitted model had no significant values. 

Suppose the structure of the transfer function for the input series is correct, but the 
ARIMA model for  is not correct.  In such a case the CCF between the residuals of the 
ARIMA model for the input series,  and the residuals of the transfer function fit,  will 
not show significant values.  However, the series  will exhibit significant autocorrelations.  
We can then use the estim  to construct a more appropriate model for 

  

(B) Structure for the transfer function is incorrect

tN
tê ,

ated disturbance term

tâ ,
tâ

tN .

  
 

If we do not have an adequate representation of the transfer function, then both the CCF 
between  and  and the ACF ofa t will exhibit significant values or systematic patterns.  
This w  true r gardless of whether the ARIMA model for  is correct or not.  

It may be possible to use the information contained in the CCF between  and o 
correct the deficiency in the model for the transfer function.  However, it m y be m re 
convenient to re-examine the transfer function weights and revise the structure of the transfer 
function accordingly.  More information on this can be found in Section 11.3 of Box and 
Jenkins (1970) and in Section 12.4 of Vandaele (1983). 

8.7.3   Modifying a transfer function model 

A specified transfer function may be modified in the same manner as an intervention 
model (see Section 6.7.1).  Specifically, a model may be modified by adding or deleting input 
series as well as changing the existing transfer functions or the disturbance term.  This is 

tê
ill be

tâ
e tN

tê
a

tâ  t
o



 TRANSFER FUNCTION MODELING 8.53
   

accomplished through the inclusion of the ADD, CHANGE, or DELETE sentence in the 
TSMODEL paragraph. 

To illustrate these capabilities, suppose that we have the already specified following 
modified version of the transfer function model used in this chapter (only a portion of the 
MODEL sentence is given below). 

SALES(1) C0 (V3*B**3) /(1 D1*B)LEADING(1) (W0 W1*B)PRICES(1)= + − + +
 (8.40) 

odel. 
 
The ADD sentence

(1 TH*B)NOISE+ −
 
As in the rest of this chapter, we assume the name SALESMDL was used to hold the m

 
 

The ADD sentence is used in TSMODEL paragraph to modify an existing transfer 
function model by the addition of new input series.  Any new explanatory term must be 
represented completely.  For example, if the component (WW1*B)(1-B)ORDERS is to be 
added to SALESMDL, then the following command suffices 

 TSMODEL   SALESMDL.   ADD (WW1*B)ORDERS(1) 
 
It is important that the labels of parameters used in the ADD sentence as well as the label of 
the input series be different from any labels in the existing model.  More than one variable 
may be added to an existing model by joining each term with an addition symbol (+). 
 
The CHANGE sentence 
 
The CHANGE sentence is used in the TSMODEL paragraph to modify operators of existing 
components within a transfer function model.  In the SALESMDL of (8.40), there are three 
components associated with the variable names LEADING, PRICES and NOISE.  The 
change is made by a complete re-specification of affected components.  Hence the sentence 
has a syntax similar to that of ADD sentence.  For example, if the ARMA operator of the 
disturbance in (8.40) is to be changed to t{1/(1 B)}a−φ , then the following TSMODEL 
paragraph suffices 
 

 TSMODEL   SALESMDL.   CHANGE  1/(1-PHI*B)NOISE. 
 

It is important to emphasize that only operators of existing components of a transfer 
function model are affected by the CHANGE sentence.  As in the ADD sentence, if more than 
one component are to be changed, then each component must be joined with an addition 
symbol (+).  The SCA System will not process a CHANGE sentence involving variables not 
present in the existing model.  The CHANGE sentence neither adds nor deletes components 
from the model, it only changes existing components. 

The CHANGE sentence may be used to modify a component specified in an ADD 
sentence when both sentences are used within the same TSMODEL paragraph.  In such 
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situation, the SCA System first processes the ADD sentence and then the CHANGE sentence 
regardless of the order in which they are written. 

The DELETE sentence 
 

The DELETE sentence is used in a TSMODEL paragraph to modify an existing transfer 
function model by deleting specified explanatory variables or the constant term from the 
model.  The former is accomplished by simply specifying the name(s) of the explanatory 
variable(s) to be deleted.  For example, if the variable PRICES is to be removed from the 
model SALESMDL, the following command suffices 

 TSMODEL   SALESMDL.    DELETE   PRICES. 
 
To delete the constant term from SALESMDL, we simply enter 
 

 TSMODEL   SALESMDL.   DELETE CONSTANT. 
 
Here we do not need to enter the variable name, the keyword CONSTANT is recognized as 
the constant term.  A constant term can only be added by respecification of a model through 
the MODEL sentence. 

8.7.4   Constraints on model parameters 

Constraints on the parameters of a transfer function model are accommodated in the 
same manner as in an ARIMA or intervention model.  If we include the FIXED-
PARAMETER sentence in the TSMODEL paragraph, we can specify the names of 
parameters that we wish to remain at their currently specified values during estimation.  For 
example, if we wish to fix the value of δ in the SALESMDL of Section 8.4 to its most 
recently estimated value, we should include the sentence 

 FIXED-PARAMETER  IS  D1.  
 
in the TSMODEL paragraph.  A parameter can be fixed to any value in this manner.  This 
may require the use of an analytic statement (see Appendix A) to define a value and the use of 
the logical sentence UPDATE within the TSMODEL paragraph to “clear” a model's memory 
of the parameter value and reset it to another.  For example, if we wished to maintain the 
value of D1 as .70 during remaining estimations, we could sequentially enter  
 

 -->D1 = 0.7 
 -->TSMODEL  SALESMDL.  FIXED-PARAMETER IS D1.  UPDATE.  

 
In addition to holding parameter values at fixed levels, we can constrain one or more 

parameters to be equal to one another during estimation.  The CONSTRAINT sentence is 
used for this purpose.  For example, if we wish to re-estimate the “final” fitted model held in 
SALESMDL with the  parameter equal to the MA parameter we can enter δ
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 -->TSMODEL  SALESMDL.   CONSTRAINT IS (D1, TH).  
 
All parameters whose names are specified within the same parentheses are held equal during 
estimation.  More than one set of constraints can be specified, with commas used to separate 
sets of parentheses, but a parameter label can be only specified once.  
 

We can also constrain parameters to be held equal to other parameters during estimation 
by using the same label for the parameters.  Thus, it is important to use different labels for 
model parameters if we do not want to impose an equality constraint. 

Once a constraint is placed on a parameter, either fixed at a particular value or held 
equal to one or more parameters, the constraint remains in place during all subsequent 
estimations.  A constraint can only be removed by the re-specifying the model using the 
MODEL sentence of the TSMODEL paragraph.  

8.7.5   Estimation of transfer functions containing a denominator polynomial 

A transfer function can be either in linear form, (B)ω , or in rational polynomial form, 
.  As in the case of intervention m ttention is required in the 
f transfer function models in which a denom nator polynomial (i.e., 

(B) / (B)ω δ
estimation o

odels, special a
i (B)δ ) is 

present. 

The estimation procedure used by the SCA System is fairly robust; in that in most cases 
any non-zero initial estimates of parameters will lead to the convergence to a final set.  
However, problems can arise in the case of a transfer function that contains a denominator 
polynomial (e.g., ).  In these cases, it is often important that reasonable initial 
estimates of param numerator polynomial (i.e., 

/(1 B)ω −δ
eters in the (B)ω ) be provided.  If reasonable 

initial estimates are not provided, the estimation process may result in an overflow error and 
cause the estimation process to terminate. 

If the LTF method is being used for the identification of a transfer function, then the 
above problem can be easily avoided.  The LTF method uses the linear form approximation, 
V(B), to obtain the estimates for k   If we find that the rational polynomial form is 
a preferable way to characterize the transfer function, we can use some of the estimated TF 
weights as initial estim ters of 

0 1v , v ,...., v .

ates for the parame (B)ω .  For example, if we wish to use 
 as an initial estimate of  and 

 are simply ma e termine our initial estim tes.  W  
odeling LES data in Section 8.4. 

If the CCF method is used, then we should scale the values of the CCF (as done in 
Section 8.7.1) and then match lag orders as done above. 
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8.7.6    Notational shorthands 

The notational shorthand available for ARIMA model specification (see Section 5.4.5) 
extends to transfer function model specification as well.  To illustrate this shorthand, consider 
the transfer function model 

12 2 3 12
t 0 1 2 3 t(1 B)(1 B )Y C ( B B B )(1 B)(1 B )X− − = + ω +ω +ω +ω − −

. (8.41) 

 
espectively.  A 

“longhand” transcription of (8.43) may be 
 

YDATA((1-B)(1-B**12)) = CONST                                @ 
   + (W0 + W1*B + W2*B**2 + W3*B**3)XDATA((1-B)(1-B**12)) @ 
   + (1-THETA1*B)(1-THETA2*B**12)NOISE. (8.42) 

The basic information used by the SCA System from (8.42) are the orders of the 
backshift operators in each differencing, numerator, denominator autoregressive or moving 
average operator and the labels associated with all parameters.  In fact, the labels are not 
essential unless we wish to maintain parameter estimates within variables or if constraints are 
used on parameters.  Operators having parameters can also be specified using the form 

 (orders of backshift operators; parameter values or labels) 
 
The portion “parameter values or labels” allows for either specific numeric values or labels of 
variables holding the initial estimates.  This portion is optional if we only wish to specify the 
orders of the backshift operators.  As a result, the following are all equivalent to (8.42) 
provided all parameters are estimated without constraint (see Section 8.7.4) 
 
 YDATA(1,12) = CONST + (0,1,2,3; W0, W1, W2, W3)XDATA(1,12)     @ 
                  + (1; THETA1)(12; THETA2)NOISE. 
 
 YDATA(1,12) = CONST + (0 TO 3; W0 TO W3)XDATA(1,12)             @ 
                  (1 - THETA*B)(12; THETA2)NOISE 
 
 YDATA(1,12) = CONST + (0 TO 3; W0 TO W3)XDATA(1,12)             @ 
                  + (1)(12)NOISE 
 
 YDATA(1,12) = CONST + (0 TO 3)XDATA(1, 12) + (1)(12)NOISE 
 
Note that we are also able to “mix” notational specifications, depending on which form is 
most convenient. 
 

12
1 12 t(1 B)(1 B )a+ −θ −θ

Suppose the names of the series tY  and tX  are YDATA and XDATA, r
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8.7.7   Simulation of a transfer function model 

The SIMULATE paragraph may be used to simulate an ARIMA model or a transfer 
function model.  The simulation of an ARIMA model and details regarding the use of the 
SIMULATE paragraph were presented in Section 5.4.3. 

The use of the SIMULATE paragraph for the simulation of a transfer function model is 
identical as its use for the simulation of an ARIMA model, except for the presence of input 
series.  The SIMULATE paragraph will first generate a noise sequence using a pseudo 
random number generator.  This sequence is then used according to a transfer function model 
specified previously using the TSMODEL paragraph.  In the case of the simulation of a 
transfer function model, the data for all input series must already be present in the SCA 
workspace when the SIMULATE paragraph is executed.  Hence the data of the input series 
must be provided in some fashion.  An input series can be one that has been transmitted 
previously, or have been simulated from a previous use of the SIMULATE paragraph. 

Recall that the logical sentence SIMULATION must be included in the TSMODEL 
paragraph that specifies the model to be simulated.  In addition, we must be certain that each 
input series of the model both exists and has enough data for the specified simulation. 

To illustrate the simulation of a transfer function, we will simulate an input series and an 
output series.  Specifically, we will simulate  and o that 

+ , (8.43) 

and 

tX tY  s

t t(1 0.6B)X 12.0 e− =

t t
0.4BY 6.0 X (1 0.75B)a

1 0.8B
= + + −

− t , (8.44) 

 
with  and .  We will simulate 200 observations for  and  and store the 
data in XDATA and YDATA, respectively.  We can specify the above models by entering: 
 

 -->TSMODEL   XSIM.   MODEL IS (1-0.6*B)XDATA = 12.0 + NOISE.   SIMULATION. 
 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --   XSIM   
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED            
 
  XDATA     RANDOM     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 
 PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
   LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
  1                    CNST      1      0     NONE    12.0000                   
  2           XDATA     AR       1      1     NONE      .6000      

 
 

e 2.5σ = a 1.5σ = tX tY
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 -->TSMODEL   YSIM.  MODEL IS YDATA = 6.0 + (0.4*B)/(1 - 0.8*B)XDATA +  @ 
 -->                (1 - 0.75*B)NOISE.  SIMULATION. 

 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --   YSIM   
 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED            
 
  YDATA     RANDOM     ORIGINAL     NONE 
 
  XDATA     RANDOM     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 
 PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
   LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
  1                    CNST      1      0     NONE     6.0000                   
  2           XDATA    NUM.      1      1     NONE      .4000                   
  3           XDATA    DENM      1      1     NONE      .8000                   
  4           YDATA     MA       1      1     NONE      .7500    

 
Note that we can directly specify values for all parameters of the above models.  Also 

note that the logical sentence SIMULATION is included in both paragraphs.  We can 
sequentially: (1) specify a seed value for simulation purposes (see Section 5.4.3); (2) simulate 
XDATA; and (3) simulate YDATA by entering the following (SCA output is suppressed): 

 -->GSEED = 234567 
 -->SIMULATE  MODEL IS XSIM.   NOBS IS 250.   @ 
 -->          NOISE IS N(0.0, 6.25).   SEED IS GSEED. 
 -->SIMULATE  MODEL IS YSIM.   NOBS IS 250.   @ 
 -->          NOISE IS N(0.0, 2.25).   SEED IS GSEED. 
 -->SELECT    XDATA, YDATA.    SPAN IS (51, 250). 

 
The NOISE sentence is used to specify the variation of each of the error sequences.  We 

intentionally simulate more than 200 observations and then select only the last 200 values of 
XDATA and YDATA.  We do this to ensure that any potential irregularities in the beginning 
of the recursive computation of values are eliminated. 

We now have 200 values in both XDATA and YDATA.  If we desire, we can check to 
see how consonant these series are to  and  by computing the values of statistics based 
on (8.43) and (8.44).  In particular: 

(1)  

tX tY

x
12.0 30.0

(1 .6)
µ = =

−
 ; 

(2)  the ACF for s , =1,2, . . . ; 

(3)  the steady state gain of the transfer function is g =  

tX  i  (.6)l l

.4
(1 .8)−

 = 2 ; 

(4)  ; and 
 

y x6.0 g 66.0µ = + µ =
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(5)   and the values of the remaining TF weights are (.4) , l=1,2,3, .  . . 
 
This is not done here.  Instead, we will estimate 
 

0v 0= 1(.8) −l

t t
BYDATA C XDATA (1 B)a

1 B
ω

= + + −θ
−δ t   

 
to see how close our estimates are to the “true” model (8.44). 
 
 A summary from an exact estimation of this model is given below 
 

SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  YMODEL  
 
----------------------------------------------------------------------- 
VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
          VARIABLE   OR CENTERED           
 
 YDATA     RANDOM     ORIGINAL     NONE 
 
 XDATA     RANDOM     ORIGINAL     NONE 
----------------------------------------------------------------------- 
 
 PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
   LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
  1   CNST             CNST      1      0     NONE     8.6558     .7248  11.94  
  2    V1     XDATA    NUM.      1      1     NONE      .4010     .0060  67.29  
  3    D1     XDATA    DENM      1      1     NONE      .7901     .0036 220.62  
  4  THETA    YDATA     MA       1      1     NONE      .8207     .0412  19.90  
 
TOTAL SUM OF SQUARES . . . . . . . .   .254286E+04 
TOTAL NUMBER OF OBSERVATIONS . . . .           200 
RESIDUAL SUM OF SQUARES. . . . . . .   .410783E+03 
R-SQUARE . . . . . . . . . . . . . .          .833 
EFFECTIVE NUMBER OF OBSERVATIONS . .           193 
RESIDUAL VARIANCE ESTIMATE . . . . .   .212841E+01 
RESIDUAL STANDARD ERROR. . . . . . .   .145891E+01 

 
The estimated values of C, ω, δ and θ (8.66, 0.40, 0.79 and 0.82 respectively) are in 

reasonable to good accord with the values used in the simulation.  All diagnostic checks of 
this model support its validity. 

8.7.8   Computing the TF weights of a transfer function model 

In Section 5.4.8, we discussed the use of the WEIGHT paragraph to compute the pi or 
psi-weights of an ARIMA model.  The WEIGHT paragraph can also be used to compute the 
TF weights ( ) for each transfer function of a model specified previously (using the 
TSMODEL paragraph   In the case of a transfer function model, the pi and psi-weights 
computed from the model are those corresponding to the disturbance term. 

To illustrate the use of the WEIGHT paragraph for a transfer function model, we 
consider the final estimated model stored in SALESMDL (see Section 8.4.5).  The fitted 
model is (approximately) 

0 1 2v , v , v ,...
).
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where . 
 
 The TF weights of a transfer function are computed according to 
 

. 

For the above model, we see 0

t t
4.726BSALES .035 LEADING N
1 .724B

= + +
−

t t(1 B)N (1 .626B)a− = −

v(B) (B) (B)δ = ω

0 1 2v v v= = =  and j 3
jv 4.726(.724) −=  for .  The pi-

weights for the model are com

; 

As a result, , , 

j 3≥
puted from 

(B)(1 .626B) (1 B)π − = −

0 1π = 1 .374π = j 1
j .374(.626) −π =  for ; and j 2≥ 1 1ψ = , j .374ψ =  for . 

 
 We can compute the first 20 of the above TF, pi and psi-weights by entering 
 

 -->WEIGHT   SALESMDL.   PIWEIGHTS IN NTPI.   PSIWEIGHTS IN NTPSI.   @ 
 -->         TFWEIGHTS IN SALESTF.   MAXIMUM IS 20. 

 
If our transfer function model has more than one input (explanatory) variables, then one 

variable label must be specified in the TFWEIGHTS sentence for each input variable of the 
model.  We can display the stored information by entering 

 -->PRINT   NTPI.   NO LABEL.   FORMAT IS '5F10.4'. 
    1.0000     .3739     .2341     .1466     .0918 
     .0575     .0360     .0225     .0141     .0088 
     .0055     .0035     .0022     .0014     .0008 
     .0005     .0003     .0002     .0001 .8172E-04 

 
 -->PRINT   NTPSI.   NO LABEL.   FORMAT IS '5F10.4'. 
    1.0000     .3739     .3739     .3739     .3739 
     .3739     .3739     .3739     .3739     .3739 
     .3739     .3739     .3739     .3739     .3739 
     .3739     .3739     .3739     .3739     .3739 

 
 -->PRINT   SALESTF.   NO LABEL.   FORMAT IS '5F10.4'. 
     .0000     .0000     .0000    4.7263    3.4214 
    2.4767    1.7929    1.2979     .9395     .6801 
     .4923     .3564     .2580     .1868     .1352 
     .0979     .0709     .0513     .0371     .0269 

 
These values are those described above. 
  

j 1≥



 TRANSFER FUNCTION MODELING 8.61
   

SUMMARY OF THE SCA PARAGRAPHS IN CHAPTER 8 

 
This section provides a summary of those SCA paragraphs employed in this chapter.  

The syntax for many paragraphs is presented in both a brief and full form.  The brief display 
of the syntax contains the most frequently used sentences of a paragraph, while the full 
display presents all possible modifying sentences of a paragraph.  In addition, special remarks 
related to a paragraph may also be presented with the description. 

Each SCA paragraph begins with a paragraph name and is followed by modifying 
sentences.  Sentences that may be used as modifiers for a paragraph are shown below and the 
types of arguments used in each sentence are also specified.  Sentences not designated 
required may be omitted as default conditions (or values) exist.  The most frequently used 
required sentence is given as the first sentence of the paragraph.  The portion of this sentence 
that may be omitted is underlined.  This portion may be omitted only if this sentence appears 
as the first sentence in a paragraph.  Otherwise, all portions of the sentence must be used.  The 
last character of each line except the last line must be the continuation character, ‘@’. 

The paragraphs to be explained in this summary are FILTER, CCF, CORNER, 
TSMODEL, ESTIM, FORECAST, SIMULATE and WEIGHT. 

 
 Legend (see Chapter 2 for further explanation) 
 
 v : variable or model name 
 i : integer 
 r : real value 
 w  : keyword 
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FILTER Paragraph  
 

The FILTER paragraph is used to filter a time series to a new series according to a 
specified time series model.  A discussion of the use of filtering is found in Section 8.7.1.  A 
special case of this procedure is known as pre-whitening. Common filtering for all input and 
output series is also useful when the linear transfer function (LTF) method is employed. 

Syntax for the FILTER Paragraph 

 
Sentences 
  
MODEL se

The MO
univaria
sentence

OLD sente
The OL
is omitt
will be f

NEW sente
The NE
The num
specifie

 
 

 
 

FILTER MODEL model-name.  @ 
  OLD  ARE  v1, v2, --- .  @ 
  NEW  ARE  v1, v2, --- .   
  
Required sentence:  MODEL  
Used in the FILTER Paragraph  

ntence  
DEL sentence is used to specify the label (name) of a previously defined 

te time series model that will be used to filter the variable(s) specified in the OLD 
.  

nce  
D sentence is used to specify the names of the series to be filtered.  If this sentence 
ed, the output variable of the univariate model specified in the MODEL sentence 
iltered.  

nce  
W sentence is used to specify the variable(s) where the filtered series are stored. 
ber of variable(s) in this sentence must be the same as that in the OLD sentence if 

d.  The default are the variable(s) of the OLD sentence. 
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CCF Paragraph  
 

The CCF paragraph is used to compute the cross correlation function between two 
specified time series. The paragraph also displays for each series some descriptive statistics 
including the sample mean, standard deviation and a t-statistic on the significance of a 
constant term.   

Syntax for the CCF Paragraph 
 
Brief syntax 

 
Full syntax 

 
Sentences Used in the CCF Paragraph  
 
VARIABLES sentence   

The VARIABLES sentence is used to specify the names of the series to be analyzed.  Two 
series names must be specified. 

DFORDERS sentence  
The DFORDERS sentence is used to specify the orders of differencing to be applied on 
each series when differencing is the stationary-inducing transformation being used.  For 
example, the order associated with the differencing operator (1-B) is 1 and that of 
( ) is 12.  If a power of an operator is to be used (for example, ) then the 
differencing order must be repeated the appropriate number of time ple, 1, 
1). The default is none. 

MAXLAG sentence  
The MAXLAG sentence is used to specify the maximum order of CCF to be computed.  
The default is 36.  

CCF VARIABLES  ARE  v1, v2.  @  
 DFORDERS  ARE   i1, i2, --- . @  
 MAXLAG  IS  i. 
  
Required sentence:  VARIABLE  

CCF VARIABLES  ARE  v1, v2.   @  
 DFORDERS  ARE  i1, i2, --- .  @  
 MAXLAG  IS  i.     @  
 SPAN  IS  i1, i2.    @  
 HOLD CCF(v), SDCCF(v).  
  
Required sentence:  VARIABLE  

121 B− 2(1 B)−
s (in this exam
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SPAN sentence  
The SPAN sentence is used to specify the span of time indices, from i1 to i2, for which 
the data will be analyzed.  The default is the maximum span available for the series. 

HOLD sentence  
The HOLD sentence is used to specify those values computed for particular functions to 
be retained in the workspace.  Only those statistics desired to be retained need be named.  
Values are placed in the variable named in parentheses.  The default is that none of the 
values of the above statistics will be retained after the paragraph is used.  The values that 
may be retained are: 

CCF   : the sample CCF of the series  
SDCCF : the standard deviations of the sample CCF of the series  

 
 
 
CORNER Paragraph  
 

The CORNER paragraph is used to compute the corner table for a sequence of TF 
(transfer function) weights.  See Section 8.4.4 for more information. 

Syntax for the CCF Paragraph 

 
Sentences Used in the CORNER Paragraph  
 
VARIABLES sentence   

The VARIABLES sentence is used to specify the name of the variable that contains the 
TF weights from which the corner table will be computed. 

SIZE sentence  
The SIZE sentence is used to specify the number of rows (NROWS) and columns 
(NCOLS) for the corner table.  Assuming the number of TF weights is k, the default value 
for NROWS is (k+2)/2 and NCOLS is k/2. 

 
 

CORNER VARIABLE  IS  v.  @  
  SIZE  IS  NROWS(i1), NCOLS(i2). 
  
Required sentence:  VARIABLE  
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TSMODEL Paragraph 
 

The TSMODEL paragraph is used to specify or modify a transfer function model.  The 
paragraph is also used for the specification or modification of an ARIMA or intervention 
model.  The syntax description for these usages is provided in Chapters 5 and 6, respectively.  
For each model specified in a TSMODEL paragraph, a distinguishing label or name must also 
be given.  A number of different models may be specified, each having a unique name, and 
subsequently employed at a user's discretion.  Moreover, the label also enables the 
information contained under it to be modified. 

Syntax for the TSMODEL Paragraph 
 
Brief syntax 

 
Full syntax

 
Sentences 
 
NAME sen

The NA
the para
paragrap
TSMODEL NAME  IS  model-name.     @  
  MODEL  IS  “model”. 
  
Required sentence:  NAME  
 

TSMODEL NAME  IS  model-name.    @  
  MODEL  IS  “model”.     @  

 ADD “components of a model”.   @ 
  CHANGE “components of a model”.  @ 

 DELETE CONSTANT.    @ 
  FIXED-PARAMETERS ARE v1, v2, ---. @ 

 CONSTRAINTS ARE (v1,v2,---), ---,  @ 
                  (v1,v2,---).    @ 

 VARIANCE IS v.    @ 
  SHOW./NO SHOW.    @  

 CHECK./NO CHECK.    @  
  ROOTS./NO ROOTS.     @  

 SIMULATION./NO SIMULATION.  @ 
  UPDATE./NO UPDATE. 
  
Required sentence:  NAME 
Used in the TSMODEL Paragraph 

tence  
ME sentence is used to specify a unique label (name) for the model specified in 
graph.  This label is used to refer to this model in other time series related 
hs or if the model is to be modified. 
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MODEL sentence  
The MODEL sentence is used to specify a transfer function model. 

ADD sentence 
The ADD sentence is used to specify component terms that will be added to an existing 
model.  More information is provided in Section 8.7.3. 

CHANGE sentence 
The CHANGE sentence is used to modify component terms of an existing model.  More 
information is provided in Section 8.7.3. 

DELETE sentence   
The DELETE sentence is used to delete explanatory variables or the constant term from 
an existing transfer function model.  An explanatory variable is deleted by simply listing 
its name.  The constant term is deleted by specifying the keyword CONSTANT.  Once the 
constant term is deleted, it can only be re-inserted using the MODEL sentence. 

FIXED-PARAMETER sentence 
The FIXED-PARAMETER sentence is used to specify the parameters whose values will 
be held constant during model estimation, where v's are the parameter names.  See Section 
8.7.4 for a brief discussion of this sentence.  The default condition is that no parameters 
are fixed. 

CONSTRAINT sentence 
The CONSTRAINT sentence is used to specify that the parameters within each pair of 
parentheses will be constrained to have the same value during model estimation. See 
Section 8.7.4 for a brief discussion of this sentence.  The default condition is that no 
parameters are constrained to be equal. 

VARIANCE sentence 
The VARIANCE sentence is used to specify a variable where the value of the noise 
variance is or will be stored.  If a value for the variable is known, this value will be used 
as initial variance in estimation and the final estimated value of the variance will be stored 
in this variable for future estimation or in forecasting.  Otherwise the variance is 
calculated from the residual series derived from the specified model and parameter 
estimates.  Note that the SCA System designates an internal variable for the VARIANCE 
sentence so that the specification of this sentence is optional. 

SHOW sentence  
The SHOW sentence is used to display a summary of the specified model.  Default is 
SHOW. The summary includes series name, differencing (if any), span for data, parameter 
labels (if any) and current values for parameters.  

CHECK sentence  
The CHECK sentence is used to check whether all roots of the AR, MA, and denominator 
polynomials lie outside the unit circle.  The default is NO CHECK.  
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ROOTS sentence  
The ROOTS sentence is used to display all roots of the AR, MA and denominator 
polynomials.  The default is NO ROOTS. 

SIMULATION sentence  
The SIMULATION sentence is used to specify that the model will be used for simulation 
purposes.  Ordinarily this sentence is not specified.  See Section 5.4.2 or 8.7.7 for more 
details.  The default is NO SIMULATION.  

UPDATE sentence 
The UPDATE sentence is used to specify that parameter values of the model are updated 
using the most current information available.  The default is NO UPDATE. In the default 
case, parameter values are updated only after execution of the ESTIM paragraph rather 
than immediately. 

 
 
ESTIM Paragraph  
  

The ESTIM paragraph is used to control the estimation of the parameters of a transfer 
function. 

Syntax of the ESTIM Paragraph 
 
Brief syntax 

 
Full

 
 

ESTIM  MODEL v.                  @ 
  HOLD RESIDUALS(v).   
   
Required sentence:  MODEL 
 syntax  

 

ESTIM  MODEL v.       @
  METHOD  IS  w.      @

 STOP-CRITERIA  ARE  MAXIT(i), LIKELIHOOD(r1), @
ESTIMATE(r2).     @

 SPAN  IS  i1, i2.      @
  HOLD RESIDUALS(v), FITTED(v), VARIANCE(v).  @

 OUTPUT LEVEL(w), PRINT(w1, w2, ---),   @
         NOPRINT(w1, w2, ---). 
 
Required sentence:  MODEL 
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Sentences Used in the ESTIM Paragraph 
 
MODEL sentence   

The MODEL sentence is used to specify the label (name) of the model to be estimated.  
The label must be one specified in a previous TSMODEL paragraph. 

METHOD sentence  
The METHOD sentence is used to specify the likelihood function used for model 
estimation.  The keyword may be CONDITIONAL for the “conditional” likelihood or 
EXACT for the “exact” likelihood function.   See Section 5.1.4 for a discussion of these 
two likelihood functions.  The default is CONDITIONAL. 

STOP sentence 
The STOP sentence is used to specify the stopping criterion for nonlinear estimation.  The 
argument, i, for the keyword MAXIT specifies the maximum number of iterations (default 
is i=10); the argument, r1, for the keyword LIKELIHOOD specifies the value of the 
relative convergence criterion on the likelihood function (default is r1=0.0001); and the 
argument, r2, for the keyword ESTIMATE specifies the value of the relative convergence 
criterion on the parameter estimates (default is r2=0.001).  Estimation iterations will be 
terminated when the relative change in the value of the likelihood function or parameter 
estimates between two successive iterations is less than or equal to the convergence 
criterion, or if the maximum number of iterations is reached. 

SPAN sentence 
The SPAN sentence is used to specify the span of time indices, from i1 to i2, for which 
the data will be analyzed.  The default is the maximum span available for the series. 

HOLD sentence 
The HOLD sentence is used to specify those values computed for particular functions to 
be retained in the workspace.  Only those statistics desired to be retained need be named.  
Values are placed in the variable named in parentheses.  The default is that none of the 
values of the above statistics will be retained after the paragraph is used.  The values that 
may be retained are: 

RESIDUAL : the residual series  
FITTED  : the one-step-ahead forecasts (fitted values) of the series  
VARIANCE : variance of the noise  
DISTURBANCE  : the estimated disturbance series of the model 

 
OUTPUT sentence 

The OUTPUT sentence is used to control the amount of output displayed for selected 
statistics.  Control is achieved in a two stage procedure.  First, a basic LEVEL of output 
(default NORMAL) is designated.  Output may then be increased (decreased) from this 
level by use of PRINT (NOPRINT). 

The keywords for LEVEL and output displayed are: 

BRIEF    : estimates and their related statistics only 
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NORMAL  : RCORR 
DETAILED : ITERATION, CORR, and RCORR 
 
where the keywords on the right denote: 

ITERATION  :  the parameter and covariance estimates for each iteration 
CORR :  the correlation matrix for the parameter estimates 
RCORR         : the reduced correlation matrix for the parameter estimates (i.e., a display 

 in which all values have no more than two decimal places and those 
 estimates within two standard errors of zero are displayed as dots, ‘.’). 

 
 
 
FORECAST Paragraph 
 

The FORECAST paragraph is used to compute the forecast of future values of a time 
series based on a specified transfer function model.  All input variables used in the model 
must have data in the forecast period.  If necessary, an explanatory variable must be 
forecasted before forecasting from the transfer function model (see Section 8.4.7). 

The FORECAST paragraph requires the current estimate of the variance  to compute 
standard errors of forecasts.  The variance for the estimated model is always stored internally 
during the execution of the ESTIM paragraph, but the internal estimate is overwritten at each 
subsequent execution of a ESTIM paragraph for the same model. 

Syntax of the FORECAST Paragraph

2σ

 
 
Brief syntax 

 
 
 

 
 
 
 

FORECAST MODEL v.     @
  OFS  ARE  i1, i2, --- .   @

 ORIGINS  ARE  i1, i2, ---.  @
  ARIMA  ARE  v1(model-name), @
                            v2(model-name), ---. 
  
Required sentence:  MODEL  
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Full syntax 

 
Sentences Used in the FORECAST Paragraph  
  
MODEL sentence  

The MODEL sentence is used to specify the label (name) of the model for the series to be 
forecasted.  The label must be one specified in a previous TSMODEL paragraph.  

NOFS sentence  
The NOFS sentence is used to specify for each time origin the number of time periods 
ahead for which forecasts will be generated.  The number of arguments in this sentence 
must be the same as that in the ORIGINS sentence.  The default is 24 forecasts for each 
time origin. 

ORIGINS sentence  
The ORIGINS sentence is used to specify the time origins for forecasts.  The default is 
one origin, the last observation. 

IARIMA sentence 
The IARIMA sentence is used to specify the label associated with ARIMA model of each 
stochastic input series of a transfer function model.  The variable name of each input 
series must be listed and, in parentheses, the name (label) for its Box-Jenkins ARIMA 
model. 

JOIN sentence  
The JOIN sentence is used to specify that the forecasts calculated should be appended to 
the variable of the model relative to the specified origin.  If more than one origin is 
specified only the last will be used.  The default is NO JOIN. 

METHOD sentence 
The METHOD sentence is used to specify the likelihood function used for the 
computation of the residual series employed in forecasting.  The keyword may be 
CONDITIONAL for the “conditional” likelihood, or EXACT for the exact likelihood 
function.  See Section 5.1.4 for a discussion of these two likelihood functions.  The default 
is EXACT. 

FORECAST MODEL v.        @ 
NOFS  ARE  i1, i2, --- .      @ 

 ORIGINS  ARE  i1, i2, --- .      @ 
 IARIMA  ARE  v1(model-name),    @ 

                v2(model-name), ---.    @ 
 JOIN. /NO JOIN.       @ 

  METHOD  IS  w.      @ 
HOLD FORECASTS(v1,v2,---), STD_ERRS(v1,v2,---).  @ 

 OUTPUT PRINT(w), NOPRINT(w). 
  
Required sentence:  MODEL  
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HOLD sentence  

The HOLD sentence is used to specify those values computed for particular functions to 
be retained in the workspace.  Only those statistics desired to be retained need be named.  
Values are placed in the variable named in parentheses.  The default is that none of the 
values of the above statistics will be retained after the paragraph is used. The values that 
may be retained are:   

FORECASTS : forecasts for each corresponding time origin   
STD_ERRS : standard errors of the forecasts at the last time origin 
 

OUTPUT sentence 
The OUTPUT sentence is used to control the amount of output displayed for various 
statistics.  The default condition is PRINT(FORECASTS); that is, to display forecast 
values for each time origin.  To suppress this, specify NOPRINT(FORECASTS). 

 
 
SIMULATE Paragraph  
 

The SIMULATE paragraph is used to generate data according to a user specified 
univariate time series model.  See Section 5.4.2 for more information on this paragraph.  A 
transfer function model must have been specified previously using the TSMODEL paragraph.  
Data for all explanatory variables must have been either transmitted to the SCA workspace or 
simulated prior to the simulation of the response variable of the transfer function model.  The 
paragraph is also used to generate data according to a user specified distribution.  More 
information on this can be found in Chapter 12 of The SCA Statistical System: Reference 
Manual for General Statistical Analysis. 

Syntax for the SIMULATE Paragraph  

 
 

SIMULATE VARIABLE  IS  v.     @  
 MODEL  IS  model-name.    @  

  NOISE  IS  distribution (parameters) or VARIABLE(v). @ 
 NOBS  IS  i.      @  

  SEED  IS  i. 
 
Required sentences:  MODEL, NOISE and NOBS  
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Sentences Used in the SIMULATE Paragraph 
 
VARIABLE sentence  

The VARIABLE sentence is used to specify the name of the variable to store the 
simulation results.  The sentence is not required if a univariate time series is generated.  If 
the sentence is not specified, the variable name used in the MODEL sentence of the 
TSMODEL paragraph is used to store the results. 

MODEL sentence 
The MODEL sentence is used to specify the name (label) of the model to be simulated.  
The model may be an ARIMA model specified in a TSMODEL paragraph.  The sentence 
SIMULATION must also appear in the TSMODEL paragraph. 

NOISE sentence 
The NOISE sentence is used to specify the noise sequence for the simulated time series 
model.  Either the distribution for generating the noise sequence or the name of a variable 
containing values to be used as the sequence is specified.  The following distributions can 
be used: 

U(r1,r2)   : uniform distribution between r1 and r2  
N(r1,r2)   : normal distribution with mean r1 and variance r2  
MN(v1,v2)  : multivariate normal distribution with mean vector v1 and covariance  
      matrix v2.  Note that v1 and v2 must be names of variables defined  
      previously. 

 
NOBS sentence  

The NOBS sentence is used to specify the number of observations to be simulated. 

SEED sentence  
The SEED sentence is used to specify an integer or the name of a variable for starting the 
random number generation. When a variable is used, the seven digit value 1234567 is 
used as a seed if it is not defined yet, or the value of the variable is used if the variable is 
an existing one. After the simulation, the variable contains the seed last used. The number 
of digits for the seed must not be more than 8 digits.  The default is 1234567. 
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WEIGHT Paragraph 
 

The WEIGHT paragraph is used to compute the TF, pi and psi-weights of a transfer 
function model.  The pi and psi-weights correspond to the disturbance term.  The WEIGHT 
paragraph can also be used to compute the pi and psi-weights of an ARIMA model (see 
Section 5.4.8). 

Syntax of the WEIGHT paragraph 

 
Sente
 
MOD

Th
fo
on

PIWE
Th
we

PSIW
Th
we

TFWE
Th
we
se
mo
fir
sto

MAX
Th
co

 
 
 
 
 

WEIGHT MODEL  model-name.  @
  PIWEIGHTS IN v.  @

 PSIWEIGHTS IN v.  @
 TFWEIGHTS IN v1, v2, ---. @

  MAXIMUM  IS  i.  @
 CUTOFF  IS  r. 

 
Required sentences:  MODEL 
nces Used in the WEIGHT Paragraph 

EL sentence 
e MODEL sentence is used to specify the label (name) of the transfer function model 

r which pi, psi or transfer function weights are to be computed.  The label must be the 
e specified in a previous TSMODEL paragraph. 

IGHTS sentence 
e PIWEIGHTS sentence is used to specify the name of the variable to store the pi-
ights associated with the disturbance term of the transfer function model. 

EIGHTS sentence 
e PSIWEIGHTS sentence is used to specify the name of the variable to store the psi-
ights associated with the disturbance term of the transfer function model. 

IGHTS sentence 
e TFWEIGHTS sentence is used to specify the names of the variables to store the TF 
ights for the transfer function model.  The number of variables specified in this 

ntence must be less than or equal to the number of transfer function components in the 
del.  The weights associated with the first transfer function component are stored in the 

st variable, the weights associated with the second transfer function component are 
red in the second variable, and so on. 

IMUM sentence 
e MAXIMUM sentence is used to specify the maximum number of weights to be 
mputed.  The default is 100 for all weights to be computed. 
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CUTOFF sentence 
The CUTOFF sentence is used to specify a cutoff value to limit the number of weights 
that will be stored.  The last weight stored represents the last value greater than or equal to 
(in absolute value) the cutoff value.  Note that the specification of a cutoff value will 
cause the variables that store the weights to have different lengths.  The default cutoff 
value is 0; that is, all weights will be stored. 
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CHAPTER 9 

FORECASTING USING GENERAL 
EXPONENTIAL SMOOTHING 

 
 

In this chapter we discuss the use of various general exponential smoothing methods for 
forecasting.  There are many possible ways to forecast a time series.  The main emphasis of 
forecasting methods presented thus far is a model-based approach advocated by Box, Jenkins, 
Tiao, and others.  Traditionally, however, forecasting has been performed using various 
empirical methods.  Some of these methods were developed employing statistical theory, 
while others were developed mainly based on empirical experiences.  These methods share a 
similar characteristic.  That is, the forecasts are based essentially on smoothing (averaging) 
past values of a time series using some type of decreasing weighting scheme.  In particular, 
these weights often follow an exponentially decreasing pattern.  As a result, this method of 
forecasting is often referred to as general exponential smoothing. 

We can access the exponential smoothing methods of the SCA System through the 
GFORECAST paragraph.  We will only provide a cursory discussion of various methods in 
the remainder of this chapter.  More complete information can be found in Abraham and 
Ledolter (1983), Harvey (1984), Makridakis and Wheelwright (1978), Makridakis, 
Wheelwright and McVee (1986), Montgomery and Johnson (1976), Box and Jenkins (1970), 
Bowerman and O'Connell (1987), Brown (1962), Brown and Meyer (1961), Muth (1960) and 
references contained therein. 

In this chapter, Sections 9.1 through 9.7 provide basic information on the available 
general exponential smoothing methods in the SCA System.  These methods are: 

(1)  Simple exponential smoothing (Section 9.1),  

(2)  Double exponential smoothing (Section 9.2),  

(3)  Holt's two parameter exponential smoothing (Section 9.3),  

(4)  Winters' additive seasonal exponential smoothing (Section 9.4),  

(5)  Winters' multiplicative seasonal exponential smoothing (Section 9.5),  

(6)  General exponential smoothing using seasonal indicators (Section 9.6), and  

(7)  General exponential smoothing using harmonic (trigonometric) functions (Section 
9.7)  

  
One or more examples of each smoothing method are provided in each section.  Section 

9.8 presents some commentary on forecasting using general exponential smoothing methods. 
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The exponential smoothing methods (1) through (3) are most often used in forecasting 
non-periodic (non-seasonal) time series.  Methods (4) through (7) are only appropriate for 
periodic (seasonal) time series, in particular monthly or quarterly time series.  Computational 
algorithms and computer programs employed in the exponential smoothing capabilities of the 
SCA System are adapted from those presented in Abraham and Ledolter (1983). 

Relationship between general exponential smoothing and ARIMA models 
 

Abraham and Ledolter (1983, 1986) have investigated relationships between various 
exponential smoothing methods and ARIMA models.  They show various equivalence 
relationships between forecasts from general exponential smoothing and forecasts from 
ARIMA models.  As a result, in each of the next seven sections, corresponding ARIMA 
models are provided whenever possible for each smoothing method.  This information may be 
useful in light of the discussion in Section 9.8 regarding forecasting using ARIMA models (or 
model-based approaches) and general exponential smoothing methods. 

Missing data 
 

In the modeling of time series using ARIMA or transfer function models, we are able to 
employ special computational algorithms or use other procedures to identify and estimate a 
model for time series with missing data (see Sections 5.4.2 and 7.7).  Although coded missing 
data can be identified, the computational algorithms in the SCA System's exponential 
smoothing capabilities have no special way for dealing with missing data.  If missing data are 
present in a time series, we may wish to replace these values by some “appropriate” values 
(see Section 5.4.2) using analytic statements (see Appendix B), or the PATCH paragraph (see 
Appendix C). 

If missing data are present in a series, then the first occurrence of a non-missing value 
and the occurrence of the next missing data point are noted internally.  Only the non-missing 
data in this span are used in the calculation of smoothed forecasts. 

9.1   Simple (Single) Exponential Smoothing  

Simple (or single) exponential smoothing is a forecasting method that assumes the mean 
of a series is constant over short periods of time (i.e., locally constant).  The mean level is 
allowed to change slowly over time, but it is assumed that there is no overall trend in the 
series.  In such a case, it is reasonable to forecast all future observations by giving more 
weight to the most recent observations and less to distant past observations.  There are many 
choices for such a weighting scheme.  One choice is to use weights that will decrease 
exponentially with the age of the observations.  In this case the forecast of the future 
observation  made from time t=n (denoted by ) can be calculated from  

2  (9.1) 

 where  is called the discount coefficient (-1 < 

nZ +l nẐ ( )l
2

n n n 1 nẐ ( ) (1 )[Z Z Z ]− −= −ω +ω +ω + ⋅⋅⋅l

ω ω  < 1).  We can also express (9.1) as 
 

n  (9.2) 2
n n n 1 n 2Ẑ ( ) [Z (1 )Z (1 ) Z ] S− −= α + −α + −α + ⋅⋅⋅ =l
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where  is used.  The value 1α = −ω α  is called the smoothing constant, and  is called the 
smoothed statistic at time t=n.  We may note that in the above derivation of simple 
exponential smoothing, the forecasts from a fixed time origin are the same.  This is reasonable 
as simple exponential smoothing assumes a locally constant mean that is not subject to trends.  
This approach differs slightly from the “traditional” implementation of simple exponential 
smoothing in obtaining multi-step ahead forecasts (see Section 9.1.3). 
 
 We can also express the smoothed statistic  as a function of  and 
 

n 1 . (9.3) 

 is also referred to as a single exponentially smoothed statistic and may be denoted as   
If we repeat the above smoothing procedure using  in place of  we produce a new 
smoothed statistic 
 

n  (9.4) 

called the double smoothed statistic (see Section 9.2).  Repeated applications of the 
smoothing procedure produce exponential smoothed statistics of higher orders (i.e.,  triple 
smoothed statistic). 

9.1.1   Calculation of 

Since n 1 , it is true that 

0S . (9.5) 

Thus a value for  and an initial value for  must be either specified or determined in 
order to begin the generation of the smoothed tic.  The SCA System does not estimate 
any model parameters for any of the general exponential smoothing methods.  As a result, we 
must specify a value f r .  For information concerning the determination of 

nS

nS nZ n 1S −  

n nS Z (1 )S −= α + −α

nS [1]
nS .

[1]
nS nZ ,

[2] [1] [2]
n nS S (1 )S= α + −α

[3]
nS ,

nS  

n nS Z (1 )S −= α + −α

n 1 n
n n n 1 1S [Z (1 )Z (1 ) Z ] (1 )−

−= α + −α + ⋅⋅⋅+ −α + −α

α

o

0S
statis

α α , see 
Abraham and Ledolter (1983) or Makridakis, Wheelwright and McVee (1986). 

Since  is the level of the series at its beginning (i.e., time zero), it is reasonable to 
estimate it b  averaging the first few observations.  Some authors consider the average of the 

2 , while others (Makridakis and Wheelwright, 1978) 
advocate the choice of .  In practice the choice of  is usually not important for a 
reasonably long series.  The default choice in the SCA System is 2 .  This 
default can be changed with the inclusion of the START sentence (see th
this chapter). 

Depending upon the assumptions made,  can be the forecast for all future values or be 
used as part of the calculation of  .  We discuss this in more detail below. 

0S
y

first two observations, 0 1 2S (Z Z ) /= +
0 1S Z= 0S

0 1 2S (Z Z ) /+ +
e syntax at the end of 

nS
nẐ ( )l
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9.1.2   Relation to ARIMA models 

The forecasts from simple exponential smoothing are equivalent to those from the 
ARIMA(0,1,1) model (Box and Jenkins, 1970) 

 (9.6) 

where , with  and  as defined above.  
 

For this ARIMA(0,1,1) model, the minimum mean squared error forecasts (Box and 
Jenkins, 1970) of all future observations, 

t t(1 B)Z (1 B)a− = −θ

1θ = −α = ω  α ω

nZ +l  ( 1, 2,....=l ), are given by the latest 
exponentially weighted average,  

9.1.3   Some remarks on multi-step ahead forecasts 

 The one-step-ahead forecast for simple exponential smoothing is given by  
 

n 1

nS .

n n nẐ (1) S Z (1 )S −= = α + −α . (9.7) 

If we use equation (9.7) to obtain the two-step-ahead forecast, , we have 
 

S . (9.8) 

If we now replace the unknown observation 

 nẐ (2)

n 1 n 1 nS Z (1 )+ += α + −α

n 1Z +  with its forecast, n nẐ (1) S= , we obtain  
 

n . (9.9) 

If we continue to use above derivation for the three-step-ahead forecast, four-step-ahead 
forecast, and so on, we will see that the multi-step-ahead forecasts for simple exponential 
smoothing are all the same (i.e., 

n n 1 n nẐ ( ) S S (1 )S S+= = α + −α =l

n nẐ ( ) S=l ).  This is exactly what was presented earlier in 
(9.2). 
 

Some authors (e.g., Makridakis and Wheelwright, 1978) and software packages proceed 
differently in the calculation of multi-step-ahead forecasts.  In order to obtain the two-step-
ahead forecast, , the unknown value nẐ (2) n 1Z +  is replaced by the latest available observation, 

  As a result 

n . (9.10) 

Similarly, in the calculation of the three-step-ahead forecast, 

nZ .

n n n n
ˆ ˆZ (2) Z (1 )S Z (1 )Z (1)= α + −α = α + −α

n 2Z +  is replaced by the last 
observation,  resulting in 
 

. (9.11) 

If we continue in this manner, we obtain 
 

nZ ,

n n n
ˆ ˆZ (3) Z (1 )Z (2)= α + −α
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n n n
ˆ ˆZ ( ) Z (1 )Z ( 1),      2,3,....= α + −α − =l l l . (9.12) 

Using this approach, we see that the multi-step-ahead forecasts from a fixed origin will vary 
somewhat with the forecast lead time, l.  This slight variation in forecasts has not been shown 
to be better than the fixed value forecasts based on minimum mean square error.  It is 
interesting to observe that equation (9.12) is not valid for the first forecast (i.e., for l=1) since 
it becomes 
 

n . (9.13) 

This result is in conflict with those of simple exponential smoothing.  However, the 
formulation described by (9.12) has become a “traditional” means to implement simple 
exponential smoothing. 
 

In order to be consistent with the “traditional” results of simple exponential smoothing, 
the recursive formula employed in Makridakis and Wheelwright (1978) is used in the SCA 
System to generate multi-step-ahead forecasts.  If we wish to be certain to obtain the multi-
step forecasts , we should specify and forecast from an ARIMA(0,1,1) model (see 
Chapter 5) tion to the computation of forecasts, the latter approach also provides us 

  In using the ARIMA approach, we can also estimate the 
discount coefficient (since  based on the series. 

9.1.4   Examples of simple exponential smoothing 

We now illustrate the use of the GFORECAST paragraph with two examples.  In the 
first example, we explain the SCA output produced; and in the second example, we compare 
the forecasts obtained with those from an ARIMA (0,1,1) model. 

Example:  Growth rates of Iowa nonfarm income

n n n n n
ˆ ˆZ (1) Z (1 )Z (0) Z (1 )Z Z= α + −α = α + −α =

n nẐ ( ) S=l
.  In addi

with standard errors of the forecasts.
ω = θ

 
 

For our first example, we consider the growth rates of Iowa nonfarm income.  The data, 
Series 2 of Abraham and Ledolter (1983), are quarterly growth rates from the second quarter 
of 1948 through the fourth quarter of 1979.  The data, listed in Table 9.1 and shown in Figure 
9.1, are stored in the SCA workspace under the label GROWTH. 
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Table 9.1   Quarterly growth rates of Iowa nonfarm income,  
 1948/II - 1979/IV from Abraham and Ledolter (1983) 
 (Read data across the line) 

   
    .50   2.65    .97   2.40    .16    .47   1.55   4.12 
   -.59   2.06   2.17   4.10   2.31   1.33   1.57    .00 
   1.03   1.40   2.39   1.23    .36    .36    .24   -.12 
    .96   1.91   2.11   1.15   2.38   1.77   1.96  -1.07 
   3.78   1.35   2.05    .60   1.20    .79    .69   -.10 
   2.04   2.10   2.34   1.64   2.70    .96   1.65    .43 
    .42   1.86    .25    .08   1.16   1.23    .57   1.04 
   1.59   1.25   1.55    .68    .98   1.42   1.62   2.83 
    .99   1.75   1.72   2.30   2.05   2.85   2.83   2.14 
   2.76   2.62   2.95   -.17   1.05   2.35   1.12   2.85 
   1.90   1.51   1.59    .15   2.39   2.05   1.45   1.70 
   2.90   1.72   1.64    .55   3.39   1.52   1.98   1.70 
   2.45   1.90   3.95   3.58   2.56   4.08   2.40   2.47 
   3.74   3.90   2.84   1.00   2.62   2.74   2.96   2.39 
   2.51   1.84   3.42   2.62   3.02   2.76   2.16   2.32 
   2.59   3.24   3.38   1.55   2.93   3.10   2.35 

 
 

Figure 9.1   Quarterly growth rates of Iowa nonfarm income (1948/II - 1979/IV) 
 

 
 

Abraham and Ledolter (1983, page 93) determined that the minimum sum of squared 
errors of one-step-ahead forecasts occurs for α  about 0.11.  We can obtain forecasts for the 
next 5 quarters by entering 

 -->GFORECAST   GROWTH.   METHOD IS SIMPLE.   WEIGHT IS 0.11.   NOFS ARE 5. 
  

There are three required sentences in the above use of the GFORECAST paragraph.  We 
need to specify the variable to forecast (GROWTH), the method to use (SIMPLE to indicate 
simple exponential smoothing), and a value for α (0.11).  The NOFS sentence is used to 
specify that only 5 forecasts from the last observation are desired.  The default number of 
forecasts produced is 24.  The following output is produced 

 SIMPLE EXPONENTIAL SMOOTHING FOR THE SERIES  GROWTH  
 SMOOTHING CONSTANT    .11000 
 
 INITIAL S0 DERIVED FROM    2  OBSERVATIONS 
 
 L STEP AHEAD FORECASTS FOR  GROWTH  FROM TIME ORIGIN  127 
 MSE(ALPHA) =   .92632     
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      TIME    FORECAST  
 
       128      2.6544 
       129      2.6209 
       130      2.5911 
       131      2.5646 
       132      2.5410 

 
The SCA output includes a summary of how the forecasts are obtained.   We see that 

simple exponential smoothing is used, with a smoothing constant of 0.11 and S0 is based on 
the average of the first two observations (see Section 9.1.1 for more information on S0).  Five 
forecasts are computed and displayed.  The forecast for n=128 is computed using equation 
(9.5).  All remaining forecasts are based on equation (9.12).  The value listed as 
“MSE(ALPHA)”, .92632, is the sum of squared errors of the one-step-ahead  forecasts (made 
from t=1,2,...,n-1) divided by the number of observations (here 127). 

 
Example:  Series A of Box and Jenkins 
 

As a second example of the use GFORECAST paragraph for simple exponential 
smoothing, we use Series A of Box and Jenkins (1970).  The data, stored in the SCA 
workspace under the label SERIESA, was modeled previously (see Section 5.1.1 through 
5.1.6) as an ARIMA (0,1,1) model.  We found the estimate of the MA parameter to be 
approximately 0.7.  Hence we should obtain about the same one-step-ahead forecast if we use 
the smoothing constant 1 - 0.7 = 0.3.  We enter the following 

 -->GFORECAST   SERIESA.   METHOD IS SIMPLE.   WEIGHT IS 0.3.    @ 
 -->            ORIGINS ARE 195, 196, 197.   NOFS ARE 5. 

 
The command above is similar to the one used in the previous example.  An additional 

sentence, ORIGINS, is included.  This sentence is used to specify the forecast origin(s) to use.  
The default origin used is from the last observation (here 197).  We have specified that 
forecasts will be produced from the last 3 observations.  As a result, we can compare forecast 
values to observed values, as well as comparing the one-step-ahead forecast from 197 with 
that obtained previously.  We obtain the following output 

 SIMPLE EXPONENTIAL SMOOTHING FOR THE SERIES SERIESA  
 SMOOTHING CONSTANT    .30000 
  
 INITIAL S0 DERIVED FROM    2  OBSERVATIONS 
  
 L STEP AHEAD FORECASTS FOR SERIESA  FROM TIME ORIGIN  195 
 MSE(ALPHA) =   .99910E-01 
  
      TIME    FORECAST  
  
       196     17.6981 
       197     17.6987 
       198     17.6991 
       199     17.6994 
       200     17.6996 
  
 L STEP AHEAD FORECASTS FOR SERIESA  FROM TIME ORIGIN  196 
 MSE(ALPHA) =   .10067     
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      TIME    FORECAST  
 
       197     17.5487 
       198     17.4441 
       199     17.3709 
       200     17.3196 
       201     17.2837 
 
 
 L STEP AHEAD FORECASTS FOR SERIESA  FROM TIME ORIGIN  197 
 MSE(ALPHA) =   .10027     
 
      TIME    FORECAST  
 
       198     17.5041 
       199     17.4729 
       200     17.4510 
       201     17.4357 
       202     17.4250  

 
The output is similar to that of the previous example, except forecast information is 

provided for three separate origins.  The three different MSE values are attributable to the 
three different sample sizes used to compute forecasts.  

We can compare the one-step-ahead forecasts obtained for the three origins (17.6981 
from 195, 17.5487 from 196, and 17.5041 from 197) with the actual values (17.20 for 196 and 
17.40 for 197) and the forecasted value obtained from model fitted previously (17.5045 from 
the 197 forecast origin).  We see that the exponentially smoothed model slightly “under 
forecasts” both of the actual values.  The two forecasts from the same origin are almost 
identical, as they should be. 

9.2 Double Exponential Smoothing 

 Double exponential smoothing assumes that a time series follows a linear trend model 
near the observation  so that 

a . (9.14) 

The estimates for  and  are obtained through discounted least squares (see Abraham and 
Ledolter, 1983 or Montgomery and Johnson, 1976). It can be shown that 
 
 

nZ ,

n j 0 1 n jZ j+ += β +β +

0β 1β

[1] [2]

n

ˆ 2S Sβ = −
 (9.15) 

 
where  are single and double smoothed statistics respectively, as given in 
equations (9.3) and (9.4).  If we substitute the estimates of (9.15) back into the linear trend 
model, we obtain the following forecasts 
 

0 n n

[1] [2]
1 n

ˆ (S S )
1
α

β = −
−α

[1]
n  and [2]

nSS

[1] [2]
n n nẐ ( ) 2 S 1 S       for =1,2,....

1 1
α α   = + − +   −α −α   

l l l l  (9.16) 
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9.2.1   Calculation of 

As in the case of simple exponential smoothing, the GFORECAST paragraph requires 
that we specify a value for the smoothing constant, 

nẐ ( )l  

α , for the calculation of the -th step 
ahead forecast, .  The SCA System calculates the initial values for the smoothed 
statistics  and  from the least squares estim

l

nẐ ( )l
[2]
nS[1]

nS ates of 0β  and 1β  in the linea odel.  
 provides an appropriate set of ecify the 

number of observations to be used in this regression (see the START sentence in the syntax at 
the end of this chapter).  Details regarding the method of calculation may be found in 
Abraham and Ledolter (1983). 

9.2.2   Relation to ARIMA models 

The forecasts from double exponential smoothing are equivalent to those from the 
restricted ARIMA(0,2,2) model  

 (9.16)  

where , with  the smoothing constant. 
 

9.2.3   Examples of double exponential smoothing 

We will use two examples to illustrate forecasting using double exponential smoothing.  
Both examples are discussed in Abraham and Ledolter (1983).  The first example is also used 
in Section 9.3. 

Example:  Weekly thermostat sales 

r trend m
The SCA System values.  However, we can also sp

 2 2
t t(1 B) Z (1 B) a− = −θ

1θ = −α  α

 
 

The first example uses 52 observations consisting of weekly thermostat sales.  The data, 
first used by Brown (1962, page 431) and also by Abraham and Ledolter (1983, page 110), 
are listed in Table 9.2 and displayed in Figure 9.2.  The data are stored in the SCA workspace 
under the label THERM.  

Table 9.2   Weekly thermostat sales from Brown (1962) 
    (Read data across the line) 
   

   206   245   185   169   162   177   207   216   193   230 
   212   192   162   189   244   209   207   211   210   173 
   194   234   156   206   188   162   172   210   205   244 
   218   182   206   211   273   248   262   258   233   255 
   303   282   291   280   255   312   296   307   281   308 
   280   345 
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Figure 9.2   Weekly thermostat sales 

 
 

The plot in Figure 9.2 shows that there is an upward trend in the data.  Hence the use of 
simple exponential smoothing (that assumes a mean level that is constant locally) is not 
appropriate.  Abraham and Ledolter (1983, page 115) determine that the value for the 
smoothing constant should be approximately 0.14.  We can forecast using this weight by 
entering 

 -->GFORECAST   THERM.   METHOD IS DOUBLE.   WEIGHT IS 0.14.   NOFS ARE 10. 
 

The command above is similar to that used for simple exponential smoothing, except 
that DOUBLE is specified as the method.  We also limit the number of forecasts to 10 from 
the last observation.  We obtain  

 
 DOUBLE EXPONENTIAL SMOOTHING FOR THE SERIES  THERM   
 SMOOTHING CONSTANT    .14000 
 
 INITIAL S0 AND T0 DERIVED FROM THE FIRST    2  OBSERVATIONS 
 
 L STEP AHEAD FORECASTS FOR  THERM   FROM TIME ORIGIN   52 
 MSE(ALPHA) =   3592.3     
 
      TIME    FORECAST  
 
        53    320.0494 
        54    324.3915 
        55    328.7336 
        56    333.0757 
        57    337.4178 
        58    341.7599 
        59    346.1020 
        60    350.4441 
        61    354.7862 
        62    359.1283  

 
The output is similar to that provided for simple exponential smoothing, except that two initial 
values, S0 and T0 (for  and   respectively) are determined.  Please see Section 9.2.2 
for details. 
 

[1]
0S [2]

0S ,
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Example:  University enrollment 
 

The second example forecasts the total annual student enrollment at the University of 
Iowa for the academic years beginning in with the fall of 1951 through the spring of 1980.  
The data, listed in Table 9.3 and displayed in Figure 9.3, are used by Abraham and Ledolter 
(1983, page 116) and are stored in the SCA workspace under the label ENROLL.  

Table 9.3   Total annual student enrollment at the University of Iowa, 
   1951/52 through 1979/80 
   (Read data across the line) 
 

   14348   14307   15197   16715   18476   19404   20173   20645 
   20937   21501   22788   23579   25319   28250   32191   34584 
   36366   37865   39173   40119   39626   39107   39796   41567 
   43646   43534   44157   44551   45572 

 
 

Figure 9.3   University of Iowa student enrollment (1951 - 1988) 
 

 
 

Again, a trend is evident in the data.  Abraham and Ledolter (1983, page 117) find that 
the optimal smoothing constant is 0.87.  To produce forecasts for the next three academic 
years, we can enter 

 -->GFORECAST   ENROLL.   METHOD IS DOUBLE.   WEIGHT IS 0.87.   NOFS ARE 3. 
  

 DOUBLE EXPONENTIAL SMOOTHING FOR THE SERIES  ENROLL  
 SMOOTHING CONSTANT    .87000 
 
 INITIAL S0 AND T0 DERIVED FROM THE FIRST    2  OBSERVATIONS 
 
 L STEP AHEAD FORECASTS FOR  ENROLL  FROM TIME ORIGIN   29 
 MSE(ALPHA) =   .74956E+06 
 
      TIME    FORECAST  
 
        30  46438.1489 
        31  47314.2045 
        32  48190.2600  
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9.3 Holt’s Two Parameter Exponential Smoothing 

An alternative method for forecasting in the presence of a linear trend was proposed by 
Holt (1957).  In Holt's representation, we assume we have a linear trend model with time 
varying mean and slope.  Thus forecasts from time t=n are based on the model of the form 

a , (9.17) 

where  and  are the level and slope at time t=n.  The forecasts of future observations at 
t=n are given by 
 

n , (9.18) 

where 
) , and 

1

The updating equations above (for  and 

n j n n n jZ j+ += µ +β +

nµ nβ

n n
ˆˆ ˆZ ( ) = µ +βl l

n 1 n 1 n 1 n 1
ˆˆ ˆZ (1 )( − −µ = α + −α µ +β

n 2 n n 1 2 n
ˆ ˆˆ ˆ( ) (1 )− −β = α µ −µ + −α β  

µ β ) contain two smoothing constants.  The value 1α  
is the smoothing constant for the level (µ ), and 2α  is the smoothing constant for the slope 
( ). 

9.3.1   Calculation of forecasts and relation to double exponential smoothing 

As before, the GFORECAST paragraph requires that we provide the smoothing 
constants used in the calculation of the 

β

th−l
ates of 

 step ahead forecast.  Here we must specify two 
smoothing constants,  and .  Estim1α 2α nµ  and nβ  are calculated by the SCA System 
internally.  The Holt method of exponent oothing is more general than double 
exponential smoothing since we use two smoothing constants.  The two methods are 
equivalent if 

ial sm

2
1 21 (1 )     and    

2
α

α = − −α α =
−α

 (9.19) 

9.3.2   Relation to ARIMA models  

Forecasts derived using Holt’s two parameter exponential smoothing are equivalent to 
those from the ARIMA model 

t , (9.20) 

where 2  and 
 , 
with  and  the smoothing constants of Holt’s method. 

2 2
t 1 2(1 B) Z (1 B B )a− = −θ −θ

1 1 12(1 ) (1 )θ = −α +α −α

2 1(1 )θ = − −α

1α 2α
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9.3.3   Example:  Weekly thermostat sales 

To illustrate the use of the GFORECAST paragraph to implement Holt’s method, we 
will forecast the weekly thermostat sales of Brown (1962).  Forecasts for this series, THERM, 
were computed previously using double exponential smoothing.  Here we will use a value of 
0.20 as the smoothing constant for the level, and 0.10 as the smoothing constant for the slope.  
As in Section 9.2.3, we will compute 10 forecasts from the last observation.  To obtain the 
forecasts, we may enter  

-->GFORECAST   THERM.   METHOD IS HOLT.   WEIGHTS ARE 0.2, 0.1.   NOFS ARE 10. 
 

The command is almost the same as before with HOLT substituting for DOUBLE in the 
METHOD sentence.  Since two smoothing constants are required for Holt's method, we 
specify two values in the WEIGHTS sentence.  We obtain the following  

 HOLT'S EXPONENTIAL SMOOTHING FOR THE SERIES  THERM   
 SMOOTHING CONSTANTS    .20000    .10000 
 
 L STEP AHEAD FORECASTS FOR  THERM   FROM TIME ORIGIN   52 
 MSE(ALPHA) =   .12833E+08 
 
     TIME    FORECAST      (Forecasts using double exponential smoothing) 
 
       53    320.6375         320.0494 
       54    325.3221         324.3915 
       55    330.0066         328.7336 
       56    334.6912         333.0757 
       57    339.3757         337.4178 
       58    344.0603         341.7599 
       59    348.7448         346.1020 
       60    353.4294         350.4441 
       61    358.1140         354.7862 
       62    362.7985         359.1283  

 
The forecasts using double exponential smoothing have been super-imposed on the SCA 

output.  We note the forecasts are rather similar.  The smoothing constant used for double 
exponential smoothing was 0.14.  From equation (9.19), we know that the two methods are 
equivalent if 

 ,  and  
 . 
 
Since the smoothing constants used for Holt’s method are .2 and .1, we should expect 
reasonable agreement in the forecasts. 

9.4 Winters’ Additive Seasonal Exponential Smoothing Method  

Winters (1960) proposed two exponential smoothing methods to forecast time series that 
possess seasonal patterns: an additive and an multiplicative method.  These methods differ in 
their assumption on how the seasonal component affects the time series.  We present the 
multiplicative method in Section 9.5 and the additive method is discussed below. 

2
1 1 (1 .14) .2604α = − − =

2 .14 /(2 .14) .0753α = − =
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 Winters’ additive method assumes that the data follow the model  
 

+ , (9.21) 

where  is a trend component, 

n j n j j n jZ T S a+ + += + +

n j n nT j+ = µ +β n jS +  is an additive seasonal factor, and  and 
l and slope of the series at tim n.  If the period (season) of the series is s 

(e.g., 12 for monthly data, 4 for quarterly data, etc.), then the variation due to seasonal activity 
is accounted for through s seasonal factors such that: 
 

(1)     and (9.22) 

(2)    

Winters’ additive method is usually appropriate for a time series in which the amplitude of the 
seasonal effect does not depend on the mean level of the series (Montgomery and Johnson, 
1976).  Winters' additive method is an extension of Holt’s two parameter method (see Section 
9.3) in which a seasonal term is included.  Forecasts for Winters’ additive methods involve 
weighted updates of the level, the slope and the seasonal factors.  Similar to Holt's method, 
three different smoothing constants may be employed for the updates of ,  and the 
seasonal factors. 
 
 The forecasts of future observations are  
 

   . 
   . 
   . 

where −

1

nµ

nβ  are the leve e t=

i i s i 2sS S S       i=1,2,....s,+ += = = ⋅⋅⋅

1 2 sS S S 0+ + ⋅⋅⋅+ =  

µ β

n n n n s
ˆ ˆˆ ˆZ ( ) S 1, 2,...,s+ −= µ +β + =ll l l  

n n n n 2s
ˆ ˆˆ ˆZ ( ) S s 1,s 2,..., 2s+ −= µ +β + = + +ll l l  

n 1 n n 2 1 n 1 n 1
ˆ ˆˆ ˆ(Z S ) (1 )( )− −µ = α − + −α µ +β  

n 2 n n 1 2 n
ˆ ˆˆ ˆ( ) (1 )− −β = α µ −µ + −α β  

n 3 n n 3 n
ˆ ˆˆS (Z ) (1 )S s−= α −µ + −α  

9.4.1   Calculation of ˆ

For Winter’s additive method, we are required to specify three smoothing constants (

nZ ( )l  

1α , 
 and ) in the calculation of the 2α 3α th−l  step ahead forecast, .  These correspond to 
oothing constants for the level, trend and seasonal comp ectively.  Estima

other parameters are calculated by the SCA System internally. Details regarding the method 
of calculation may be found in Abraham and Ledolter (1983).   

nẐ ( )l
onents, respsm tes of 
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9.4.2   Relation to ARIMA models 

Forecasts derived using Winter’s additive exponential smoothing method are equivalent 
to those from the ARIMA model  

s 1
t

where 2 ) , 

 

 3 , and 

 
 
with , ,  the smoothing constants. 

9.4.3   Examples of Winters’ additive smoothing method 

The use of the GFORECAST to compute forecasts using Winters’ additive method is 
illustrated with two examples.  The first example is also used in Sections 9.6 and 9.7.  The 
second example is used to compare forecasts using Winters’ additive method with that of a 
seasonal ARIMA model. 

Example:  Monthly car sales

s 2 s
t 1 2 s s 1(1 B)(1 B )Z (1 B B B B )a+

+− − = −θ −θ − ⋅⋅⋅− θ − θ  

1 11 (1θ = −α +α

j 1 2 , j 2,3,...,s 1θ = −α α = −  

s 3 1 2(1 ) ( )θ = −α −α α −α

s 1 1 3(1 )(1 )+θ = − −α −α  

1α 2α 3α

 
 

In the first example, we consider the monthly car sales in Quebec in the period January 
1960 through December 1968.  The data, listed in Table 9.4 and displayed in Figure 9.4, are 
Series 4 of Abraham and Ledolter  (1983) and are stored in the SCA workspace under the 
label CARS. 

 
Table 9.4    Monthly car sales In Quebec, January 1960 to December 1968 

   (Read data across the line) 
   

  6550  8728 12026 14395 14587 13791  9498  8251  7049  9545  9364  8456 
  7237  9374 11837 13784 15926 13821 11143  7975  7610 10015 12759  8816 
 10677 10947 15200 17010 20900 16205 12143  8997  5568 11474 12256 10583 
 10862 10965 14405 20379 20128 17816 12268  8642  7962 13932 15936 12628 
 12267 12470 18944 21259 22015 18581 15175 10306 10792 14752 13754 11738 
 12181 12965 19990 23125 23541 21247 15189 14767 10895 17130 17697 16611 
 12674 12760 20249 22135 20677 19933 15388 15113 13401 16135 17562 14720 
 12225 11608 20985 19692 24081 22114 14220 13434 13598 17187 16119 13713 
 13210 14251 20139 21725 26099 21084 18024 16722 14385 21342 17180 14577 
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Figure 9.4   Monthly car sales in Quebec (January 1960 - December 1968) 
 

 
 

Abraham and Ledolter (1983, page 170) determined the optimum values of the 
smoothing constants to be 0.17, 0.01, and 0.01.  CARS consists of 108 observations, but we 
will forecast from n=96.  In this way we can see how well the forecasts match the last year of 
data.  We will forecast from this origin in all subsequent uses of this data set.  To compute the 
forecasts, we can enter 

 -->GFORECAST   CARS.   METHOD IS AWINTERS.   SEASONALITY IS 12.    @ 
 -->     WEIGHTS ARE 0.17, 0.01, 0.01.   ORIGIN IS 96.  

 
The number of seasonal factors is dependent on the seasonal period of the data.  Hence we 
include the SEASONALITY sentence.  The three smoothing constants are specified in the 
WEIGHTS sentence.  We obtain the following 
 

 WINTERS ADDITIVE SEASONAL EXPONENTIAL SMOOTHING FOR THE SERIES   CARS   
 SMOOTHING CONSTANTS    .17000    .01000    .01000 
 
 L STEP AHEAD FORECASTS FOR   CARS   FROM TIME ORIGIN   96 
 MSE(AL1,AL2,AL3) =   .26856E+07 
 
     TIME    FORECAST    (Observed) 
 
       97  13703.3381      13210 
       98  15763.9714      14251 
       99  18833.6807      20139 
      100  20986.0445      21725 
      101  22149.2153      26099 
      102  20636.1512      21084 
      103  17066.8288      18024 
      104  14879.2964      16722 
      105  14076.6884      14385 
      106  16657.9540      21342 
      107  17898.2259      17180 
      108  15489.9037      14577 
      109  14448.7253 
      110  16509.3586 
      111  19579.0679 
      112  21731.4317 
      113  22894.6025 
      114  21381.5384 
      115  17812.2160 
      116  15624.6836 
      117  14822.0755 
      118  17403.3412 
      119  18643.6131 
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      120  16235.2908  

 
The observed values have been super-imposed.  The post-sample RMSE for the 

forecasts is about 2005.8. 

 
Example:  Airline data 
 

As a second illustration of forecasting using Winters’ additive method, we consider 
Series G of Box and Jenkins (1970), airline passenger data.  This series was modeled in 
Section 5.3.  The natural logarithm of the data, LNAIRPAS, was used for modeling and 
forecasting.  We found that an adequate model for the data was, approximately,  

. (9.23) 

If we multiply the MA operators of (9.23), we obtain the following 
  

. (9.24)  

Based on the relation given in Section 9.4.2, the forecasts obtained from the model given in 
(9.24) should be similar to those obtained from a Winters’ additive model with smoothing 
constants 0.6, 0.01, and 0.4 (an exact correspondence is not possible here).  We can obtain the 
latter forecasts by entering  
 

 -->GFORECAST   LNAIRPAS.   METHOD IS AWINTERS.   ORIGIN IS 132.      @ 
 -->    WEIGHTS ARE 0.6, 0.01, 0.4.   SEASONALITY IS 12.   NOFS IS 12. 

 
A forecast origin of 132 is used so that the Winters’ forecasts can be compared to those 

based on both the FORECAST and OFORECAST paragraphs.  These forecasts are 
summarized in Table 7.2 of Chapter 7.  We see that the forecasts are in reasonable accord. 

 WINTERS ADDITIVE SEASONAL EXPONENTIAL SMOOTHING FOR THE SERIES  LNAIRPAS  
 SMOOTHING CONSTANTS    .60000    .01000    .40000 
 
 L STEP AHEAD FORECASTS FOR  LNAIRPAS  FROM TIME ORIGIN  132 
 MSE(AL1,AL2,AL3) =   .17155E-02 
 
     TIME    FORECAST  
 
      133      6.0472 
      134      6.0275 
      135      6.1971 
      136      6.1759 
      137      6.1844 
      138      6.3008 
      139      6.3950 
      140      6.3806 
      141      6.2295 
      142      6.1149 
      143      5.9927 
      144      6.1197 

 

12 12
t t(1 B)(1 B )Z (1 .4B)(1 .6B )a− − = − −

12 12 13
t t(1 B)(1 B )Z (1 .4B .6B .24B )a− − = − − +
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9.5 Winters’ Multiplicative Seasonal Exponential Smoothing Methods 

We now consider the multiplicative analogue of Winters’ additive exponential 
smoothing method.  Winters' multiplicative method assumes that a time series follows the 
model 

+ , (9.25) 

where )  is a trend component, 

n j n n n j n jZ ( j)S a+ += µ +β +

n n( jµ +β n jS +  is a multiplicative seasonal factor, and  and 
 are l and slope of the se e t=n.  The multiplicative model is u ually 

appropriate for a time series in which the amplitude of the seasonal pattern is proportional to 
the level of the series (Montgomery and Johnson, 1976).  As in the additive model, a number 
of seasonal factors are used, depending on the seasonal period.  If the seasonal period for the 
model is s, there are s seasonal factors such that: 
 
 (1) 
and  (9.26) 

 (2) s
 
Forecasts using the multiplicative method are similar to that of the additive method except 
that a ratio replaces an additive term in seasonal weighting scheme.  The forecasts of future 
observations are 
 

.  

. 

. 

where 

nµ

snβ  the leve ries at tim

 i i s i 2sS S S ... i 1, 2,...,s+ += = = =  

 1 2 sS S S+ + ⋅⋅⋅+ =  

n n n n s
ˆ ˆˆ ˆZ ( ) ( )S 1, 2,...,s+ −= µ +β =ll l l  

n n n n 2s
ˆ ˆˆZ ( ) ( )S s 1,s 2,..., 2s+ −= µ +β = + +ll l l  

n
n 1 1 n 1 n

n 2

Z ˆˆ ˆ(1 )( )
Ŝ − −

−

 
µ = α + −α µ +β  

 
 1

 
 1n 2 n n 1 2 n

ˆ ˆˆ ˆ( ) (1 )− −β = α µ −µ + −α β  
 

 n
n 3 3 n

Zˆ ˆS (1
ˆ −

 
= α + −α µ 

 s)S

 

9.5.1   Calculation of 

As in the case of the additive model, we are required to specify three smoothing 
constants ( ,  and ) in the calculation of the 

nẐ ( )l  

1α 2α 3α th−l  step ahead forecast, .  nẐ ( )l
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Estimates of other parameters are calculated by the SCA System internally.  Details regarding 
the method of calculation may be found in Abraham and Ledolter (1983). 

9.5.2   Relation to ARIMA models 

There is no exact equivalent ARIMA model corresponding to Winters’ multiplicative 
method (Abraham and Ledolter, 1986).  Although there is no equivalent ARIMA model, the 
ARIMA model 

t

leads to very similar forecast functions. 

9.5.3   Example:  Beer shipments 

To illustrate the use of the GFORECAST paragraph to compute forecasts based on 
Winters’ multiplicative method, we consider shipment data from a beer producer.  The data, 
Series 8 in Abraham and Ledolter (1983), are the total shipments in consecutive four-week 
periods.  As a result, the seasonality for the series is 13.  The data, listed in Table 9.5 and 
displayed in Figure 9.5, are stored in the SCA workspace under the label BEERSHIP. 

 
Table 9.5   Beer shipment data, four-week totals 

(Read data across the line) 
   

 18705  20232  20467  22123  25036  26839  29640  30935  28278  24235  22370  21224  21061 
 19598  21463  23287  24065  27447  30413  32307  32974  29973  23986  26953  24250  23518 
 20816  23743  25152  28804  31158  31540  32849  33748  31910  27609  25170  24040  25368 
 21260  24109  26320  27701  34502  33297  31252  35173  36207  31511  28560  26828  26660 

 
 

Figure 9.5   Beer shipments (four-week totals) 
 

s 2 2 2s
t 1 2 2s(1 B ) Z (1 B B B )a− = −θ −θ − ⋅⋅⋅− θ  

 
 

Due to the limited number of observations, Abraham and Ledolter (1983, page 173) 
could not clearly decide whether an additive or multiplicative model would be more 
appropriate.  For illustration, all smoothing constants were chosen to be 0.05.  We will do the 
same here.  To compute the forecasts, we may enter 
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 -->GFORECAST   BEERSHIP.   METHOD IS MWINTERS.   SEASONALITY IS 13.   @ 
 -->    WEIGHTS ARE 0.05, 0.05, 0.05.   NOFS IS 26.   ORIGIN IS 39. 

 
 WINTERS MULTIPLICATIVE SEASONAL EXPONENTIAL SMOOTHING FOR THE SERIES BEERSHIP 
 SMOOTHING CONSTANTS    .05000    .05000    .05000 
 
 L STEP AHEAD FORECASTS FOR BEERSHIP FROM THE ORIGIN   39 
 MSE(AL1,AL2,AL3) =  .10791E+07 
 
     TIME    FORECAST      (Observed) 
 
       40  23290.6007         21260 
       41  25359.6647         24109 
       42  26539.0303         26320 
       43  28105.6125         27701 
       44  31789.6458         34502 
       45  34469.6615         33297 
       46  37201.4277         31252 
       47  38332.2031         35173 
       48  34949.4845         36207 
       49  28986.4655         31511 
       50  29332.2687         28560 
       51  27076.9329         26828 
       52  26610.0559         26660 
       53  24905.7578 
       54  27108.9757 
       55  28360.0315 
       56  30023.9808 
       57  33948.1374 
       58  36797.9632 
       59  39701.2616 
       60  40894.7760 
       61  37273.9634 
       62  30904.5328 
       63  31263.3887 
       64  28850.5882 
       65  28344.3899     

 
The observed values of BEERSHIP have been superimposed on the SCA output. 

9.6 General Exponential Smoothing Using Seasonal Indicators  

In addition to Winters’ methods, the SCA System provides two other general 
exponential smoothing methods for forecasting models of the form 

ta . (9.27) 

In the general exponential smoothing method employing seasonal indicators, the seasonal 
component,  is described by indicators for each of the s seasonal periods. 
 

stI

where 
 

t tZ t S= µ +β + +

tS ,

t 1 1t 2 2t sS I I= δ + δ + ⋅⋅⋅+ δ  

jt

1, if t is in the j-th seasonal period
I

0, otherwise


= 

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It is assumed that , as the seasonal components are defined as distances 
from the overall linear trend. 
 

For a seasonal time series, we may also be able to represent St by fewer parameters 
using trigonometric (harmonic) functions.  Such a method is given in Section 9.7.  

9.6.1   Forecasts from the model 

Forecasts are computed directly from equation (9.27).  The parameters of the model are 
computed using discounted least squares (see Abraham and Ledolter 1983, Montgomery and 
Johnson 1976) in which past observations are discounted exponentially by the discount 
coefficient .  We are required to specify a smoothing constant, , to use in the 
calculations as well as the seasonal period s. 

9.6.2   Relation to ARIMA models  

The forecasts from general exponential smoothing with seasonal indicators are 
equivalent to those from the ARIMA model 

s ,  

where . 

9.6.3   Example:  Monthly car sales 

To illustrate the use of the GFORECAST paragraph to forecast a series using seasonal 
indicators, we consider the monthly car sales in Quebec from January 1960 through 
December 1968.  The data were used previously in Section 9.4.3 when the Winters’ additive 
method was employed. 

Abraham and Ledolter (1983) found that the effect of an observation died out slowly for 
this data.  As a result, we will use 0.05 as our smoothing constant below.  We can forecast the 
series by entering  

-->GFORECAST   CARS.   METHOD IS SINDICATOR.   SEASONALITY IS 12.    @ 
-->     WEIGHT IS 0.05.   ORIGIN IS 96. 

 
 As in Section 9.4.3, the forecast origin is n=96.  We can then compare the RMSE for 

the forecasts here with those obtained previously.  We obtain  

 GENERAL EXPONENTIAL SMOOTHING FOR THE SERIES   CARS   
 LINEAR TREND MODEL WITH SEASONAL INDICATORS 
 SMOOTHING CONSTANT    .05000 
 

1 2 s... 0δ + δ + + δ =

1ω = −α α

s s
t t(1 B)(1 B )Z (1 B)(1 B )a− − = −θ −θ

1ω = −α



9.22 FORECASTING USING GENERAL EXPONENTIAL SMOOTHING 

 SMOOTHING VECTOR FINV*F(0) 
   .4867      .1915E-02 -.4386     -.4405     -.4424     -.4443     
  -.4462     -.4481     -.4501     -.4520     -.4539     -.4558     
  -.4577     
 
 L STEP AHEAD FORECASTS FOR   CARS   FROM TIME ORIGIN   96 
 MSE(ALPHA) =   .22645E+07 
 
     TIME    FORECAST       (Observed) 
 
       97  13634.4143         13210 
       98  13555.6231         14251 
       99  21435.4588         20139 
      100  22224.7890         21725 
      101  24090.3102         26099 
      102  22219.6786         21084 
      103  16010.5625         18024 
      104  14909.5021         16722 
      105  13955.6527         14385 
      106  17828.4392         21342 
      107  17819.7444         17180 
      108  15493.6332         14577 
      109  14338.2270 
      110  14259.4358 
      111  22139.2715 
      112  22928.6016 
      113  24794.1229 
      114  22923.4913 
      115  16714.3752 
      116  15613.3147 
      117  14659.4654 
      118  18532.2519 
      119  18523.5571 
      120  16197.4459  

 
As before, the observed values are superimposed.  The post-sample RMSE for the 

forecasts is about 1555.6 (compared to 2005.8 using the Winters’ additive method).  Although 
the reduction in RMSE can be attributed to the greater number of parameters in the model, we 
see the value of using seasonal indicators for this series.  

9.7   General Exponential Smoothing Using Harmonic Functions 

General exponential smoothing using harmonic functions provides forecasts for the 
model of equation (9.27); that is, 

ta

 where the seasonal component,  is described as a linear combination of trigonometric 
functions.  If m harmonics are specified,  is written as 
  

t tZ t S= µ +β + +  

tS ,

tS

t 1 1 2 2 m m
2 4 2S A sin A sin A sin
s s s
π π π    = + φ + + φ + ⋅⋅⋅+ +    

    
 m φ 


  
where  and  are the amplitude and phase shift of the sine function with frequency iA iφ 2 i / sπ .  
For discrete time series, the largest number of harmonics that can be considered is m = s/2.  In 
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most applications only the first few harmonics are used, thus representing a more 
parsimonious representation of  than the previous one using indicator functions. 

9.7.1   Forecasts from the model 

Forecasts are com m equation (9.27).  The parameters of the model are 
computed using discounted least squares (see Abraham and Ledolter 1983, or Montgomery 
and Johnson 1976) in which past observations are discounted exponentially by the discount 
coefficient .  We are required to specify a smoothing constant, α; seasonal period, s; 
and number of harmonics, m, ed in the calculation of forecasts. 

9.7.2   Relation to ARIMA m dels 

The forecasts derived using general exponential smoothing with harmonic functions are 
equivalent to certain ARIMA m dels.  The exact form of the ARIMA model is dependent 
upon the choice of s and m. xample, for s = 12 and m = 1, the corresponding ARIMA 
model is given by 

tS

puted directly fro

 to be us

o

o
  For e

tZ  
2 2Bθ

a

  

 LINEAR TREND MODEL WITH  3 ADDED HARMONICS 

1ω = −α

2 2(1 B) (1 3B B )− − +

2
t(1 B) (1 3B )a with 1= −θ −θ + θ = −α . 

9.7.3   Example:  Monthly c r sales 

To illustrate the use of the GFORECAST paragraph to forecast a series using harmonic 
functions, we again consider the car sales data (used previously in Sections 9.4.3 and 9.6.3).  
As in Section 9.6.3, we will use 0.05 as the smoothing constant and forecast from n=96.  To 
forecast the series we may enter  

 -->GFORECAST   CARS.   METHOD IS HARMONIC.   SEASONALITY IS 12, 3.     @ 
 -->      WEIGHT IS 0.05. ORIGIN IS 96. 

 
The command above is almost identical to that used in Section 9.6.3, but with HARMONIC 
replacing SINDICATOR.  The only substantive change is the inclusion of a second value in 
the SEASONALITY sentence.  The additional value, 3, indicates the number of harmonic 
functions to use.  It is a required value.  The choice of m=3 here will result in the use of 6 
parameters in the seasonal component (compared to 12 in Section 9.6.3).  It may be 
instructive to observe the effect on RMSE.  It should be higher than before; but it will be 
interesting to observe the amount of increase, if any.  We obtain the following  
 

 GENERAL EXPONENTIAL SMOOTHING FOR THE SERIES   CARS   

 SMOOTHING CONSTANT    .05000 
 
 SMOOTHING VECTOR FINF*F(0) 
   .8591E-01  .2173E-02  .1153E-01  .8433E-01  .1149E-01  .8395E-01 
   .1780E-01  .8239E-01 
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 L STEP AHEAD FORECASTS FOR   CARS   FROM TIME ORIGIN   96 
 MSE(ALPHA) =   .23928E+07 
 
     TIME    FORECAST       (Observed) 
 
       97  12892.5708         13210 
       98  15040.0841         14251 
       99  19741.4483         20139 
      100  23364.2856         21725 
      101  23963.6701         26099 
      102  21460.4403         21084 
      103  17116.8753         18024 
      104  13955.3845         16722 
      105  14585.6317         14385 
      106  17425.7143         21342 
      107  18074.9696         17180 
      108  15481.2510         14577 
      109  13596.5599 
      110  15744.0745 
      111  20445.4389 
      112  24068.2754 
      113  24667.6588 
      114  22164.4281 
      115  17820.8628 
      116  14659.3730 
      117  15289.6215 
      118  18129.7042 
      119  18778.9582 
      120  16185.2390  

 
As in the preceding examples, the observed values are superimposed on the SCA output.  

The post-sample RMSE for the forecasts is about 1676.9.   The value falls between the RMSE 
for the forecasts using seasonal indicators (1555.6) and that using the Winters’ additive 
method (2005.8), as was expected. 

9.8 Forecasting Using Exponential Smoothing Methods 
 in Comparison to ARIMA Modeling 

Since forecasting using exponential smoothing methods is equivalent to forecasting 
using certain corresponding ARIMA models (see Abraham and Ledolter 1983, 1986), there is 
a question of when to employ the GFORECAST paragraph.  There are several reasons to 
employ ARIMA analysis rather than exponential smoothing methods: 

(1) Selection of a particular exponential smoothing method is equivalent to the 
 identification of an ARIMA model for a time series.  However, there are only a limited 
 number of exponential smoothing methods and the selection of such methods is 
 usually based on a visual inspection of the time series.  ARIMA modeling provides 
 more reliable tools in the identification of appropriate models. 
 
(2) Smoothing constants in exponential smoothing methods are usually chosen arbitrarily, 
 while the parameters in ARIMA models can be estimated with known statistical 
 properties. 
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(3) Exponential smoothing forecasts lead to minimum mean square error forecasts  
 provided an ARIMA process corresponds to the smoothing method being used. 
 
(4) It is difficult to compute standard errors of multi-step-ahead forecasts using 
 exponential smoothing methods.  
 

However, there may be several reasons why exponential smoothing methods may be 
considered: 

(1) The time series to be forecast could be very short, hence parameter estimates from 
 ARIMA models may not be reliable.  
 
(2) The time series may have many outliers or interventions that will require considerable 
 effort to account for their presence in ARIMA modeling.  (Such modeling efforts are 
 reduced greatly by using the OESTIM and OFORECAST paragraphs, see Chapter 7.)  
 Smoothing methods may be more robust to outliers since the smoothing constant(s) 
 are pre-specified, rather than estimated based on time series data.  
 
(3) A forecaster may be proficient enough to adequately choose a smoothing method by 
 visual inspection of a time series, or there may be historical evidence to support use of 
 a particular smoothing method.  
 

The GFORECAST paragraph is provided in the SCA System in order to provide a more 
completeness of forecasting methods. 
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SUMMARY OF THE SCA PARAGRAPH IN CHAPTER 9 

 
This section provides a summary of the SCA paragraph employed in this chapter.  The 

syntax is presented in both a brief and full form.  The brief display of the syntax contains the 
most frequently used sentences of the paragraph, while the full display presents all possible 
modifying sentences of the paragraph.  In addition, special remarks related to the paragraph 
may also be presented with the description.   

Each SCA paragraph begins with a paragraph name and is followed by modifying 
sentences.  Sentences that may be used as modifiers for a paragraph are shown below and the 
types of arguments used in each sentence are also specified.  Sentences not designated 
required may be omitted as default conditions (or values) exist.  The most frequently used 
required sentence is given as the first sentence of the paragraph.  The portion of this sentence 
that may be omitted is underlined.  This portion may be omitted only if this sentence appears 
as the first sentence in a paragraph.  Otherwise, all portions of the sentence must be used.  The 
last character of each line except the last line must be the continuation character, ‘@’. 

 In this section, we provide a summary of the GFORECAST paragraph. 
 
 Legend (see Chapter 2 for further explanation) 
 
  v : variable name 
  i : integer 
  r : real value 
  w : keyword 
 
 
 
GFORECAST Paragraph 
 

The GFORECAST paragraph is used to compute forecasts of a time series using one of 
the general exponential smoothing methods discussed in Sections 9.1 through 9.7.   Although 
there is only one paragraph, the syntax presented below is divided for the forecast of non-
seasonal and seasonal time series, and includes all of the methods discussed above. 
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Syntax for the GFORECAST Paragraph 
 
(1) For non-seasonal time series (using simple or double exponential smooth, or Holt’s 
 method) 
 
Brief syntax 

 
Full syntax 

 
(2) 
 
 
Brie

 
 

GFORECAST  VARIABLES  ARE  v1, v2, ---.  @  
   METHOD  IS  w.   @ 

  WEIGHTS  ARE  r1, r2.  @ 
   NOFS  ARE  i1, i2, ---. 
 
Required sentences:  VARIABLES, METHOD  and  WEIGHTS  
GFORECAST  VARIABLES  ARE  v1, v2, ---.  @  
 METHOD  IS  w.   @ 
 WEIGHTS  ARE  r1, r2.  @ 
 NOFS  ARE  i1, i2, ---.   @ 
 ORIGINS  ARE  i1, i2, ---.  @ 
 START  IS  i.    @ 
 OUTPUT IS PRINT(w1, w2, ---), @ 

    NOPRINT(w1, w2, ---). 
 
Required sentences:  VARIABLES, METHOD  and  WEIGHTS  
For seasonal time series (using Winters’ methods, seasonal indicators or harmonic 
functions) 

f syntax 
GFORECAST VARIABLES  ARE  v1, v2, ---.  @  
  METHOD  IS  w.   @ 
  WEIGHTS  ARE  r1, r2, r3.  @ 
  SEASONALITY  IS  i1, i2.  @ 
  NOFS  ARE  i1, i2, ---. 
 
Required sentences:  VARIABLES, METHOD, WEIGHTS  and 
          SEASONALITY 
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Full syntax 

 
 
Sentences Used in the GFORECAST Paragraph 
 
VARIABLES sentence 

The VARIABLES sentence is used to specify the time series to be forecasted. One or 
more than one time series can be specified.  All series specified will be forecasted using 
the same method.  This is a required sentence.  

METHOD sentence 
The METHOD sentence is used to specify the exponential smoothing method to be 
employed in forecasting. The valid keywords are: 

SIMPLE  : simple (single) exponential smoothing method 
DOUBLE  : double exponential smoothing method 
HOLT  : Holt's two parameter method 
AWINTERS : Winters' additive method 
MWINTERS : Winters' multiplicative method 
SINDICATOR : smoothing using seasonal indicators 
HARMONIC : smoothing using harmonic functions 
 
Only one method may be specified. This is a required sentence. 

 
WEIGHT sentence 

The WEIGHT sentence is used to specify values for the smoothing constant(s) for each 
method.  The number of smoothing constants required is 1 for the methods SIMPLE, 
DOUBLE, SINDICATOR and HARMONIC, 2 for the HOLT method, and 3 for the 
AWINTERS and MWINTERS methods.  This is a required sentence. 

SEASONALITY sentence  
The SEASONALITY sentence is used to specify the seasonal period, i1, for the time 
series to be forecasted. This sentence is required only if the method AWINTERS, 
MWINTERS, SINDICATOR, or HARMONIC is used.  When the HARMONIC method 

GFORECAST VARIABLES  ARE  v1, v2, ---.  @  
  METHOD  IS  w.   @ 
  WEIGHTS  ARE  r1, r2, r3.  @ 
  SEASONALITY  IS  i1, i2.  @ 
  NOFS  ARE  i1, i2, ---.   @ 
  ORIGINS  ARE  i1, i2, ---.  @ 
  START  IS  i.    @ 
  OUTPUT IS PRINT(w1, w2, ---), @ 
   NOPRINT(w1, w2, ---). 
 
Required sentences:  VARIABLES, METHOD, WEIGHTS  and 
          SEASONALITY 



 FORECASTING USING GENERAL EXPONENTIAL SMOOTHING 9.29
   

is used, the value i2 is required to specify the number of harmonic functions, m, to be used 
in forecasting (see Section 9.7). 

NOFS sentence  
The NOFS sentence is used to specify the number of forecasts to be generated from each 
time origin.  The number of arguments in this sentence must be the same as that in the 
ORIGINS sentence.  The default is 24 forecasts from each time origin.  

ORIGINS sentence  
The ORIGINS sentence is used to specify the time origins for forecasts.  The default is a 
single origin, the last observation. 

START sentence  
The START sentence is used to specify the number of observations used to determine the 
initial values for forecast computation (see Sections 9.1.2 and 9.2.2).  The System 
provides an appropriate value and the user does not need to specify this sentence. 

OUTPUT sentence  
The OUTPUT sentence is used to control the amount of output printed for computed 
statistics. Control is achieved by increasing or decreasing the basic level of output by use 
of PRINT or NOPRINT, respectively.   The keyword for PRINT and NOPRINT is:  

ESTIMATES: estimates for certain values in computing forecasts  
FORECASTS: forecast values for each time origin  
 
The default condition is PRINT(FORECASTS). 
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APPENDIX A 

ANALYTIC FUNCTIONS AND MATRIX OPERATIONS 

 
The SCA System provides a wide array of analytic functions and matrix operations to 

augment its statistical capabilities.  This appendix provides basic information regarding these 
analytic capabilities.  More complete information can be found in The SCA Statistical System: 
Reference Manual for Fundamental Capabilities. 

A.1   Basic Operations 

The SCA System treats a variable in its workspace as a matrix.  For example, a scalar 
variable is stored as a 1x1 matrix, and a vector variable is stored as a nx1 matrix.  By storing 
data in this manner, analytic operations can be computed more efficiently. 

To illustrate the use of some basic mathematical operations in the SCA System, suppose 
the following vectors are stored in the SCA workspace 

 
 100 20 5     

= 
 

 
WDATA, we 

simply enter 

 -->NEWDATA = XDATA + YDATA 
 

NEWDATA now contains the results.  The SCA System will not display the result 
automatically.  However, we can print the contents of NEWDATA by entering  

 -->PRINT NEWDATA 
 
 We also have access to common mathematic functions.  For example  
 

 -->CDATA = LN(YDATA) 
 -->SDATA = SQRT(ZDATA) 

  
stores the natural logarithm of each element of YDATA and the square root of each element 
of ZDATA in CDATA and SDATA, respectively. 
 

We are not limited to the number of operations used in an assignment statement.  For 
example, suppose we enter  

 -->RESULT = ZDATA * SQRT(YDATA) - (LN(XDATA) + 2 ) 

XDATA 200 YDATA 50 ZDATA 8
300 30 4

    = =    
        

 

If we wish to add XDATA and YDATA together, storing the results in NE
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For corresponding elements in XDATA, YDATA and ZDATA, we will take the natural 
logarithm of XDATA and add the value 2.  This quantity is subtracted from the product of 
ZDATA and the square root of YDATA. 

The SCA System will follow the usual order of mathematical operations for an 
expression.  The following order is observed 

  1st Evaluation of a function 
  2nd Exponentiation (**) 
  3rd Multiplication or division 
  4th Addition or subtraction 
 

The above hierarchy is first applied to all parenthetical expressions.  The order is 
applied again using resultant values, if any, as operations are read in a left to right fashion. 

A.2   Trigonometric and Hyperbolic Functions 

We have access to the following trigonometric and hyperbolic functions:  sin, cos, tan 
(and their inverses), sinh, cosh, and tanh.  We need to keep in mind that the arguments of sin, 
cos, tan, sinh, cosh, and tanh are in radians and results of the inverses of sin, cos, and tan will 
be in radians.  For this reason, it is useful to know how to obtain π and the conversion factor 
between radians and degrees within the SCA System. 

12*ACOS(0) (i.e.,   2cos (0))−π =  

1 radians [ACOS(0) / 90]radians
180
π

= =o  

1 radian [90 / ACOS(0)] degrees=  

A.3   Statistical and Probability Distribution Functions 

The SCA System provides a wide array of commonly used statistical functions and 
probability distribution functions.  The distribution functions include the cumulative 
distribution (and inverse distribution) of the standard normal, student’s t, χ2, F and Beta 
distributions. 

Statistical Functions 
 

To illustrate some statistical functions, suppose the variable X1 consists of the following 
17 values 

16, 22, 21, 20, 23, 21, 19, 15, 13, 23, 17, 20, 29, 18, 22, 16, 25  

We can compute and retain the sample mean, median and the geometric mean of X1 by 
entering 
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 -->X1MEAN = MEAN (X1) 
 -->X1MEDIAN = MEDN (X1) 
 -->X1GEOM = GMEN (X1) 

 
We can display these values by entering  
 

 -->PRINT   X1MEAN, X1MEDIAN, X1GEOM 
 

 X1MEAN   IS A 1 BY 1 VARIABLE 
 X1MEDIAN IS A 1 BY 1 VARIABLE 
 X1GEOM   IS A 1 BY 1 VARIABLE 
 
 VARIABLE    X1MEAN   X1MEDIAN   X1GEOM 
 COLUMN-->      1         1         1 
   ROW 
    1        20.000    20.000    19.625 

 
In similar fashion we can calculate and retain the variance or standard deviation of the 

data.  Descriptive statistics can also be obtained through the DESCRIBE paragraph (see 
Chapter 4 of The SCA Statistical System: Reference Manual for General Statistical Analysis). 

Probability Distribution Functions (CDF) 
 

We can quickly determine the cumulative distribution of a value following a standard 
normal, t, χ2, F, or Beta distribution.  For example, the CDF for a value of 1.57 of a t-
distribution with 16 degrees of freedom can be computed (and stored in the variable 
CVALUE) by entering 

 -->CVALUE = CDFT (1.57, 16) 
 

Similarly, we can obtain values of critical levels from these distributions using the 
inverse cumulative distribution function.  For example, the z-value used for a 90% confidence 
interval for a standard normal distribution is 1.645.  We can confirm this by computing the 
inverse CDF of the standard normal for the value .95.  We can obtain this by entering 

 -->ZSCORE = IDFN(.95) 

A.4   Matrix Operations 

To illustrate some of the available matrix operations in the SCA System, we will assume 
the following matrices are in the SCA workspace 

 
 1 1 1 3 0   





ADATA 3 1 BDATA 2 1 0
0 1 0 1 1

  = =  
   −  

 

 
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We can perform matrix multiplication using the symbol ‘#’. (Note that element by 
element multiplication occurs if we use the symbol ‘*’.)  For example, if we enter 

-->C1DATA = BDATA # ADATA <result>  

 

   

then C1DATA contains the above matrix product.  (Note

10 4
5 3
3 0

 
 
 
  

 

:  To display C1DATA we need to 
employ the PRINT paragraph.  We have inserted the values of the resultant matrix above for 
reference only.  We shall continue to do this throughout this appendix.) 
 

The matrix product ADATA # BDATA has no sense, since the matrices are not 
conformable.  However, the transpose of ADATA is conformable with BDATA, and we can 
compute this matrix product by entering  

-->C2DATA = T(ADATA)#BDATA  <result>   

 

      
We may also compute the Kronecker product of ADATA and BDATA, the trace of 

BDATA and the Cholesky decomposition of BDATA, among other operations.  We can 
compute the determinant, inverse, and adjoint matrix of BDATA by entering 

-->DETB = DET(BDATA) <result> 

 [5] 

      
-->BINVERSE = INV(BDATA)  <result>  

 

 
   

 

7 6 0
3 5 1
 
 − 

 

.2 .6 0
.4 .2 0
.4 .2 1

− 
 − 
 − − 
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-->ADJOINTB = DETB * BINVERSE <result>   

 

  

Eigenvalues

1 3 0
2 1 0
2 1 5

− 
 − 
 − 

 
 

We can compute the eigenvalues and eigenvectors of any real matrix.  For example, 
suppose we have the following matrix in the SCA workspace  

 3 1 0− 

 
 
 W nvalues and eigenvectors by entering 
 

 -->EIGEN   EDATA.   VALUES IN EVAL.   VECTORS IN EVEC.  
 

 EIGENVALUES FOR THE MATRIX EDATA   
 
               1         2         3                                              
    1    4.00000   3.00000   1.00000                                              
                                                                                 
 EIGENVECTORS FOR THE MATRIX EDATA                                               
                                                                                 
               1         2         3                                              
    1     .57735    .70711   -.40825                                              
    2    -.57735 .8412E-16   -.81650                                              
    3     .57735   -.70711   -.40825            

 
The VALUES and VECTORS sentences were specified so that the computed 

eigenvalues and corresponding matrix of eigenvectors would be maintained in the SCA 
workspace (under the labels EVAL and EVEC, respectively). 

A.5   Summary of Analytic Functions and Syntax for the EIGEN Paragraph 

Listed below is a brief list of the analytic capabilities in the SCA System.  More 
complete information is available in Chapter 4 of The SCA Statistical System: Reference 
Manual for Fundamental Capabilities. 

ABS(A) -- absolute value of each element in variable A 
AND  -- A AND B; logical operator on binary scalars 
ACOS(A) -- inverse cosine of each element in variable A 
ASIN(A) -- inverse sine of each element in variable A 
ATAN(A) -- inverse tangent of each element in variable A 

EDATA 1 2 1
0 1 3

 = − − 
 − 

 

e can compute its eige
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CDFB(X,A,B)-- cumulative distribution function of beta distribution with scale  
   parameters A and B; 0 X 1≤ ≤  
CDFC(X,N) -- cumulative distribution function of chi-square distribution with N  
   degrees of freedom; X positive 
CDFF(X,M,N) -- cumulative distribution function of F-distribution with M and N d.f.; X 
   positive 
CDFN(X) -- standard normal cumulative distribution function  
CDFT(X,N) -- cumulative distribution function of Student's t-distribution with N  
   degrees of freedom 
CDP(A,B) -- column direct product of matrices A and B 
CHOL(A) -- Cholesky decomposition of matrix A 
COS(A) -- cosine of each element in variable A 
COSH(A) -- hyperbolic cosine of elements in variable A 
DET(A) -- determinant of matrix A 
EQ  -- A EQ B; logical comparison over all elements 
EIGEN -- see the EIGEN paragraph 
EXP(A) -- exponential function applied to elements in A 
FACT(A) -- factorial value for each element in A 
GAMA(A) -- gamma function applied to elements in A 
GE  -- A GE B; logical comparison over all elements 
GMEN(A) -- geometric mean of the elements in variable A 
GT  -- A GT B; logical comparison over all elements 
IDFB(X,A,B) -- inverse distribution function of beta distribution with scale parameters 
   A and
IDFC(X,N) -- inverse distribution function of chi-square distribution with N d.f.;  
   
IDFF(X,M,N) -- inverse distribution function of F-distribution with M and N d.f.;  
   
IDFN(X) -- inverse distribution function of standard normal distribution (also  
   known as the PROBIT function); 

 B; 0 X 1≤ ≤  

0 X 1≤ ≤  

0 X 1≤ ≤  

0 X 1≤ ≤  
IDFT(X,N) -- inverse distribution function of t-distribution with N d.f.; 1
INT(A) -- largest integer value of each element of A 
INV(A) -- inverse of matrix A 
KP(A,B) -- Kroneker product of matrices A and B 
LE  -- A LE B; logical comparison over all elements 
LN(A)  -- natural logarithm of each element in A 
LOG(A) -- base 10 logarithm of each element in A 
LT  -- A LT B; logical comparison over all elements 
MAX(A) -- maximum value of the elements in A 
MEAN(A) -- arithmetic mean of the elements of A 
MEDN(A) -- median value of the elements of A 
MIN(A) -- minimum value of the elements in A 
MMAX(A,B) -- element by element maximum value in A and B 
MMIN(A,B) -- element by element minimum value in A and B 
MOD(A,B) -- modular arithmetic; A(i,j)(modula B(i,j)) 
NCOL(A) -- number of columns in matrix A 

0 X≤ ≤  
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NE  -- A NE B; logical comparison over all elements 
NMIS(A) -- number of missing values in A 
NOT  -- NOT A; logical operator on binary scalars 
NROW(A) -- number of rows in matrix A 
OR  -- A OR B; logical operator on binary scalars 
PACK(A) -- append columns of matrix A into a single column vector 
RDP(A,B) -- row direct product of matrices A and B 
SIGN(A,B) -- transfer of the sign of an element of B to the absolute value of the  
   corresponding element of A 
SIN(A) -- sine of each element in A 
SINH(A) -- hyperbolic sine of each element in A 
SQRT(A) -- square root of each element in A 
STD(A) -- sample standard deviation of elements of A 
STD1(A) -- unbiased sample st. dev. of elements of A 
SUM(A) -- arithmetic sum of all elements in A 
T(A)  -- transpose of the matrix A 
TAN(A) -- tangent of each element in A 
TANH(A) -- hyperbolic tangent of each element in A 
TR(A)  -- trace of the matrix A 
VAR(A) -- sample variance of the elements of A 
VAR1(A) -- unbiased sample variance of the elements of A 
+  -- A + B; element by element addition 
-  -- A - B; element by element subtraction 
*  -- A * B; element by element multiplication 
/  -- A / B; element by element division  
**  -- A**B ; element by element exponentiation 
#  -- A # B; matrix multiplication  
 
 
Syntax for the EIGEN Paragraph 
 

The EIGEN paragraph is used to compute and display the eigenvalues and eigenvectors 
of any real matrix.  The EIGEN paragraph begins with the paragraph name, EIGEN, and may 
be followed by various modifying sentences. Sentences that may be used as modifiers for this 
paragraph are shown below and the types of arguments used in each sentence are also 
specified. Sentences not listed as required may be omitted as default conditions (or values) 
exist. The most frequently used required sentence is given as the first sentence of the 
paragraph. The portion of this sentence that may be omitted is underlined. This portion may 
be omitted only if this sentence appears as the first sentence in a paragraph.  Otherwise, all 
portions of the sentence must be used. The last character of each line, except the last line, 
must be the continuation character, ‘@’. 

 Legend (see Chapter 2 for further explanation):  
 
 v : variable name 
 w : keyword  
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EIGEN  MATRIX  IS  v. @  
  VALUES IN v.  @  

 VECTORS IN v. @  
  ORDER  IS  w.  
 
Required sentence:  MATRIX  
nces Used in the EIGEN Paragraph 

RIX sentence  
e MATRIX sentence is used to specify the name of the matrix for which eigenvalues 
d eigenvectors will be computed. 

ES sentence  
e VALUES sentence is used to specify the name of the variable to store the computed 
envalues of the matrix.  

ORS sentence  
e VECTORS sentence is used to specify the name of the variable to store the computed 
envectors of the matrix.  Eigenvectors are stored columnwise; that is, the first column 

rresponds to the first eigenvalue, and so on.  

R sentence  
e ORDER sentence is used to specify the order that the eigenvalues and their 
rresponding eigenvectors will be stored.  The keyword may be DESCENDING or 
CENDING.  The default is DESCENDING.  



 

APPENDIX B 

DATA GENERATION, EDITING AND MANIPULATION 

  
The SCA System provides several capabilities to generate, edit and manipulate data 

stored in the SCA workspace.  This appendix provides selected information on capabilities to 
generate and edit data that are not necessarily of a time series.  More complete information 
can be found in The SCA Statistical System: Reference Manual for Fundamental Capabilities.  
Features discussed in this appendix, and the section containing them, are: 

 Section  Feature(s)  
 
 B.1  Generation of a vector or matrix variable 
 B.2  Modification of the existing values of a variable  
 B.3  Manipulation of variables  
 
Appendix C provides information on the generation and editing of time series data. 

B.1   Generating Data:  the GENERATE Paragraph 

We can use the GENERATE paragraph to create data, either by direct value 
specification or following one of two patterns, and store the data within a vector or matrix.  
We will illustrate the use of the paragraph with some examples. 

B.1.1   Generating a vector 

We will now create four variables, each stored in the SCA workspace as a 10x1 
(column) vector of data.  Variables created illustrate the various manners that data can be 
created.  First, we will generate and print the data.  Afterwards, we will explain what has been 
created. 

 -->GENERATE VECTOR1.  NROW ARE 10.  VALUES ARE 0 FOR 5, 1 FOR 5. 
 THE SINGLE PRECISION VARIABLE VECTOR IS GENERATED  

 
 -->GENERATE VECTOR2.  NROW ARE 10.  VALUES ARE 0 FOR 5, 1 FOR 2, 0 FOR 3. 

 THE SINGLE PRECISION VARIABLE VECTOR2 IS GENERATED   

 
 -->GENERATE VECTOR3.  NROW ARE 10.  PATTERN IS STEP (1.0, 0.5).  

 THE SINGLE PRECISION VARIABLE VECTOR3 IS GENERATED   

 
 -->GENERATE VECTOR4.  NROW ARE 10.  PATTERN IS RATE (1.0, 2.0). 

 THE SINGLE PRECISION VARIABLE VECTOR4 IS GENERATED    
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 -->PRINT   VECTOR1, VECTOR2, VECTOR3, VECTOR4   
 

 VARIABLE   VECTOR1   VECTOR2   VECTOR3   VECTOR4                                       
 COLUMN-->       1         1         1         1                                  
   ROW                                                                           
     1        0.000     0.000     1.000     1.000                                     
     2        0.000     0.000     1.500     2.000                                     
     3        0.000     0.000     2.000     4.000                                     
     4        0 000     0.000     2.500     8.000                                     
     5        0.000     0.000     3.000    16.000                                      
     6        1.000     1.000     3.500    32.000                                      
     7        1.000     1.000     4.000    64.000                                      
     8        1.000     0.000     4.500   128.000                                       
     9        1.000     0.000     5.000   256.000                                       
    10        1.000     0.000     5.500   512.000        

 
In each use of the GENERATE paragraph, we specified the number of rows of data 

(NROW) to be created as 10.  The default number of rows and columns to create is 1.  Hence, 
unless we are creating a scalar, we need to specify the number of rows or/and columns in our 
variable.  

In the above example, we directly entered the values that comprise VECTOR1 and 
VECTOR2.  In VECTOR1, the VALUES of the first 5 points are set to 0 and the next 5 are 
set to 1.  In VECTOR2, the first 5 points are set to 0, the next 2 are set to 1, and the remaining 
3 are set to 0.  A PATTERN is used to generate the data in both VECTOR3 and VECTOR4.  
VECTOR3 follows a STEP function.  Its first value is 1.0, and each successive value is 0.5 
more than the last value.  That is, for STEP (a, b) our data are described as 

  

The data in VECTOR4 follows a geometric pattern.  The initial value is 1.0 and 
successive values are 2.0 times the previous value.  Thus, when we specify the geometric 
RATE (a,b), our data follow the pattern  

  

 
Use of analytic functions

iX a (i 1)b, i 1, 2,.....= + − =

i 1
iX a *b , i 1,2,.....−= =

 
 

We can use the GENERATE paragraph in conjunction with analytic functions or editing 
capabilities of the SCA System (see Appendix A, latter sections of this Appendix, and The 
SCA Statistical System: Reference Manual for Fundamental Capabilities) to create variables 
with more intricate structure.  

For example, we could have also created VECTOR2 above by first generating a vector 
of zeros by entering 

 -->GENERATE  VECTOR2.   NROW ARE 10.   VALUES ARE 0 FOR 10. 
 THE SINGLE PRECISION VARIABLE VECTOR2 IS GENERATED 

 



 DATA GENERATION, EDITING AND MANIPULATION B.3
   

Then we could recode the 6th and 7th observations as 1 using the simple assignments 

 -->VECTOR2(6) = 1.0 
 -->VECTOR2(7) = 1.0 

 
As a more intricate illustration, suppose we are to study 15 years of quarterly sales data 

of a corporation.  The end of the fiscal year is June, and some of the sale activity in the second 
quarter are related to end of year quotas or bonuses.  We intend to “isolate” the second quarter 
by including an indicator variable that is 1 for a second quarter and 0 otherwise.  We can use 
the GENERATE paragraph and row direct product (RDP) analytic function for this purpose.  

First we will generate two vectors, one will describe the yearly pattern of the indicator 
(i.e., 0, 1, 0, 0).  The second vector represents the number of times this pattern should be 
applied.  We can enter  

 -->GENERATE VECTOR5.   NROW ARE 4.   VALUES ARE 0, 1, 0, 0   
 THE SINGLE PRECISION VARIABLE VECTOR5 IS GENERATED        

 
 -->GENERATE VECTOR6   NROW ARE 15.  VALUES ARE 1 FOR 15.  

 THE SINGLE PRECISION VARIABLE VECTOR6 IS GENERATED     

 
We now compute the row direct product (see Appendix A and The SCA Statistical 

System: Reference Manual for Fundamental Capabilities) to create our desired indicator 
variable.  We will call this variable INDC1.  

 -->INDC1 = RDP(VECTOR5, VECTOR6) 
  

We have created a variable with 60 values, all are 0 except for the 2nd, 6th, 10th, and so 
on.  These values are all 1.  We can see this by printing INDC1. 

 -->PRINT  INDC1.   FORMAT IS  ‘8F10.2’.  
 

 INDC1    IS  A    60  BY     1  VARIABLE                                        
        .00      1.00       .00      .00       .00      1.00       .00       .00 
        .00      1.00       .00      .00       .00      1.00       .00       .00 
        .00      1.00       .00      .00       .00      1.00       .00       .00 
        .00      1.00       .00      .00       .00      1.00       .00       .00 
        .00      1.00       .00      .00       .00      1.00       .00       .00 
        .00      1.00       .00      .00       .00      1.00       .00       .00 
        .00      1.00       .00      .00       .00      1.00       .00       .00 
        .00      1.00       .00      .00  

B.1.2   Generating a matrix  

We can also use the GENERATE paragraph to create matrices.  In such cases, we must 
include information regarding the number of rows and columns of the matrix (NROW and 
NCOL, respectively) and the manner in which we want data stored.  For example, we can 
create a 4 x 4 identity matrix by entering  
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 -->GENERATE  MATRIX1.   NROW ARE 4.   NCOL ARE 4.       @   
 -->          VALUES ARE 1 FOR 4.  ORDER IS DIAGONAL.  

 THE SINGLE PRECISION VARIABLE MATRIX1  IS GENERATED         

 
 We have specified that the ORDER to store data is along the DIAGONAL.  In this 

manner, the four values specified are entered sequentially along the diagonal of the matrix.  
All off diagonal elements are set to zero.  If no ORDER is specified, values are stored column 
by column.  That is, data is entered in the first column from “top” to “bottom”, then the 
second column, third column, and so on.  Hence if we enter 

 -->GENERATE  MATRIX2.   NROW ARE 4.   NCOL ARE 4.   PATTERN IS STEP(1.0, 2.0) 
 
we create the following matrix  
 

          1.0       9.0      17.0      25.0 
          3.0      11.0      19.0      27.0 
          5.0      13.0      21.0      29.0 
          7.0      15.0      23.0      31.0  

 
We can also choose to have data stored row by row, symmetrically or skew 

symmetrically.  In symmetric storage, data are stored row by row in the lower triangle of the 
matrix and values of the upper triangle are set equal to their corresponding lower triangular 
entry.  Skew symmetric storage is similar, except the values of the upper triangle are set equal 
to the negative of their corresponding lower triangular entry.  We illustrate this type of data 
storage in the next section. 

 
Use of analytic functions 
 

Analytic functions (see Appendix A) can be used in conjunction with the GENERATE 
paragraph to create matrices of more complicated structure.  For example, earlier we created 
an indicator variable corresponding to the second quarter of each year in a fifteen year period.  
Now we will construct a four-column matrix whose columns consist of the indicators for the 
first, second, third and fourth quarters of a year for the same fifteen year period.   

To accomplish this we will use the 4 x 4 identity matrix generated earlier and stored as 
MATRIX1.  Each of its columns represents an indicator associated with a quarter of a given 
year.  We also need a matrix equivalent to the number of times this periodic pattern should 
appear.  We can then use the RDP function as before to create the desired matrix. 

 -->GENERATE  MATRIX3.  NROW ARE 15.  NCOL ARE 4.  VALUES ARE 1 FOR 60. 
 THE SINGLE PRECISION VARIABLE MATRIX3  IS GENERATED       

 
 -->INDC2 = RDP(MATRIX1, MATRIX3) 

 
We will print the first 11 rows of the resultant matrix, INDC2, to observe the pattern we 

have created. 
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 -->PRINT  INDC2.  SPAN IS 1, 11.  
 

 INDC2    IS  A    60  BY     4  VARIABLE                                        
 
 VARIABLE     INDC2     INDC2     INDC2     INDC2                                
 COLUMN-->       1         2         3         4                                 
   ROW                                                                           
     1        1.000      .000      .000      .000                                
     2         .000     1.000      .000      .000                                
     3         .000      .000     1.000      .000                                
     4         .000      .000      .000     1.000                                
     5        1.000      .000      .000      .000                                
     6         .000     1.000      .000      .000                                
     7         .000      .000     1.000      .000                                
     8         .000      .000      .000     1.000                                
     9        1.000      .000      .000      .000                                
    10         .000     1.000      .000      .000                                
    11         .000      .000     1.000      .000         

 
To illustrate skew symmetric storage and analytic operations, we now create a 4x4 

matrix whose lower tridiagonal and diagonal elements are 1 and whose upper tridiagonal 
elements are 0.  

 -->GENERATE MATRIX4.  NROW ARE 4.  NCOL ARE 4.  VALUES ARE 1 FOR 16.  
 THE SINGLE PRECISION VARIABLE MATRIX4 IS GENERATED 

 
 -->GENERATE MATRIX5.   NROW ARE 4.   NCOL ARE 4.       @  
 -->          PATTERN IS STEP (1.0, 0.0).  ORDER IS SKEWSYMMETRIC.  

 THE SINGLE PRECISION VARIABLE MATRIX5 IS GENERATED  

 
 -->MATRIX6 = (MATRIX4 + MATRIX5)/2 + MATRIX1 

 
MATRIX4 is a 4x4 matrix of 1’s.  MATRIX5 is a 4x4 matrix whose lower triangular 

elements are 1’s and whose other elements (including the diagonal) are –1’s.  Adding these 
matrices together “zeroes out” the upper triangle and the diagonal.  All values in the resultant 
lower triangular matrix (excluding the diagonal) are 2.  If we divide this result by 2 and add 
the identity matrix (MATRIX1) we obtain our desired matrix.  We can observe MATRIX5 
and the resultant MATRIX6 by entering 

 -->PRINT MATRIX5, MATRIX6.   FORMAT IS ‘(4F8.1,2X,4F8.1)’  
 

 MATRIX5  IS  A     4  BY     4  VARIABLE  
 MATRIX6  IS  A     4  BY     4  VARIABLE  
 
 VARIABLE   MATRIX5 MATRIX5 MATRIX5 MATRIX5   MATRIX6 MATRIX6 MATRIX6 MATRIX6    
 COLUMN-->      1       2       3       4         1       2       3       4      
   ROW                                                                           
     1        -1.0    -1.0    -1.0    -1.0       1.0      .0      .0      .0     
     2         1.0    -1.0    -1.0    -1.0       1.0     1.0      .0      .0     
     3         1.0     1.0    -1.0    -1.0       1.0     1.0     1.0      .0     
     4         1.0     1.0     1.0    -1.0       1.0     1.0     1.0     1.0     
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B.2   Modification of Data in a Variable  

To illustrate the modification of data in a variable in the SCA workspace, we will 
suppose the data listed in the table below represent the percent concentration of a certain 
chemical in the yield of some process.  The data are stored in the SCA workspace under the 
label CONC.  The value -1.00 is used to denote a missing value. 

 
Percent concentration of chemical in a process yield 

(Read data across a line) 
   

     24.57  24.79  22.91  25.84  25.35  -1.00  -1.00  29.65 226.10  23.38  
     25.10  28.03  29.09  29.34  24.41  25.12  25.27  27.46  27.65  27.95  
     22.87  22.95  24.36  26.32  24.05  28.27  26.57  -1.00  24.35  30.04  
     25.18  27.42  24.50  23.21  25.10  23.59  26.98  22.94  25.27  25.84  
     27.18  24.69  26.35  23.05  23.37  25.46  28.84  30.09  25.42  30.11  

   
 
Use of analytic statements  
  

The value of the 9th observation, 226.10, stands out.  It may be this is a simple entry 
error that must be corrected.  If the value should be 26.10, we can quickly change it by 
entering 

 -->CONC(9) = 26.10  
 
We can do the same with data stored in matrix form, all we need to do is to indicate the (i,j) 
position. 
 

Analytic statements are also convenient for scaling data.  For example, suppose the 
independent variables of a regression are X1DATA and X2DATA, with the values of 
X1DATA between 1,000,000 and 5,000,000 and the values of X2DATA between 10 and 25.  
For computational purposes, it is useful to have these two variables around the same scale.  
We can scale X1DATA by entering  

 -->X1DATA = X1DATA/1000000  
 
If we also want the data in our second variable to represent a percentage relative to the first 
term, we can enter 
 

 -->X2DATA = X2DATA/X2DATA(1) * 100  
 

Recoding ranges of values  
 

For the data of CONC, suppose we know that the minimum percent of concentration in 
the yield is 23 and the maximum is 30.  Values outside these limits are due to measurement 
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errors, and it is important that the limits not be exceeded within our analysis.  If we are using 
regression (see Chapter 4), we know that missing entries are excluded automatically, provided 
the internal missing value code is used for these values.  Hence, we want to do the following:  

 Recode all values over 30.0 to 30.0,  

 Recode all values under 23.0 to 23.0, and  

 Assign the internal missing value code to any value that is presently -1.0 .  
 
We can accomplish this directly using the RECODE paragraph.  If we enter  
 

 -->RECODE  CONC.  NEW IS CONC2.  VALUES ARE (0.0, 23.0, 23.0),  @  
                (30.0, 100.0, 30.0), (-1.0, -1.0, MISSING).  

 
then all data within the range 0.0 to 23.0 is recoded to 23.0; all data within the range 30.0 to 
100.0 is recoded to 30.0; and the value -1.0 is recoded to the internal missing value code.  The 
altered data are stored in the new variable CONC2.  If no NEW variable is specified, then the 
data are stored in the original variable, CONC. 

B.3   Manipulation of Variables  

To illustrate some of the capabilities to manipulate data within SCA, we will suppose 
the following variables are in the SCA workspace:  

 
A1DATA C1 C2 C3 

1.0 0.1 9.6 1.0 3.3 
5.2 3.8 9.1 9.3 4.4 
5.1 5.2 7.4 7.6 7.9 
2.8 2.9 4.3 6.3 4.1 
8.2 6.5 6.1 4.3 3.0 
5.1 7.4 4.5 3.2 5.1 
3.5 6.9 2.9 5.2 5.8 
7.1 4.6 6.3 3.1 3.3 
5.4 8.8 0.9 5.4 3.1 

 
 
A1DATA is stored as a 10x2 matrix, while C1, C2, and C3 are each vectors of data. 
 

4.5 4.7 2.9 5.8 5.3 
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Selecting and omitting cases 
 

We can select or omit cases of one or more variables according to either its index or its 
value.  For example, suppose we only wish to work with the first 8 cases of C1, C2 and C3.  
We can enter either  

 -->SELECT  C1,C2,C3.  NEW ARE D1,D2,D3.   SPAN IS (1,8).  
or  

 -->OMIT  C1,C2,C3.  SPAN IS (9,10).  
 
for this purpose.  In the SELECT paragraph, data are stored in the new variables D1, D2, and 
D3.  In the OMIT paragraph, data are stored in the original variables since no NEW variables 
are specified.  We can also select or omit cases based on the values assumed by the variable.  
For example, suppose we only want to use the data in C1 with values under 9.0, and the 
corresponding entries of C2  and C3.  We can accomplish this by entering  
 

 -->SELECT  C1, C2, C3.  VALUES ARE (0.0, 8.9)  
 
Here, all rows, except the 2nd and 3rd, are retained for all variables.  We can specify more 
than one range of indices or values.  For example, suppose we wish to omit all values over 7.0 
and under 4.0 from C3 (and accompanying cases in C1 and C2).  If we enter  
 

 -->OMIT  C3, C1, C2.  VALUES ARE (7.0, 100.0), (0.0, 4.0).  
 
then C1, C2, and C3 will consist of the following 
   

C1 C2 C3 

9.1 9.3 4.4 
4.3 6.3 4.1 
4.5 3.2 5.1 
2.9 5.2 5.8 

 
 
The five rows of C1, C2 and C3 in which C3 had values either over 7.0 or under 4.0 have 
been removed.  We may observe that C1 and C2 still contain values in the “excluded” ranges.  
These values have not been deleted since the SELECT and OMIT paragraphs only apply the 
selection (or deletion) criteria to the first column of the first variable specified.  
Corresponding entries from all other specified variables are then either selected or omitted.  If 
we want the values of C1 and C2 to be within designated ranges, we need to sequentially 
apply the OMIT or SELECT commands to the variables with C1, then C2, as the first 
variable. 
 

2.9 5.8 5.3 
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Appending data 
 

C1, C2, and C3 are each 10x1 vectors.  We can create one 30 x 1 vector by appending 
C2 to the end of C1 and C3 to the end of this result by entering  

 
 -->JOIN   C1,C2,C3.  NEW IS D1. 

 
The resultant vector is stored in D1.  If no NEW variable is specified, then the resultant vector 
is stored in the first variable specified.  We can also append matrices together, provided the 
number of columns of all matrices is the same.  We cannot append vectors to the end of 
matrices. 
 

As an illustration, suppose we want to append C1 to the first column of A1DATA and 
C2 to the second column of A1DATA.  We must first create a matrix consisting of columns 
C1 and C2.  We can create this matrix, say CMAT, by entering  

 -->AUGMENT  C1, C2.  NEW IS CMAT.  
 
We can now append CMAT to A1DATA by entering  
 

 -->JOIN  A1DATA, CMAT  
 
A1DATA will be changed to a 20x2 matrix. 
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SUMMARY OF THE SCA PARAGRAPHS IN APPENDIX B 

 
This section provides a summary of those SCA paragraphs employed in this appendix.  

Each SCA paragraph begins with a paragraph name and is followed by modifying sentences.  
Sentences that may be used as modifiers for a paragraph are shown below and the types of 
arguments used in each sentence are also specified.  Sentences not designated required may be 
omitted as default conditions (or values) exist.  The most frequently used required sentence is 
given as the first sentence of the paragraph.  The portion of this sentence that may be omitted 
is underlined.  This portion may be omitted only if this sentence appears as the first sentence 
in a paragraph.  Otherwise, all portions of the sentence must be used.  The last character of 
each line except the last line must be the continuation character, ‘@’. 

The paragraphs to be explained in this summary are GENERATE, RECODE, OMIT, 
SELECT, JOIN, and AUGMENT. 

 
 Legend (see Chapter 2 for further explanation) 
 
 v :  variable name 
 i :  integer 
 r :  real value 
 w(.) :  keyword (with argument) 
 
 
 
GENERATE Paragraph 
 

The GENERATE paragraph can be used to create values of a new variable according to 
user specified conditions.  A set of data may be generated in one of two ways.  One technique 
is to specify completely every value of the set.  Data may also be created according to a 
pattern that increases from a specified initial value according to a user specified step size, or 
rate.  The two methods (VALUES and PATTERN) are mutually exclusive and they may not 
both be specified in the same paragraph.  The generated values are then stored into a variable 
in a user specified order. 
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Syntax for the GENERATE Paragraph 

 
Sentences 
 
VARIABL

The VA
values t

NROW sen
The NR
generate

NCOL sent
The NC
be gene

ORDER se
The OR
matrix. 

COLUM
  

ROWW

DIAGO
  
  
  

SYMM
  
  

SKEWS
  
  
  
GENERATE VARIABLE  IS  v.  @  
  NROW  IS  i.   @  

 NCOL  IS  i.   @  
  ORDER  IS  w.   @ 

 VALUES  ARE  r1, r2, --- .  
          or  

 PATTERN  IS  w1(r1,r2), w2(r1,r2).  
  
Required sentences:  VARIABLE, and either VALUES or PATTERN  
Used in the GENERATE Paragraph 

E sentence  
RIABLE sentence is used to specify the name of the vector or matrix to store 

hat are generated.  

tence  
OW sentence is used to specify the number of rows of values for the variable to be 
d.  The default is 1.  

ence  
OL sentence is used to specify the number of columns of values for the variable to 
rated.  The default is 1.  

ntence  
DER sentence is used to specify the order for placing the generated values in a 
 Keywords available are: 

NWISE --  values are stored in column 1 first, then column 2, etc. (This 
  is the default)  

ISE -- values are stored in row 1 first, then row 2, etc.  

NAL --  values are stored in the diagonal elements of the matrix, all off-
  diagonal elements are set to zero.  The matrix must be square.  
  That is, the value specified in the NROW sentence must be the 
  same as that specified in the NCOL sentence.   

ETRIC -- values are stored in the lower triangular part of the matrix, row 
  by row. Values in the upper triangular part are set equal to the 
  corresponding lower triangular elements.  

YMMETRIC -- values are stored in the lower triangular part of the  
   matrix row by row.  Values in the upper triangular part 
   are set equal to the negative of the corresponding lower 
   triangular elements. 
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VALUES sentence 
The VALUES sentence is used to specify the values to be placed in the variable.  The 
number of values to be specified is NROW*NCOL if the ORDER is COLUMNWISE or 
ROWWISE, NROW*(NROW+1)/2 if SYMMETRIC or SKEWSYMMETRIC, and 
NROW if DIAGONAL.  Note that the VALUES and the PATTERN (defined below) 
sentences are mutually exclusive, only one of them can appear in the paragraph.  

PATTERN sentence  
The PATTERN sentence is used to specify the pattern to be used to generate values. The 
keywords are STEP or RATE.  The STEP option will generate an arithmetic sequence 
with initial value r1 and increment r2 (i.e., the sequence r1, r1+r2, r1+2*r2, ...), and the 
RATE option will generate a geometric sequence with initial value r1 and rate r2 (i.e., r1, 
r1*r2, r1* , ...).  If both STEP and RATE are specified, the result will be the sum of the 
two sequences.  The PATTERN sentence must be specified if the VALUES sentence is 
not specified.  

 
 
RECODE Paragraph

2r2

 
  

The RECODE paragraph is used to modify or recode the values of an existing variable.  
Results may be stored in a new or existing variable. The entries of an existing “old variable” 
falling in a specified range of values are changed to another specified value.  Values in a 
variable may also be modified using analytic statements (see Appendix A). 

 
Syntax for the RECODE Paragraph  

 
Sentences Used in the RECODE Paragraph  
 
OLD sentence 

The OLD sentence is used to specify the name of the variable to be recoded.  

NEW sentence  
The NEW sentence is used to specify the name of the variable in which the edited results 
are stored.  If a new name is not specified, the recoded variable will be stored under the 
old name.  

RECODE OLD  IS  v.    @ 
  NEW  IS  v.    @  

 PRECISION  IS  w.   @  
 VALUES  ARE  (r1,r2,r3),(r1,r2,r3), ---.  

  
Required sentences:  OLD and VALUES  
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VALUES sentence  
The VALUES sentence is used to specify sets of values consisting of a range (r1,r2) and a 
recoding value, r3.  All data values falling into the range are changed to the recoding 
value.  The reserved word MISSING (that may be abbreviated as MIS) is used to denote 
the missing value code and can be used in the triplet.  To recode missing data to a specific 
value, the triplet should be specified as (MISSING, MISSING, r) where r is an integer or 
real number.  

PRECISION sentence  
The PRECISION sentence is used to specify the precision of the storage of the recoded 
variable.  The default is the precision of the old variable.  

 
 
OMIT and SELECT Paragraphs 
  

The OMIT and SELECT paragraphs are used to delete or retain elements of a variable 
according to range (span) or value criteria.  Elements are deleted or selected if the element's 
index falls within the specified range(s).  The value criterion is used in a similar manner 
except that the value is used instead of the range of the values.  In addition, the OMIT or 
SELECT paragraph may operate on more than one variable at a time.  If more than one 
variable is specified in the paragraph, the deletion or selection criteria is only applied to the 
elements of the first variable while the elements in the corresponding position of all other 
specified variables are deleted or selected according to the action taken on the entry in the 
first variable.  When more than one variable is specified, the variables need not have the same 
number of entries but the first variable must have the largest number of rows.  Furthermore, 
values of a variable can be selected even if they have been coded with a missing value code.   

 
Syntax for the OMIT and SELECT Paragraphs  

 
 

OMIT OLD  ARE  v1, v2, --- .   @  
 NEW  ARE  v1, v2, ---.   @  
 SPANS  ARE  (i1,i2),(i3,i4), ---.  @  
 VALUES  ARE  (r1,r2),(r3,r4), ---. @  
 MISSING.  
  
Required sentence:  OLD  
SELECT OLD  ARE  v1, v2, --- .   @  
  NEW  ARE  v1, v2, --- .   @  

 SPANS  ARE  (i1,i2), (i3,i4), --- . @  
  VALUES  ARE  (r1,r2), (r3,r4), --- . @  

 MISSING.  
 
Required sentence:  OLD
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Sentences Used in the OMIT and SELECT Paragraphs  
 
OLD sentence  

 The OLD sentence is used to specify the name(s) of the variable(s) for which values will 
be deleted or selected.  

NEW sentence  
The NEW sentence is used to specify the name(s) of the variable(s) where the results of 
the deletion or selection operation are stored.  The number of variables specified in this 
sentence must be the same as that in the OLD sentence.  The results will be stored in the 
original variables if the NEW sentence is omitted.  

SPANS sentence  
The SPANS sentence is used to specify the span(s) to be used in the deletion or selection 
process.  Indices falling in i1 to i2, i3 to i4, etc. will be omitted or selected.  

VALUES sentence  
The VALUES sentence is used to specify the range of values to be deleted or selected, 
values r1 to r2, r3 to r4, etc.  This criterion applies to the values of the first variable only, 
other variables are deleted or selected according to the action taken on the corresponding 
entry of the first variable.  

MISSING sentence  
The MISSING sentence is used to specify the deletion or the selection of the cases which 
have been coded with a missing data code. This criterion applies to the first variable. 
Other variables are deleted or selected according to the action taken on the corresponding 
entry of the first variable.  
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JOIN Paragraph  
  

The JOIN paragraph is used to create a variable by appending the data of one or more 
variables to the end of a designated variable in the SCA workspace.  If all presently defined 
variables are vectors, the resultant vector is created by appending the entries of the second 
vector to the last entry of the first, the third to the end of this, and so on.  The number of 
entries in this resultant vector is equal to the sum of the entries of all the present vectors.  This 
procedure is the same if all presently defined variables are matrices. However, each matrix 
must contain the same number of columns.  Vectors may not be joined to matrices.  The 
precision of the resultant variable may also be specified.   

Syntax for the JOIN Paragraph  

 
Sentences 
  
OLD sente

The OL

NEW sente
The NE
join ope
results o
OLD se

PRECISIO
The PR
results. 
precisio

 
  
JOIN OLD  ARE  v1, v2, --- .  @  
 NEW  IS  v.   @  
 PRECISION  IS  w.  
 
Required sentence:  OLD  
Used in the JOIN Paragraph  

nce  
D sentence is used to specify the names of the variables to be joined.  

nce  
W sentence is used to specify the name of the variable in which the results of the 
ration are stored.  If the NEW-VARIABLE sentence is not specified, then the 
f the join operation will be stored under the name of the first variable listed in the 
ntence.  

N sentence  
ECISION sentence is used to specify the precision of the storage for the joined 
 The keyword, w, may be either SINGLE or DOUBLE.  The default is the 
n of that of the first variable listed in the OLD sentence.  
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AUGMENT Paragraph 
 

The AUGMENT paragraph is used to create a variable by appending the data of one or 
more variables side by side.  All variables (either a vector or a matrix) must have the same 
number of rows. The number of columns in the resultant matrix is equal to the sum of the 
columns of all the present variables. The precision of the resultant variable may also be 
specified. 

Syntax for the AUGMENT Paragraph 

 
Sentences Used in the AUGMENT Paragraph  
 
OLD sentence 

The OLD sentence is used to specify the names of the variables to be augmented.  

NEW sentence  
The NEW sentence is used to specify the name of the variable in which the results of the 
augment operation are stored.  If the NEW sentence is not specified, then the results of the 
join operation will be stored under the name of the first variable listed in the OLD 
sentence.    

PRECISION sentence  
The PRECISION sentence is used to specify the precision of the storage for the 
augmented matrix.  The keyword, w, may be either SINGLE or DOUBLE.  The default is 
the precision of that of the first variable listed in the OLD sentence. 

 
 

AUGMENT OLD  ARE  v1, v2, ---.  @  
  NEW  IS  v.   @ 

 PRECISION  IS  w.  
 
Required sentence:  OLD-VARIABLES  



 

APPENDIX C 

GENERATING AND EDITING 
TIME SERIES DATA 

 
 

Appendix B provided a review of several SCA capabilities to generate, edit and 
manipulate data in the SCA workspace.  This appendix concentrates on those SCA 
capabilities to create or edit time series data in the SCA workspace.  Features discussed in this 
appendix, and the section containing them, are: 

 Section    Features 
 
 C.1  Generation of variables for the modeling of a time series subject  
   to trading day variation or an Easter holiday effect. 
 
 C.2  Editing time series data by: recoding missing values; lagging or  
   differencing data; temporal aggregation; and percent change in  
   a series. 

C.1   Generation of Some Useful Time Series 

The SCA System provides capabilities for simulating ARIMA and transfer function 
models, and for generating some series useful in a time series analysis.  Data simulation is 
discussed in Chapter 12 of The SCA Statistical System: Reference Manual for General 
Statistical Analysis.  Simulated time series data are usually consonant with a specific ARIMA 
model (see Chapter 5) or transfer function model (see Chapter 8).  We may also find 
generated data (that is, data completely specified in some manner) to be useful in data 
analyses.  Such generated data include: 

(a) Indicator variables.  An indicator variable consists of binary (i.e., data that are either 0 
 or 1) and may be used to represent the time period(s) at which an intervention occurs 
 (see Chapter 6 for more information on intervention analysis).  The GENERATE 
 paragraph (see Appendix B.1) is very convenient for creating indicator variables. 
 
(b) The number of Mondays, Tuesdays, . . ., Sundays in a month for a specified span of 
 time.  Variables with such information are useful when the effects of trading days are 
 incorporated within an analysis of monthly time series.  The generation and use of 
 these variables are discussed in C.1.1. 
  
(c) Weights representing the proportion of an Easter effect duration period that occurs in 
 the months prior to Easter for a specified period of time.  The generation and use of 
 these variables are discussed in C.1.2. 
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C.1.1   Generating data for the modeling of trading day variation 

As noted in Chapter 8, transfer function models can be used to model time series data in 
the presence of certain calendar variation.  One of these phenomena is trading day variation, 
another is the Easter holiday effect.  The latter effect is discussed in Section C.1.2. 

 The DAYS paragraph can be used to generate the variables 
 

. 

 
 i=1, 2, ..., 7, represents the number of times the  day of the week (1=Monday, . . ., 

7=Sunday) occurs in the month t.  The DAYS paragraph can also provide a transformation of 
Wit.  These variables are 
 

, 

 
where  (i=1,2,...,6) reflects the number of times a day of the week occurs in a month 

ber of Sundays in the month and  is the total number of days in a 
month. 
 

To illustrate the use of the DAYS paragraph, we will generate the number of Mondays, 
Tuesdays, ..., Sundays in each month during the period January 1949 through December 1960.  
The time span used here corresponds to that of the airline passengers data (Series G) in Box 
and Jenkins (1970).  The data are used in Chapter 5 and are stored in the SCA workspace 
under the label SERIESG.  To generate the data, and store the values in the variables MON, 
TUE, WED, THU, FRI, SAT and SUN, respectively, we may enter 

 -->DAYS   MON,TUE,WED,THU,FRI,SAT,SUN.   BEGIN 19491.   END 1960,12. 
 

The sentences BEGIN and END are required sentences providing the year and month of 
the beginning and ending of the time span.  We will now use the PRINT paragraph to display 
the first 12 observations of SERIESG and the above seven variables.  Some of the output is 
edited for presentation purposes. 

 -->PRINT   SERIESG,MON,TUE,WED,THU,FRI,SAT,SUN.   SPAN IS 1, 12.   @ 
 -->        FORMAT  IS 'F8.0, 7F4.0'. 

 
 VARIABLE    SERIESG  MON  TUE  WED  THU  FRI  SAT  SUN 
 COLUMN-->         1    1    1    1    1    1    1    1  
   ROW  
     1           112    5    4    4    4    4    5    5  
     2           118    4    4    4    4    4    4    4  
     3           132    4    5    5    5    4    4    4  
     4           129    4    4    4    4    5    5    4  
     5           121    5    5    4    4    4    4    5  

1 1t 2 2t 7 7tW W Wβ +β + ⋅⋅⋅+β

itW , thi

it it 7 tD W W , i 1,2,....,6= − =  

7t 1t 2t 7tD W W W= + + ⋅⋅⋅+

itD
relative to the num 7tD
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     6           135    4    4    5    5    4    4    4  
     7           148    4    4    4    4    5    5    5  
     8           148    5    5    5    4    4    4    4  
     9           136    4    4    4    5    5    4    4  
    10           119    5    4    4    4    4    5    5  
    11           104    4    5    5    4    4    4    4  
    12           118    4    4    4    5    5    5    4  

 
As a second illustration of the DAYS paragraph, we will generate the transformed series 

for the same time span as above.  The transformed values are stored in D1 through D7, 
respectively.  We will also specify an eighth variable, DATE.  This optional variable will 
retain row labeling information (that is, year and month) corresponding to each year and 
month in the specified time span. 

 -->DAYS   VARIABLES ARE D1 TO D7, DATE.   BEGIN 1949,1.   END  1960,12.  @ 
 -->       TRANSFORM. 

 
The logical sentence TRANSFORM is included to specify the generation of transformed 

data.  Note the complete form of the VARIABLES sentence is used (i.e., with sentence name 
and verb) to enable us to abbreviate the list of variable names D1, D2, D3, D4, D5, D6, D7, 
by “D1 to D7”.  (For more information on abbreviations, please see Section 2.6.3 of The SCA 
Statistical System: Reference Manual for Fundamental Capabilities.  As before, we will 
display only the first 12 observations of SERIESG, and the variables generated above.  Again, 
some of the output is edited for presentation purposes. 

 -->PRINT   VARIABLES ARE DATE, SERIESG, D1 TO D7.   SPAN IS 1,12.  @ 
 -->        FORMAT IS '2F8.0, 7F4.0' 

 
 VARIABLE     DATE SERIESG  D1  D2  D3  D4  D5  D6  D7  
 COLUMN-->      1       1   1   1   1   1   1   1   1  
   ROW  
     1      194901     112   0  -1  -1  -1  -1   0  31  
     2      194902     118   0   0   0   0   0   0  28  
     3      194903     132   0   1   1   1   0   0  31  
     4      194904     129   0   0   0   0   1   1  30  
     5      194905     121   0   0  -1  -1  -1  -1  31  
     6      194906     135   0   0   1   1   0   0  30  
     7      194907     148  -1  -1  -1  -1   0   0  31  
     8      194908     148   1   1   1   0   0   0  31  
     9      194909     136   0   0   0   1   1   0  30  
    10      194910     119   0  -1  -1  -1  -1   0  31  
    11      194911     104   0   1   1   0   0   0  30  
    12      194912     118   0   0   0   1   1   1  31  

 

C.1.2   Generating data for the modeling of an Easter holiday effect 

As noted in Chapter 8, a type of calendar effect known as a holiday effect occurs when 
consumer patterns or business activities vary due to a holiday.  A transfer function model can 
be used to incorporate a variable of weights associated with a holiday effect within a time 
series model.  The EASTER paragraph is used to generate a variable consisting of monthly 
weights related to the Easter holiday.  The weights are based on the assumption that Easter 
has an effect on business activities in the period immediately preceding it.  This effect is 
usually proportional to the amount of the Easter period that occurs in the months of March 



C.4 GENERATING AND EDITING TIME SERIES DATA 

and April each year.  Proportions may differ between series reflecting the variability of when 
Easter occurs and the duration of the Easter period for a series.  The term duration denotes the 
amount of time (i.e., the number of days) prior to Easter in which a series is likely to be 
affected.  For example, the duration period for clothing sales may be much longer than that of 
floral sales. 

The variable of weights generated by the EASTER paragraph has the value 0 for all 
months, with the exceptions of March and April.  The values for these months are the 
fractions of the duration period occurring in the months.  We need to specify the length, in 
days, of this duration period.  The SCA System also displays the date for Easter in each of the 
years within our designated time span. 

To illustrate the use of the EASTER paragraph, we will generate weights during the 
period January 1949 through December 1960.  This time span is the same as the one used in 
Section C.1.2.  We will assume the duration period to be 10 days.  To generate a variable, say 
EASTERWT, we enter 

 -->EASTER   EASTRWGT.   BEGIN 1949,1.   END 1960,12.  DURATION IS 10. 
 

 THE DATES OF EASTER DURING THE REQUESTED TIME SPAN  
 
  1949   APRIL 17  
  1950   APRIL  9  
  1951   MARCH 25  
  1952   APRIL 13  
  1953   APRIL  5  
  1954   APRIL 18  
  1955   APRIL 10  
  1956   APRIL  1  
  1957   APRIL 21  
  1958   APRIL  6  
  1959   MARCH 29  
  1960   APRIL 17  

 
The variable EASTERWT consists of the following weights 
 

.0   .0   .0  1.0   .0   .0   .0   .0   .0   .0   .0   .0 

.0   .0   .2   .8   .0   .0   .0   .0   .0   .0   .0   .0 

.0   .0  1.0   .0   .0   .0   .0   .0   .0   .0   .0   .0 

.0   .0   .0  1.0   .0   .0   .0   .0   .0   .0   .0   .0 

.0   .0   .6   .4   .0   .0   .0   .0   .0   .0   .0   .0 

.0   .0   .0  1.0   .0   .0   .0   .0   .0   .0   .0   .0 

.0   .0   .1   .9   .0   .0   .0   .0   .0   .0   .0   .0 

.0   .0  1.0   .0   .0   .0   .0   .0   .0   .0   .0   .0 

.0   .0   .0  1.0   .0   .0   .0   .0   .0   .0   .0   .0 

.0   .0   .5   .5   .0   .0   .0   .0   .0   .0   .0   .0 

.0   .0  1.0   .0   .0   .0   .0   .0   .0   .0   .0   .0 

.0   .0   .0  1.0   .0   .0   .0   .0   .0   .0   .0   .0 

 
Non-zero values only occur in the months March and April.  A weight has the value 1 when 
Easter occurs on or before April 1 or after April 11 (since we have defined the duration period 
prior to Easter to be 10 days).  When Easter occurs between April 2 and April 10, inclusive, 
the weights for March and April are both non-zero (with the sum equal to 1.0), reflecting the 
proportion of the 10 day duration period occurring in each month. 
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C.2   Editing Time Series Data  

The SCA System provides many capabilities to edit or modify time series data.  Missing 
data can be recoded and a new series can be created by lagging, differencing or aggregating 
the observations of an existing series.  In addition, a series can be created by computing the 
percent change in the values of a series. 

To illustrate some editing capabilities for time series data, we consider the first 40 
observations of Series C of Box and Jenkins (1970).  These data are assumed to be in the SCA 
workspace under the label SERIESC.  In addition, we will omit a few values, replacing with 
them with missing values, in order to illustrate “patching” capabilities.  The altered data are 
stored in the SCA workspace under the label SERIESCP.  The data are listed below. 

Initial forty observations of Series C of Box and Jenkins (1970) 
(SERIESC) and series with missing data (SERIESCP). 

(Data are read across a line.) 
   

SERIESC    26.6  27.0  27.1  27.1  27.1  27.1  26.9  26.8  26.7  26.4 
SERIESCP   26.6  27.0  27.1  27.1  27.1  27.1  26.9  26.8  26.7  26.4  
 
SERIESC    26.0  25.8  25.6  25.2  25.0  24.6  24.2  24.0  23.7  23.4 
SERIESCP   26.0  25.8  25.6  ****  ****  24.6  24.2  24.0  23.7  23.4  
 
SERIESC    23.1  22.9  22.8  22.7  22.6  22.4  22.2  22.0  21.8  21.4     
SERIESCP   23.1  22.9  22.8  22.7  22.6  22.4  22.2  22.0  21.8  21.4  
 
SERIESC    20.9  20.3  19.7  19.4  19.3  19.2  19.1  19.0  18.9  18.9     
SERIESCP   20.9  ****  19.7  19.4  19.3  19.2  19.1  19.0  18.9  18.9   

   

C.2.1   Patching missing data 

Special actions need to be taken when a time series contains missing observations.  The 
SCA System provides capabilities for dealing with such series.  Both the ACF and PACF 
paragraphs make necessary computational adjustments for missing observations when the 
logical sentence MISSING is included in the paragraph.  A precise method to estimate the 
values of missing data in a time series is employed by the OESTIM paragraph.  If the 
OESTIM paragraph is not available to us, we need to first recode missing data before 
estimating the parameters of a time series model.  The recoded values should be “appropriate” 
so that they do not adversely affect an analysis and may reasonably represent the missing 
data.  In this section, we explain some ad hoc methods that are generally useful. 

To illustrate the replacement of missing data, we consider series SERIESCP.  
SERIESCP has the missing data code for the value of the 14th, 15th, and 32nd observations.  
We can recode a missing value directly using an analytic assignment statement (see Appendix 
B).  Alternatively, we can employ some ad hoc methods through the PATCH paragraph.  The 
PATCH paragraph provides us with some latitude in the recoding of time dependent data.  
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Since the values of the missing observations in SERIESCP are known to us, we are able to 
assess the validity of these methods in this case. 

One simple scheme is to replace a missing value with the average of the values 
immediately adjacent to it.  Adjacent averaging may be appropriate for nonstationary 
nonseasonal time series.  To obtain adjacent averaging as a patching method for SERIESCP, 
we can enter 

 -->PATCH  SERIESCP.  METHOD IS ADJACENT(1).  
 
All missing values are replaced by the average of the values of the observations one time 
period from it.  If two or more missing observations are next to each other, a missing value is 
replaced by the average of its two nearest, and equidistant, non-missing observations.  Here 
we have 
 

 THE   14-TH  OBSERVATION IS RECODED TO     25.2000     
 THE   15-TH  OBSERVATION IS RECODED TO     24.9000     
 THE   32-TH  OBSERVATION IS RECODED TO     20.3000       

 
Here the 32nd observation is recoded to 20.3.  Since observation 15 is missing, the 14th 
observation is recoded to the average of the 12th and 16th values.  Similarly the 15th value is 
recoded to the average of observations 13 and 17.  We can average the values of observations 
two time periods from each missing observation (or span of missing observations) by entering 
 

 -->PATCH  SERIESCP.  METHOD IS ADJACENT(2). 
 
We are informed that 
 

 THE   14-TH  OBSERVATION IS RECODED TO     25.0000                              
 THE   15-TH  OBSERVATION IS RECODED TO     25.0000                              
 THE   32-TH  OBSERVATION IS RECODED TO     20.4000   

 
The recoding for the 14th and 15th observations is as before.  We can see that by 

changing the argument in the METHOD sentence we can average “adjacent” information that 
is farther and farther away from a missing data point.  This may be appropriate if we want to 
average adjacent, “December” or “1st quarter” data in the case of single missing observations 
for seasonal or periodic data.  In such cases the value of the required argument of 
ADJACENT may be 12 or 4, respectively. 

We can also replace missing data by the mean of all data, or a periodic mean (for 
seasonal data).  This method of patching may be appropriate for seasonal and nonseasonal 
time series that have no trend over time.  We can use the mean of all non-missing data as our 
replacement value by entering 

 -->PATCH  SERIESCP.  METHOD IS MEAN(1). 
 
As noted above, this is a reasonable way to recode missing data of a stationary time series.  
Since SERIESC is not stationary, and has a downward drift at its beginning, we observe this 
method of recoding is not inappropriate. 
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 THE   14-TH  OBSERVATION IS RECODED TO     23.3622                              
 THE   15-TH  OBSERVATION IS RECODED TO     23.3622                              
 THE   32-TH  OBSERVATION IS RECODED TO     23.3622  

 
If SERIESCP represented quarterly data, we may wish to use the mean of similar 

quarters as a “patch”.  We can specify this by entering 

 -->PATCH  SERIESCP.  METHOD IS MEAN(4).  
 

 THE   14-TH  OBSERVATION IS RECODED TO     23.2889    
 THE   15-TH  OBSERVATION IS RECODED TO     23.0889    
 THE   32-TH  OBSERVATION IS RECODED TO     23.3889  

 
We may only specify one method in the PATCH paragraph.  If different methods are 

appropriate (e.g., if the structure of the data changes over time), we can combine procedures 
by invoking the paragraph repeatedly but with different specifications in non-overlapping 
time spans.  In addition, when we patch a series we can also create a binary indicator variable 
to highlight those time indices whose values were patched.  If the PATCH paragraph is 
invoked repeatedly for the same series, using the same variable name for the binary indicator 
variable produces a indicator of all changes. 

C.2.2   Lagging and differencing data  

The time series capabilities of the SCA System (see Chapter 5) can incorporate 
differencing in the identification and estimation of time series models.  However, it is 
sometimes useful to be able to lag or to difference data separately.  The LAG and 
DIFFERENCE paragraphs provide these capabilities.  

 To illustrate the LAG paragraph, suppose we enter  
 

 -->LAG  SERIESC.  LAGS ARE 1, 2.  NEW ARE LAGC1, LAGC2.  
 

 THE ORIGINAL SERIES IS SERIESC                                                  
 THE LAG  1 SERIES IS STORED IN VARIABLE  LAGC1  ,  WHICH HAS   41  ENTRIES      
 THE LAG  2 SERIES IS STORED IN VARIABLE  LAGC2  ,  WHICH HAS   42  ENTRIES  

  
We have generated two series, one stored in LAGC1 and the other in LAGC2.  LAGC1 

contains the first lag of SERIESC (that is, its first lag order).  The i-th entry in LAGC1 is the 
(i-1)st entry of SERIESC.  Hence,  

 LAGC15  = SERIESC4,  
 LAGC120 = SERIESC19,  
 LAGC141 = SERIESC40 

 
The value of LAGC1(1) is necessarily undefined.  In like manner, LAGC2 contains the 
second lag order of SERIESC.  As a result, the contents of these variables are 
 

        SERIESC     LAGC1     LAGC2 
 
 1       26.600       ***       ***                                          
 2       27.000    26.600       ***                                          
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 3       27.100    27.000    26.600                                          
 4       27.100    27.100    27.000                                          
 5       27.100    27.100    27.100                                          
 6       27.100    27.100    27.100 
 .         .         .         . 
 .         .         .         . 
 .         .         .         . 
38       19.000    19.100    19.200                                          
39       18.900    19.000    19.100                                          
40       18.900    18.900    19.000                                          
41                 18.900    18.900                                          
42                           18.900  

 
A first lag order is assumed if the LAG sentence is not specified.  Lagged values are 

stored as indicated above so that information is properly aligned if we wish to investigate 
relationships between the currently observed value of one variable and a previous (lagged) 
observation of another variable. 

We difference data in a manner similar to lagging.  For example, the first-order 
differenced series of SERIESC is 

t t t(1 B)SERIESC SERIESC B(SERIESC ),     or− = −

 
tained.  We obtain this new 

series by entering 
 

 -->DIFFERENCE  SERIESC.  NEW IS DIFFC1.  
                             1                                                   
 DIFFERENCE ORDERS ARE  (1-B  )                                                  
 SERIES SERIESC  IS DIFFERENCED, THE RESULT IS STORED IN VARIABLE  DIFFC1        
 SERIES  DIFFC1  HAS   40  ENTRIES                     

 
Similarly we can calculate (1-B)(

t t 1    SERIESC SERIESC −= −
 

The subscript t has been included to indicate how values are ob

41 B− )SERIESC.  This result is related to what we 
have calculated, since  

t 4 . 

We can obtain this differenced series by entering 
 

 -->DIFFERENCE  SERIESC.    NEW IS DIFFC14.    DFORDERS ARE 1, 4. 
 

                             1       4                                           
 DIFFERENCE ORDERS ARE  (1-B  ) (1-B  )                                          
 SERIES SERIESC  IS DIFFERENCED, THE RESULT IS STORED IN VARIABLE DIFFC12        
 SERIES DIFFC12  HAS   40  ENTRIES           

 
 A partial listing of the values in these variables is given below  
 

            SERIESC    DIFFC1   DIFFC14                                          
 
     1       26.600       ***       ***                                          
     2       27.000      .400       ***                                          
     3       27.100      .100       ***                                          

4 4
t t t(1 B)(1 B )SERIESC (1 B )DIFFC1 DIFFC1 DIFFC1 −− − = − = −
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     4       27.100      .000       ***                                         
     5       27.100      .000       ***                                          
     6       27.100      .000     -.400                                          
     7       26.900     -.200     -.300                                          
     8       26.800     -.100     -.100                                          
     9       26.700     -.100     -.100                                          
    10       26.400     -.300     -.300                                          
     .         .         .         . 
     .         .         .         . 

C.2.3   Temporal aggregation 

Occasionally a time series is recorded at one time interval (for example, monthly or 
quarterly), but an analysis utilizes a longer time interval (for example, quarterly or yearly). 
The data recorded at the more frequent time interval must then be transformed by means of 
temporal aggregation for the purpose of analysis.  For more information on temporal 
aggregation, please see Chapter 16 of Wei (1990). 

The AGGREGATE paragraph is used to generate a new time series through the 
temporal aggregation of a specified time series.  The generated series will be calculated from 
non-overlapping time intervals of a length that we specify.  Aggregation is based on either the 
aggregate sum or the aggregate mean of the data values in each period.  When there are fewer 
data points than the specified aggregation period in either the first or the last group, the mean 
of the data available within the group is computed and used accordingly.  If we choose the 
aggregate sum as the method for aggregation, the SCA System will first compute an aggregate 
mean for each group, and then multiply this mean by the designated interval length.  This 
method of aggregation may not be appropriate for a series that is highly seasonal or has a 
trend, and that has an incomplete group at its beginning or end.  

To illustrate the AGGREGATE paragraph, we will use the airline data (SERIESG) used 
previously in this appendix and in Chapter 5.  The monthly totals of airline passengers are 
aggregated to quarterly totals.  We can aggregate the series to a new series, QSERIESG, by 
entering 

 -->AGGREGATE  SERIESG.   NEW IS QSERIESG.   METHOD IS SUM (3). 
 

The method SUM(3) indicates that the sum of each non-overlapping set of 3 
observations is used for aggregation.  Since we have 144 observations in SERIESG, we will 
have 48 observations in QSERIESG with no incomplete groups during aggregation.  The 
values of the variable QSERIESG are shown below. 

        362    385    432    341  
        382    409    498    387  
        473    513    582    474  
        544    582    681    557  
        628    707    773    592  
        627    725    854    661  
        742    854   1023    789  
        878   1005   1173    883  
        972   1125   1336    988  
       1020   1146   1400   1006  
       1108   1288   1570   1174  
       1227   1468   1736   1283  
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C.2.4   Percentage change in a series 

Often it is useful to analyze the percent change of the values of a time series rather than 
the originally recorded observations of the series. The PERCENT paragraph is used to 
compute the percent change of values of a time series and store the results in a new variable.  

To compute percentages for a series, we need to specify a period and a method for 
computation.  The period allows us to base calculations on adjacent points if the length of the 
period is 1.  We can obtain a seasonal percent change in monthly data by using 12 as the 
length of period. 

Two methods of computation are available.  A simple percent change uses the previous 
observation as a base; that is, 

 (Y(t) Y(t i))*100
T(t i)
− −

−
 

 
A symmetric percent change computation uses an average of observed values as a base; 

that is, 
(Y(t) Y(t i))*100

Y(t) Y(t i)
2

− −
+ −

, 

 

where i is the specified period length.  The default method of computation is a simple percent 
change of adjacent points (i.e., SIMPLE(1)). 
 

To illustrate the use of different periods in computations, we will again consider the 
airline data, SERIESG. If we wish to use the default method of computation (i.e., the simple 
percent change of adjacent points), we can simply enter 

 -->PERCENT  SERIESG.   NEW IS SERIESG1. 
 

The percent changes are stored in the variable SERIESG1.  Since the airline data is 
seasonal, we can compute a simple seasonal percent change by entering 

 -->PERCENT  SERIESG.   NEW IS SERIESG2.   METHOD IS SIMPLE (12). 
 

The percent changes are stored in the variable SERIESG2.  We will now use the PRINT 
paragraph to display the first 24 observations of each series (output edited for presentation 
purposes). 

 -->PRINT  SERIESG, SERIESG1, SERIESG2.   SPAN IS 1, 24. 
 

 VARIABLE   SERIESG   SERIES1   SERIES2  
 COLUMN-->       1         1         1  
 ROW  
   1      112.000       ***       ***  
   2      118.000     5.357       ***  
   3      132.000    11.864       ***  
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   4      129.000    -2.273       ***  
   5      121.000    -6.202       ***  
   6      135.000    11.570       ***  
   7      148.000     9.630       ***  
   8      148.000      .000       ***  
   9      136.000    -8.108       ***  
  10      119.000   -12.500       ***  
  11      104.000   -12.605       ***  
  12      118.000    13.462       ***  
  13      115.000    -2.542     2.679  
  14      126.000     9.565     6.780  
  15      141.000    11.905     6.818  
  16      135.000    -4.255     4.651  
  17      125.000    -7.407     3.306  
  18      149.000    19.200    10.370  
  19      170.000    14.094    14.865  
  20      170.000      .000    14.865  
  21      158.000    -7.059    16.176  
  22      133.000   -15.823    11.765  
  23      114.000   -14.286     9.615  
  24      140.000    22.807    18.644  

 
We see that the internal missing value code is used whenever a percent change cannot 

be computed. 
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SUMMARY OF THE SCA PARAGRAPH IN APPENDIX C 

 
This section provides a summary of the SCA paragraph employed in this appendix.  An 

SCA paragraph begins with a paragraph name and is followed by modifying sentences.  
Sentences that may be used as modifiers for a paragraph are shown below and the types of 
arguments used in each sentence are also specified.  Sentences not designated required may be 
omitted as default conditions (or values) exist.  The most frequently used required sentence is 
given as the first sentence of the paragraph.  The portion of this sentence that may be omitted 
is underlined.  This portion may be omitted only if this sentence appears as the first sentence 
in a paragraph.  Otherwise, all portions of the sentence must be used.  The last character of 
each line except the last line must be the continuation character, ‘@’. 

The paragraphs explained in this summary are DAYS, EASTER, PATCH, LAG, 
DIFFERENCE, AGGREGATE, and PERCENT. 

 
 Legend (see Chapter 2 for further explanation) 
 
 v  : variable name 
 i  : integer 
 r  : real value 
 w( ) : keyword (with argument) 
 
 
 
DAYS Paragraph

⋅

 
 

The DAYS paragraph is used to generate seven variables containing the number of 
Mondays, Tuesdays, ..., Sundays in a month for a given period of time.  The number of rows 
generated corresponds to the number of months in the specified time span.  An optional eighth 
variable may also be specified to retain row labeling information (year and month) 
corresponding to each year and month in the specified time span.  The generated series may 
then be transformed according to 

, 

where  is the number of occurrences of the i-th day (1=Monday, . . ., 7=Sunday) in the t-th 
month. 
 
 

 it it 7 tD W W , i 1,2,3,...,6= − =  

7t 1t 2t 7tD W W W= + + ⋅⋅⋅+

itW
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Syntax for the DAYS Paragraph 

  
Sentences Used in the DAYS Paragraph 
 
VARIABLES sentence 

The VARIABLES sentence is used to specify the names of seven variables in which the 
number of days of a month will be stored.  The first seven variables contain information 
regarding the number of days in a month in the following order: Mondays (v1), Tuesdays 
(v2), . . ., Sundays (v7).  An eighth variable may also be specified to store labeling 
information.  The labeling information consists of the year and month corresponding to 
each row.  The number of rows generated is dependent on the time span specified in the 
BEGIN and END sentences.  One row will be generated for each month between the 
specified beginning and ending month, inclusive.    

BEGIN sentence 
The BEGIN sentence is used to specify the beginning year, i1 (1901-2100), and month, i2 
(1 for January, . . ., 12 for December), from which monthly information on days will be 
generated. 

END sentence 
The END sentence is used to specify the ending year, i1 (1901 - 2100), and month, i2 (1 
for January, ..., 12 for December), through which monthly information on days will be 
generated. The year and month specified must be later than that specified in the BEGIN 
sentence.  

TRANSFORM sentence 
The TRANSFORM sentence specifies the generation of a set of transformed data 
according to the transformation defined above.  The default is NO TRANSFORM.  
Transformed data replace the data stored in the variables specified in the VARIABLES 
sentence as follows: v1( ), v2( , . . ., v7( . 

 
 

DAYS VARIABLES  ARE  v1, v2, ---, v8. @  
BEGIN IN i1, i2.   @  
END IN i1, i2.    @  
TRANSFORM./NO TRANSFORM.  

 
Required sentences:  VARIABLES, BEGIN, END  

1tD 2tD ) 7tD )
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EASTER Paragraph 
 

The EASTER paragraph is used to generate a variable consisting of monthly weights 
related to the Easter holiday.  The weights (values between 0 and 1) indicate the proportion of 
the Easter effect occurring in each month during the specified time period.  Thus, the weight 
is usually 0 for all months with the exceptions of March and April.  An optional second 
variable may be created to retain row labeling information (year and month) corresponding to 
each year and month in the specified time span. 

Syntax for the Easter Paragraph 

  
Sentences 
  
VARIABL

The VA
weights
is specif
variable

BEGIN sen
The BE
(1 for J
will be g

END senten
The EN
January
be gene
sentence

DURATIO
The DU
Easter h

 
 

 

EASTER VARIABLES  ARE  v1, v2. @  
BEGIN IN i1, i2.  @  
END IN i1, i2.   @ 
DURATION  IS  i.  

 
Required sentences:  VARIABLES, BEGIN, END and DURATION 
Used in the EASTER Paragraph 

ES sentence 
RIABLES sentence is used to specify the label of the variable in which the 

 (between 0 and 1) related to the Easter holiday will be stored. If a second variable 
ied, it will be used to store year and month labeling information. The length of the 
 generated depends on the time span specified in the BEGIN and END sentences.    

tence 
GIN sentence is used to specify the beginning year, i1 (1901-2100), and month, i2 
anuary, ..., 12 for December), from which monthly information on Easter effect 
enerated. 

ce 
D sentence is used to specify the ending year, i1 (1901-2100), and month, i2 (1 for 
, . . ., 12 for December), through which monthly information on Easter effect will 
rated. The year and month specified must be later than that specified in the BEGIN 
.  

N sentence 
RATION sentence is used to specify the duration (i.e., the number of days) of the 
oliday effect prior to each Easter holiday. This is a required sentence. 
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PATCH Paragraph 
 

The PATCH paragraph is used to recode missing data of a time series by replacing 
missing values with one of the following:  

 (1) the average of the two observations that are i indices adjacent to it, 

(2) the mean of all observations or those non-missing observations i indices apart from 
the missing value, or 

 (3) a specified value.  
 
In addition, a binary indicator variable can be created to provide a reference variable 
highlighting those time indices whose values were patched. 
 
Syntax of the PATCH Paragraph 

 
Sentences Used in the PATCH Paragraph  
  
OLD sentence   

The OLD sentence is used to specify the name of the variable containing missing data. 

NEW sentence  
The NEW sentence is used to specify the name of the variable to store the patched series. 
The default is the name specified in the OLD series.  

METHOD sentence  
The METHOD sentence is used to specify the method used to recode missing data in the 
OLD variable.  Keywords and associated arguments that may be used to specify the 
method are:  

(1) ADJACENT(i): all missing data are recoded to the average of the values of the 
    OLD series with indices (t-i) and (t+i), where t is the index of 
    the missing value.  

(2) MEAN(i): all missing data are recoded to the periodic average of the non-missing 
   values of the OLD series. The argument i is used to specify the  
   periodicity of the series. If i=1 then the overall average of all non- 
   missing data will be used to recode the missing observations.  

PATCH OLD  IS  v.  @  
  NEW  IS  v.  @  

 METHOD  IS  w(i). @  
  SPAN  IS  i1, i2.  @ 

 INDICATOR  IS  v. 
 
Required sentence:  OLD 
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(3) VALUE(r): all missing data are recoded to the value r. 

The methods are all mutually exclusive within the execution of a single paragraph. The 
default is ADJACENT(1).  

SPAN sentence  
The SPAN sentence is used to specify the span of time indices, i1 to i2, in which a patch 
of missing data will be made. The default span is the whole series.  

INDICATOR sentence  
The INDICATOR sentence is used to specify a name (label) for an indicator variable 
associated with the patching.  The indicator variable contains 1 for missing data that are 
replaced, and 0 otherwise. The length of the indicator variable is always the same as the 
old series regardless of the time periods specified in the SPAN sentence.  This convention 
allows use of the same indicator variable for multiple patches of a series using different 
methods. 

  
 
LAG Paragraph  
  

The LAG paragraph is used to apply the lag (backshift) operator, B, to a variable to 
create a new lagged variable.  For the variable X, the lag operation Y = B(X) is defined as 

1  provided it exists (otherwise a missing value code is provided). This definition is 
for a lag one backshift.  Various other lag orders may be specified (e.g., lag k, where 

k  for various values of k), hence creating more than one new series.   

Lagged values are stored in the following manner.  If the variable YDATA stores the k-
th order lagged values of the variable XDATA, then   

 YDATA(t)  = the missing value code,       j = 1,2,. . .,k  
            = XDATA(t-k),                      t = k+1,. . .,k+n  
 
where n is the index of the last observation (value) of XDATA.  As a result, YDATA has 
(n+k) observations, the first k of which containing the missing value code, while XDATA has 
n observations. 
 
Syntax for the LAG Paragraph 

t tY X −=

t tY X −=

 

 
 

 
 

LAG OLD  IS  v.   @ 
 NEW  ARE  v1, v2, --- .  @ 
 LAGS  ARE  i1, i2, --- .  
 
Required sentence:  OLD  
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Sentences Used in the LAG Paragraph  
 
OLD sentence  

The OLD sentence is used to specify the name of the series to lag. 

NEW sentence  
The NEW sentence is used to specify names of the new series.  Results will be stored in 
the OLD series if the NEW sentence is omitted.  

LAGS sentence  
The LAGS sentence is used to specify the lags to be made on the old series.  For example, 
if there are 3 specified lags, three new series will be generated.  The default is 1, creating 

1 .  

 
 
DIFFERENCE Paragraph 

t tY X −=

 
 

The DIFFERENCE paragraph is used to apply the operator  to a variable or a set 
of variables to create one or more variables.  For a variable X, the operation  is 
defined as j  provided t > j (otherwise a missi s 

FORDER) in the backshif
ay be specified. If  

r  w  
variab e the m ed as the f rst (i1+i2+××
of the resulting variable.  The missing values may be deleted and the resulting variable 
compressed to a series containing n(-i1+i2+×××+im) values, where n is the number of 
observations of the original series, if the COMPRESS sentence is specified. 

Syntax for the DIFFERENCE Paragraph 

j(1 B )−

ng value is

 differencing orders, i1, i2, . . .
ill be applied

i

jY (1 B )X= −
 specified).  Thi

t operator B.  More 
, im, are

 to all designated
×+im) values 

t t tY X X −= −
definition is given for one differencing order (D
than one differencing order m
specified, then the operato

les.  In such a cas
i1 i2 im(1 B )(1 B )....(1 B )− − −

issing value code is stor

 

 

DIFFERENCE  OLD  ARE  v1, v2, --- .   @  
   NEW  ARE  v1, v2, --- .   @ 
   DFORDERS  ARE  i1, i2, --- .  @  
   COMPRESS. /NO COMPRESS.  
 
Required sentence:  OLD  
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Sentences Used in the DIFFERENCE Paragraph  
 
OLD sentence  

 The OLD sentence is used to specify the name(s) of the series to be differenced.  

NEW sentence  
The NEW sentence is used to specify the variable name(s) where the differenced series 
are stored. The default is that the data will be stored in the names specified in the OLD 
sentence.  

DFORDERS sentence  
The DFORDERS sentence is used to specify the orders in the product of  differencing 
operators to  be made on  the OLD series.  Default is 1, the single operator (1-B).  If i1, i2, 
. . . are specified, the operator  . . . is applied to the old series. 

COMPRESS sentence  
The COMPRESS sentence is used to indicate whether the missing values caused by 
differencing will be deleted.  When COMPRESS is specified, the resulting NEW variable 
will have fewer observations than its corresponding OLD variable.  The first value of the 
NEW variable will be the first value for which the differencing operator is valid.  Default 
is NO COMPRESS, i.e., the missing value code will be assigned to all undefined values 
and the NEW variable will have as many observations as its corresponding OLD variable.  

 
 
AGGREGATE Paragraph

i1 i2(1 B )(1 B )....− −

 
 

The AGGREGATE paragraph is used to generate a new time series through the 
temporal aggregation of a specified time series.  More than one series can be aggregated at a 
time. 

Syntax of the AGGREGATE Paragraph 

  

 
 
 
 

 

AGGREGATE  OLD  IS  v1, v2, ---.   @ 
  NEW  IS  v1, v2, ---.   @ 
  BEGINNING  IS  i.   @ 

 METHOD  IS  w(i).   @ 
   SPAN  IS  i1, i2.   @ 

 COMPRESS./NO COMPRESS.  
 
Required sentences:  OLD, METHOD 
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Sentences Used in the AGGREGATE Paragraph 
 
OLD sentence 

The OLD sentence is used to specify the name(s) of time series variable(s) from which 
aggregated time series will be derived.  

NEW sentence 
The NEW sentence is used to specify the name(s) of variable(s) to store the aggregated 
time series. The default is to use the names specified in the OLD sentence. 

BEGINNING sentence 
The BEGINNING sentence is used to specify the index for which aggregation will begin. 
The default is 1, i.e., the first period.  

METHOD sentence 
The METHOD sentence is used to specify the manner of, and period for, temporal 
aggregation.  The associated keywords are SUM in which the aggregate sum of each 
nonoverlapping interval is recorded and MEAN in which the aggregate average of each 
nonoverlapping interval is recorded.  The integer argument for each keyword is used to 
specify the time period used in the temporal aggregation.  Values 1 to i of the each 
variable specified in the OLD sentence are aggregated to the first value of the stored in the 
variable(s) specified in the NEW sentence; values i+1 to 2i are aggregated to the second 
value; and so on.  Indexing values are shifted appropriately if the value specified in the 
BEGINNING sentence is not 1.  

SPAN sentence  
The SPAN sentence is used to specify the span of time indices, from i1 to i2, in which 
aggregate time series will be generated.  The default span is the whole series.  

COMPRESS sentence 
The COMPRESS sentence is used to specify that the generated series will be stored in 
condensed form, i.e., aggregated observations are not repeated so that the total number of 
observations are less than that of the original series. The default is COMPRESS. 
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PERCENT Paragraph 
 

The PERCENT paragraph is used to generate a new time series using the percent change 
in the observations of a specified time series.  More than one series can be generated 
simultaneously. 

Syntax for the PERCENT paragraph 

  
Sentences 
 
OLD sente

The OL
percent 

NEW sente
The NE
change 

METHOD 
The ME
computa
SYMME
method 

 (Y

 
 The 
 
 (Y

 
 
 The 
 
SPAN sente

The SPA
computa

 
 
 

PERCENT OLD  ARE  v1, v2, --- .   @ 
NEW  ARE  v1, v2, --- .   @ 
METHOD  IS  w(i).   @ 
SPAN  IS  i1, i2.  

  
Required sentence:  OLD 
Used in the PERCENT Paragraph 

nce  
D sentence is used to specify the name(s) of time series variable(s) for which the 
change will be derived.  

nce  
W sentence is used to specify the name(s) of variable(s) to store the percent 

time series.  The default is to use the names specified in the OLD.   

sentence  
THOD sentence is used to specify the method and the period used in the 
tion of the percent change.  The keyword w can be either SIMPLE or 
TRIC.  The associated period length (i) must also be specified. The SIMPLE 

computes the percent change using the formula  

(t) Y(t i))*100
Y(t i)
− −

−
. 

SYMMETRIC method uses the formula 

(t) Y(t i))*100
Y(t) Y(t i)

2

− −
+ −

, 

default is SIMPLE(1).  

nce  
N sentence is used to specify the span of time indices, from i1 to i2, in which the 
tion of percent change will be made.  The default span is the whole series.  
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APPENDIX D 

SCA MACRO PROCEDURES 

  
The SCA System provides us with the capability to create and maintain computations, 

analyses or procedures specific to our needs.  For example, we may find it useful to perform a 
special sequence of SCA operations with different data during an SCA session.  It would 
simplify our work if such sequences can be written only once and then could be freely 
referred to subsequently.  Many programming languages provide subprograms to help in this 
situation.  SCA offers macro procedures to obtain such flexibility. 

The use of an SCA macro procedure enables us to store any set of SCA statements on a 
file which may be referenced at any point of an SCA session.  This enables us to extend the 
capabilities of the SCA System.  

D.1    SCA Macro Files and Macro Procedures 

SCA macro procedures are maintained in files.  These files are referred to as SCA 
macro files.  Procedures contained on a macro file may be created by any text editor. 

An SCA macro procedure consists of a sequence of SCA statements, including both 
analytic and English-like statements.  A macro procedure is handled as a “subprogram” within 
an SCA session.   

To illustrate SCA macro files and SCA macro procedures, Tables D.1 and D.2 list the 
contents of two SCA macro files.  These files will be used throughout this Appendix to 
illustrate SCA macro procedures.  The records of Table D.1 and Table D.2 comprise the files 
APPENDX.DATA and MACRO.DATA, respectively.  The names of the files are for 
illustration only and may be changed to names appropriate to a local computer. 

 
  
 
  



D.2 SCA MACRO PROCEDURES 

Table D.1    Contents of the file APPENDX.DATA 
 
   

==ALL MACRO 
  CALL APPENDXA 
  CALL APPENDXB 
  RETURN 
==APPENDXA 
--A MACRO PROCEDURE ILLUSTRATING THE MATRIX EXAMPLES 
--OF APPENDIX A 
INPUT ADATA, BDATA, EDATA.  NCOL ARE 2, 3, 3. 
1   1   1   3   0   3  -1   0 
3   1   2   1   0  -1   2  -1 
0   1   0   1  -1   0  -1   3 
END OF DATA 
C1DATA = BDATA # ADATA 
C2DATA = T(ADATA) # BDATA 
DETB = DET(BDATA) 
PRINT  C1DATA, C2DATA, DETB 
BINVERSE = INV(BDATA) 
ADJOINTB = DETB*BINVERSE 
PRINT BINVERSE, ADJOINTB 
EIGEN EDATA 
RETURN 
==APPENDXB 
--A MACRO PROCEDURE OF THE SCA STATEMENTS IN SECTION B.1.1 
--AND B.1.2 OF APPENDXB 
GENERATE VECTOR1. NROW ARE 10. VALUES ARE 0 FOR 5, 1 FOR 5. 
GENERATE VECTOR2. NROW ARE 10. VALUES ARE 0 FOR 5, 1 FOR 2, 0 FOR 3. 
GENERATE VECTOR3. NROW ARE 10. PATTERN IS STEP(1.0, 0.5).  
GENERATE VECTOR4. NROW ARE 10. PATTERN IS RATE(1.0, 2.0). 
PRINT VECTOR1, VECTOR2, VECTOR3, VECTOR4 
RETURN 
// 
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Table D.2   Contents of the file MACRO.DATA 
   

==SCORES  
C                                @  
C   AVERAGE ENGLISH SCORES       @  
C  
    INPUT VARIABLE IS ENGLISH.  
    82  14  25  67  48  76  23  46  96  
    69  66  62  70  88  61  72  
    END OF DATA  
C                               @  
C   AVERAGE PHYSICS SCORES      @  
C  
    INPUT VARIABLE IS PHYSICS.  
    86  72  34  92  68  74  69  35  
    75  24  33  
    END OF DATA  
    RETURN  
==EXPLORE  
C                                                         @  
C   AS A MEANS TO GET A FEEL FOR A DATA SET,              @ 
C   A CONFIDENCE INTERVAL AND PLOT OF DATA                @  
C   OVER TIME WILL BE INVOKED.                            @  
C   DATA ARE ASSUMED TO BE STORED IN THE SCA WORKSPACE    @  
C   IN A VARIABLE NAMED X.                                @  
C  
    CINTERVAL  X 
    TSPLOT  X 
    RETURN  
==LINREG  
 
      PARAMETER SYMBOLIC-VARIABLES ARE NINDEP, FILE(12).  
C                      @  
C     READ IN DATA     @  
C  
      INPUT VARIABLES ARE Y,X.    FILE IS &FILE.  @ 
            NCOLS ARE 1, &NINDEP.                  
C                                                                        @  
C     COMPUTE REGRESSION COEFFICIENTS, PREDICTED VALUES, RESIDUALS, ETC. @  
C  
      BETA = INV(T(X)#X)#T(X)#Y  -- COMPUTE REGRESSION COEFFICIENTS  
      YHAT = X#BETA              -- COMPUTE PREDICTED VALUES  
      RESI = Y-YHAT              -- COMPUTE RESIDUALS  
      N    = NROW(X)  
      P    = NCOL(X)                       
      NP   = N-P                           
      P1   = P-1                           
      MEAN = SUM(Y)/N                      
      SST  = SUM((Y-MEAN)**2)  
      SSE  = SUM(RESI**2)  
      SSB  = SST-SSE  
      MSE  = SSE/NP  
      MSB  = SSB/P1  
      F    = MSB/MSE  
C                                     @    
C     PRINT REGRESSION COEFFICIENTS   @    
C 
      DO 100 I=1,P  
      I1=I-1  
      IF(I1 LE 9) THEN NEXT ELSE GO FORWARD 80  
      DISPLAY TEXT IS T5,'BETA',I1('F1.0'),'  = ',BETA('F12.4',I).  
      GO FORWARD 100  
   80 DISPLAY TEXT IS T5,'BETA',I1('F2.0'), ' = ',BETA('F12.4'',I).  
  100 CONTINUE  
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Table 2   Contents of the file MACRO.DATA (continued) 
 

C                                           @  
C     PRINT THE ANALYSIS OF VARIANCE TABLE  @  
C  
      DISPLAY TEXT IS ///T5,'ANALYSIS OF VARIANCE TABLE'//         @  
          T5,'  SOURCE     D.F.   SUM OF SQUARES   MEAN SQUARES   F'/.  
      DISPLAY TEXT IS T5,'REGRESSION',P1('F6.0',1),SSB('C17.4',1), @  
          MSB('C15.4',1),F('C10.2',1).  
      DISPLAY TEXT IS T5,'   ERROR  ',NP('F6.0',1),SSE('C17.4',1), @  
          MSE('C15.4',1).  
      DISPLAY TEXT IS T5,'   TOTAL  ',N ('F6.0',1),SST('C17.4',1)  
      RETURN  
// 

 

D.2   Structure of an SCA Macro File 

Both files APPENDX.DATA and MACRO.DATA have similar structure.  A set of SCA 
commands, or data, are preceded by a record with double equal signs (i.e., ‘= =’) in columns 1 
and 2; and are ended with the statement RETURN.  The final entry of each file is ‘//’. 

The alphanumeric characters following ‘= =’ provide the name of the macro procedure.  
For example, the file APPENDX.DATA consists of the macro procedures named 
ALLMACRO, APPENDXA and APPENDXB; while MACRO.DATA contains the macro 
procedures SCORES, EXPLORE and LINREG.  The name of a macro procedure may contain 
from one to eight alphanumeric characters, with a letter as the mandatory first character.  If 
more than eight characters are used as a macro procedure name, only the first eight characters 
are interpreted. 

Any line with the letter C in the first column and a space in the second column (i.e., ‘C’) 
is interpreted as a line of comments.  Any line whose first non-blank entries are a double dash 
(‘--‘) is also interpreted as a line of comments.  Lines beginning with ‘--‘  are not printed, but 
those beginning with ‘C’ will be printed as they are interpreted during an SCA session. 

D.3   Invoking a Macro Procedure 

 If we enter the command 
 

 -->CALL   APPENDXB.    FILE IS  'APPENDX.DATA'. 
 
then the following set of SCA commands will be interpreted and executed 
 

GENERATE VECTOR1.  NROW ARE 10.  VALUES ARE 0 FOR 5, 1 FOR 5. 
GENERATE VECTOR2.  NROW ARE 10.  VALUES ARE 0 FOR 5, 1 FOR 2, 0 FOR 3. 
GENERATE VECTOR3.  NROW ARE 10.  PATTERN IS STEP(1.0, 0.5).  
GENERATE VECTOR4.  NROW ARE 10.  PATTERN IS RATE(1.0, 2.0). 
PRINT VECTOR1, VECTOR2, VECTOR3, VECTOR4 
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These commands will duplicate selected capabilities illustrated in Appendix B.  Similarly, if 
we enter 
 

 -->CALL   APPENDXA.    FILE IS  'APPENDX.DATA' 
 
then selected capabilities illustrated in Appendix A will be computed and results displayed. 
 

The macro procedure SCORES of MACRO.DATA will transmit two variables, stored 
as ENGLISH and PHYSICS, to the SCA workspace.  The procedure named EXPLORE can 
be used for computing a confidence interval and a time series plot of a variable.  For example, 
suppose we have three variables, SERIESA, SERIESB, and SERIESC, in the SCA 
workspace.  We can repeatedly perform these operations by entering the sequence of 
commands 

 -->X = SERIESA 
 -->CALL EXPLORE.   FILE IS  'MACRO.DATA'. 
 -->X = SERIESB 
 -->CALL EXPLORE 
 -->X = SERIESC 
 -->CALL EXPLORE 

 
We may note that after the first CALL to the EXPLORE macro procedure the FILE 

sentence is omitted.  Unless it is instructed otherwise, the SCA System assumes a macro 
procedure being called resides in the last referenced macro file.  This default is implicit within 
the macro procedure ALLMACRO of the APPENDX.DATA file. If we enter 

 CALL   ALLMACRO.    FILE IS  'APPENDX.DATA'. 
 
we see that calls to the remaining macro procedures of the file are invoked, hence all macro 
procedures of the file are executed.  Care must be taken if one or more macro procedures is 
nested within another.  That is, an error can occur if one macro procedure calls another.  
Appropriate allocation and de-allocation of files is required.  Please refer to Section 1 of 
Appendix E for further information. 

D.4   Symbolic Variables in a Macro Procedure  

Symbolic Variables 
 

The term “symbolic variables” refers to any name used in a macro procedure to label a 
variable or entry that can be given a new value or connotation when a macro procedure is 
invoked.  Symbolic variables add flexibility to macro procedures by labeling actual arguments 
that may change when a procedure is executed.  For example, it is desirable to be able to pass 
a different series name (or variable name) to the EXPLORE procedure in MACRO.DATA 
rather than requiring a variable to have X as its name for all uses of the procedure.  To 
facilitate this convenience, the label X may be replaced by an expression, such as &SERIES, 
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in the procedure.  In this manner, SERIES is recognized by the system as a symbolic variable 
as explained below.  

Within the body of a macro procedure a symbolic variable is denoted by preceding a 
string of alphanumeric characters by an ampersand (&).  The first character of the string must 
be a letter and the last character may be a compound symbol (#).  The compound symbol is 
used as a deliminator if the symbol variable is immediately followed by a number or letter.  
The name of the symbolic variable is the character string excluding the compound symbol.  
The compound symbol can be omitted if the symbolic variable name is immediately followed 
by a special character such as blank, ‘.’ or ‘, ‘.  If the alphanumeric string denoting the 
symbolic variable has more than eight characters, only the first eight are interpreted.  The 
special character ‘&’ is used to distinguish symbolic variables from other variables used in a 
macro procedure.  The actual values used for the symbolic variables are supplied when the 
macro procedure is invoked (by the CALL paragraph, see syntax at the end of this Appendix), 
or may be those values supplied as default values within the procedure itself.  In the SCA 
interactive mode, if a symbolic variable does not have a default value and is not supplied in 
the CALL paragraph, the SCA System will issue a prompt for a value.  The response to the 
prompt must be enclosed in a pair of parentheses.  A fatal error will occur if such a situation 
happens in the batch environment.  

 
Symbolic Substitution 
 

The SCA System scans each line in a macro procedure and replaces symbolic variables 
with their actual values in an action called symbolic substitution.  An actual argument for a 
symbolic variable is always stored in its exact character form.  For example, if a symbolic 
variable has a value 2.3, it is stored as a string of three characters ‘2.3’, rather than a real 
number.  Hence symbolic substitution will not lose any precision.  The rule governing 
symbolic substitution is simple: the SCA System scans a line in the macro procedure from 
right to the left and substitutes the first symbolic variable encountered by its associated value 
(in character form).  This scanning is repeated until all symbolic variables are substituted and 
resolved.  This rule allows the user to concatenate symbolic variables to modify existing 
variable names, or to use multiple ampersands.  For example, if &A has the symbolic 
argument JOHN, and &JOHN has the symbolic argument BOY, then &&A will have the 
value BOY after the completion of symbolic substitution.  The symbolic variables may appear 
anywhere in a statement in an SCA macro procedure although they usually appear in analytic 
expressions or argument lists of assignment sentences. 

D.5   A Regression Macro Procedure 

To illustrate both the use of symbolic variables and the ability to write our own 
procedures, we consider the macro procedure LINREG of the MACRO.DATA file (see Table 
D.2).  LINREG performs a regression analysis using analytic expressions (see Appendix A).  
This procedure may be useful in teaching regression analysis, but a more computationally 
efficient means is available through the SCA REGRESS paragraph (see Chapter 4). 
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The macro procedure transmits data for the dependent and independent variables from a 
file.  The symbolic argument FILE is used to designate the logical unit number for the file 
containing the data.  If a unit number is not specified in the CALL paragraph, the default unit 
12 is used.  This default value is specified within the LINREG macro in the PARAMETERS 
paragraph (its complete syntax is provided at the end of this Appendix). 

Within the file FILE the first column of data is transmitted to the dependent variable 
labeled Y and the remaining p columns contain the independent variables, stored in the matrix 
X.  The value p is represented in the macro by the symbolic argument NINDEP.  This 
argument has no default value, hence we must specify it in our CALL of LINREG. 

The data listed in Table D.3 is assumed to be on a file that has been associated with the 
logical unit 12.  This assignment may have been accomplished before we invoked the SCA 
System or through the ASSIGN paragraph (see Appendix E). 

 
Table D.3  Data used in the LINREG example 

   
101   1   1   1   1  
106   1   1   1   1  
 87   1   1   1   1  
131   1   1   1   1  
265   1   1   2   2  
272   1   1   2   2  
279   1   1   2   2  
302   1   1   2   2  
106   1   2   1   2  
 89   1   2   1   2  
128   1   2   1   2  
103   1   2   1   2  
291   1   2   2   4  
306   1   2   2   4  
334   1   2   2   4  
272   1   2   2   4  

 
 
To invoke the LINREG procedure on this data set we can enter 
 

-->CALL   LINREG.   FILE IS  'MACRO.DATA'.   @ 
           SYMBOLIC IS NINDEP(4). 

 
We will obtain output similar to that given below. 
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REGRESSION COEFFICIENTS:  
  
    BETA0  =     -46.2500  
    BETA1  =     -20.7500  
    BETA2  =     152.2500  
    BETA3  =      21.0000  
 
    ANALYSIS OF VARIANCE TABLE  
 
    SOURCE      D.F.   SUM OF SQUARES    MEAN SQUARES        F  
 
    REGRESSION     3     135,959.5000     45,319.8330     117.73  
       ERROR      12       4,619.5000        384.9583  
       TOTAL      16     140,579.0000  

D.6   Global and Local Variables  

A variable with ‘@’ as the first character of its name is treated as a local variable within 
a macro procedure.  Others are regarded as global variables.  The difference between a local 
and global variable is that local variables are deleted from the workspace upon completion of 
a macro procedure, unless otherwise specified.  A local variable may be retained in the 
workspace by using the RETAIN sentence in the RETURN paragraph (see the Syntax section 
at the end of this Appendix).  Global variables may be used anywhere in a session, including 
in subsequent macro procedures. 
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SUMMARY OF THE SCA PARAGRAPHS IN APPENDIX D 

 
This section provides a summary of those SCA paragraphs employed in this chapter.  

Each SCA paragraph begins with a paragraph name and is followed by modifying sentences.  
Sentences that may be used as modifiers for a paragraph are shown below and the types of 
arguments used in each sentence are also specified.  Sentences not designated required may be 
omitted as default conditions (or values) exist.  The most frequently used required sentence is 
given as the first sentence of the paragraph.  The portion of this sentence that may be omitted 
is underlined.  This portion may be omitted only if this sentence appears as the first sentence 
in a paragraph.  Otherwise, all portions of the sentence must be used.  The last character of 
each line except the last line must be the continuation character, ‘@’. 

The paragraphs to be explained in this summary are CALL, PARAMETERS, and 
RETURN. 

 
 Legend (see Chapter 2 for further explanation) 
 
  v :  variable name 
  v(a) :  variable name (with argument)  
  i :  integer 
  ‘c’ :  character data (must be enclosed within single apostrophes) 
 
 
 
CALL Paragraph  
 

The CALL paragraph is used to invoke an SCA macro procedure.  It is also used to 
specify the actual arguments for the symbolic variables in the macro procedure and repetitions 
of the execution of the procedure.   

 
Syntax of the CALL Paragraph 

 
 

 
 
 

CALL PROCEDURE  IS  procedure-name.  @  
 FILE  IS  'c' (or i).     @  
 SYMBOLIC-VALUES  ARE  v1(a), v2(a), --- . @ 
 REPEAT  IS  i.    
 
Required sentence:  PROCEDURE  
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Sentences used in the CALL paragraph 
 
PROCEDURE sentence  

The PROCEDURE sentence is used to specify the name of the macro procedure to be 
executed.  

FILE sentence 
The FILE sentence is used to specify the name of the macro procedure file containing the 
called macro procedure.  A logical unit number may be specified instead.  The default unit 
is 8.  More than one macro procedure file may be allocated for an SCA session.    

SYMBOLIC-VALUES sentence 
The SYMBOLIC-VALUES sentence is used to specify the actual values or arguments of 
the symbolic variables used in the procedure.  The value of a symbolic variable need not 
be specified if the default value is desirable. If a symbolic variable does not have a default 
value and is not specified in this sentence, execution of the macro procedure is aborted in 
batch mode or a prompt message is issued in the interactive mode requesting an 
appropriate value when the PARAMETER paragraph is executed. The syntax for the 
arguments in this sentence is the same as that in the SYMBOLIC-VARIABLE sentence of 
the PARAMETER paragraph.  

REPEAT sentence   
The REPEAT sentence is used to specify the number of times the macro procedure should 
be executed.  This sentence is useful when the macro procedure is used for simulation.  
The default value is 1. 

 
  
PARAMETERS Paragraph  
  

The PARAMETERS paragraph is used to specify the symbolic variables (and their 
possible default values) of an SCA macro procedure.  This paragraph is not required in a 
macro procedure if the procedure does not have symbolic variables.  The PARAMETERS 
paragraph must be executed before any symbolic variable is used.  Usually, it is placed at the 
beginning of a macro procedure.  Note only one PARAMETERS paragraph may be specified 
in a macro procedure.  

 
Syntax of the PARAMETERS paragraph 

 
 
 

PARAMETERS SYMBOLIC-VARIABLES  ARE   v1(a), v2(a), --- .  
 
Required sentence:  SYMBOLIC  
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Sentence used in the PARAMETERS paragraph 
 
SYMBOLIC-VARIABLE sentence 

The SYMBOLIC-VARIABLE sentence is used to specify those variables that will be used 
as symbolic variables in a macro procedure. The arguments, v1(a), v2(a), ---, have the 
following syntax 

  Symbolic-variable-name(default-symbolic-value) 

Specification of a default symbolic value or argument is optional.  If a symbolic variable 
is given no default argument, its argument must be specified in the CALL paragraph.  
Otherwise a fatal error results in batch mode, or a prompt is issued by the system in the 
interactive mode.  All characters, inside the parentheses, including the leading and trailing 
blanks, are interpreted as part of the argument.  Therefore both NAME(A) and NAME(A ) 
are acceptable to define the default value of the symbolic variable NAME and are 
considered to be different.  The argument for the former specification has one character, 
‘A’, the latter has two characters, i.e., ‘A’ and a trailing blank.  Due to such differences, 
the response to a system prompt for the value of a symbolic variable of the paragraph 
must be enclosed in a pair of parentheses.   

Note:  The names specified in this sentence are the labels of those variables that are 
symbolic variables in the remainder of the macro procedure.  Unlike the designation of 
symbolic variables in the remainder of the macro, these names must not be preceded by an 
ampersand (&).  

 
 
RETURN Paragraph  
 

The RETURN paragraph is used to signify the end of an execution flow for a set of 
instructions written as an SCA macro procedure.  The paragraph also is used to specify 
actions to be taken with respect to variables created during the macro procedure.   

 
Syntax of the RETURN paragraph 

 
 

 
 
 

RETURN RETAIN v1, v2, ---. @  
  COMPRESSION./NO COMPRESSION. 
 
Required sentences:  none  
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Sentences used in the RETURN paragraph 
 
RETAIN sentence 

The RETAIN sentence is used to specify the name(s) of those local variables (i.e., ones 
that are for temporary use in the macro procedure) that should now be retained (i.e., not 
deleted)  in the workspace after the execution of the macro procedure.  Normally, all local 
variables are deleted from the workspace.  All local variables may be retained by 
specifying 

             RETAIN   ALL@.  

COMPRESSION sentence  
The COMPRESSION sentence is used to specify the compression of the SCA workspace 
after the execution of the macro procedure.  Although all local variables are deleted after 
an SCA macro procedure is completed, the SCA System does not automatically compress 
the user workspace.  That is, the deleted variables still occupy space in the memory.  The 
keyword COMPRESSION must be specified in the RETURN paragraph if the workspace 
is to be compressed.  

 



 

APPENDIX  E 

UTILITY RELATED INFORMATION 

 
The SCA System provides a number of capabilities to manage files, internal workspace 

(memory), and other utility related tasks effectively within an SCA session.  An overview of 
some of these features is presented in this Appendix.  More information may be found in The 
SCA Statistical System: Reference Manual for Fundamental Capabilities.  Information for 
using the SCA System on specific computers usually accompanies the tapes or diskettes 
containing the SCA System.  This information may have been retained by personnel in a 
computing center and may not be readily available to an SCA user.  In such a case, SCA will 
furnish necessary document(s) upon request. 

All information (data) used during an SCA session resides in the main memory of the 
computer.  The SCA System refers to this memory as the workspace of the SCA session.  In 
addition to user defined information, certain control blocks for the SCA System, and 
temporary work arrays required by some of the operations are also placed in the workspace as 
variables.  The SCA System has a built-in dynamic storage allocator to manage the space 
available for variables during an SCA session.  Usually we do not need to be concerned about 
the management of external files or of the workspace; but occasionally certain actions may be 
necessary in order to use the SCA System or the workspace efficiently.  We will first examine 
aspects of file management, then discuss how we can manage the workspace and the 
presentation of material in it. 

E.1   File Allocation and De-allocation 

A file may need to be designated when transmitting data to or from the SCA workspace, 
when executing a macro procedure (see Appendix D), or managing the SCA workspace (see 
Section E.2).  The FILE sentence is used for this purpose.  The syntax of this sentence is 

 FILE IS  'file-name'. 
 
where ‘file-name’ is a valid file name.  Please note that the file name specified must be 
enclosed within a pair of single quotes.  File names with directory path are acceptable. 
  

In some situations, it is necessary to associate (assign) a unit number with a file name.  
In such cases, the file unit number is an integer and should not be enclosed within single 
quotes.  Some reasons to use unit numbers are provided below.  The SCA ASSIGN paragraph 
can be used for this purpose. 

When data are transmitted to or from the SCA workspace, the SCA System dynamically 
assigns (associates) unit number 7 with the file name specified.  Since internal assignment of 
unit numbers is made in these paragraphs, we need not specify a file unit number when using 
these paragraphs. 
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The FREE paragraph releases a file from an SCA session and makes the unit number 

available to other files.  However, ASSIGNing the same unit twice implicitly FREEs the first 
file before ASSIGNing the second one.  Thus, it is not necessary to issue a FREE paragraph 
before re-using a unit number, though it certainly does not hurt. 

The ASSIGN paragraph is seldom needed except when (1) recalling the contents of a 
workspace file with a name different from the default file (or default unit) employed, or (2) a 
macro procedure calls another macro procedure of a different file.  An example is provided to 
illustrate each situation. 

 
EXAMPLE 1: 
 

As an example of the ASSIGN and WORKSPACE (see Section E.3) paragraphs, the 
following SCA paragraphs may be used to allocate a file and save the SCA workspace to the 
file PROJECT1.WRK. 

 ASSIGN FILE IS 9.      @ 
   EXTERNAL IS  'PROJECT1.WRK'.  NEW.  @ 

  ATTRIBUTE FILEFORMAT(BINARY),  @ 
   ACCESS(WRITE). 
 
 WORKSPACE  MEMORY IS SAVED(9). 
 
The specification ACCESS(WRITE) is not necessary since a NEW file is always writable.  
However, such specification is necessary if the file to be used is an existing file. 
 
 To recall the workspace saved previously, we may enter 
 
 ASSIGN FILE IS 9.  EXTERNAL IS  'PROJECT1.WRK'. @ 
   ATTRIBUTE FILEFORMAT(BINARY). 
 
 WORKSPACE  MEMORY IS RECALLED(9). 
 
EXAMPLE 2: 
 

The following example demonstrates the use of the ASSIGN paragraph within an SCA 
macro procedure (see Appendix D) that has an imbedded CALL to another file.  In this 
example, we assume there are two macro procedure files.  One is named MYDATA.DAT, a 
file consisting of procedures that will transmit data sets to the SCA System.  One of the macro 
procedures of this file is assumed to have the name DATA1.  

Suppose there is a second macro procedure file, say MYPROC.DAT, consisting of a 
number of macro procedures useful for data analysis.  In this file, we assume there is a macro 
procedure named EXAMPLE1 that reads the data contained in the macro procedure DATA1.  
The portion of this file related to EXAMPLE1 is given below. 
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 . 
 . 
 . 

  ==EXAMPLE1 
    ASSIGN  FILE IS 20.   EXTERNAL IS 'MYDATA.DAT'. 
    CALL    DATA1.  FILE IS 20. 
       . 
       . 
       . 
    RETURN 
    END 
  ==EXAMPLE2 
       . 
       . 
       . 
 

The procedure above does the following: 
 

(1)  MYDATA.DAT is associated with the file unit 20. 

(2)  Data are transmitted through the call of the macro procedure DATA1 in the file 
MYDATA.DAT 

(3)  Other analyses may follow after the data are transmitted 
 
The above steps are invoked by entering the statement 
 
 CALL   EXAMPLE1.   FILE IS  'MYPROC.DAT' 
 
(See Appendix D regarding the use of the CALL paragraph.)  If MYDATA.DAT was not 
provided with a separate file unit number, then the macro CALL of DATA1 would cause an 
error.  First the macro file MYPROC.DAT would be freed and replaced by  MYDATA.DAT 
as the macro file in use.  The SCA System would then be unable to return to EXAMPLE1 as 
it will have lost track of the file containing it. 

E.2   Control of the SCA Environment: the PROFILE Paragraph 

We can “control” our SCA environment through the use of the PROFILE paragraph.  
The PROFILE paragraph can be used to alter the prompting and display levels of an SCA 
session, direct output to an external file, or adjust the width of output displayed or assumed 
for data transmitted to the SCA workspace.  More complete information can be found in 
Chapter 8 of The SCA Statistical System:  Reference Manual for Fundamental Capabilities. 

E.2.1   Directing output to a file and output review 

In some situations, we may wish to simultaneously route to a file all, or portions, of 
SCA output that are displayed at our terminal screen. 

 



E.4 UTILITY RELATED INFORMATION 

When we enter the SCA System, the System automatically opens a file called  
SCAOUTP.OTP .  This file remains “attached” for the remainder of our SCA session and is 
assigned an internal unit number of 10.  To simultaneously route the output to this file, we 
simply enter 

 PROFILE   REVIEW 
 
To stop this flow of output to the output file, we enter the SCA statement 
 
 PROFILE   NO  REVIEW 
 
Output will then be displayed at our screen only.  If we re-specify 
 
 PROFILE   REVIEW 
 
at any point of the session, the output will again be directed to the file SCAOUTP.OTP.  In 
the PC environment, any new output directed to the file is appended so that previous 
information will not be overwritten.  However, previous output will be overwritten in the 
mainframe or workstation environment. 
 

In the PC environment, we may review the output information on the file at any time by 
entering 

 REVIEW 
 
The current SCA session will be suspended temporarily and we can review what we have 
routed to the file.  Scrolling instructions at this time are accessed through the movement keys 
on the numeric keypad (Pageup, Pagedown, Home, End, arrow up, arrow down).  To 
terminate this review of output and continue with our SCA session, we press the ESC key. 
 

In order to review this output information on a mainframe computer or workstation we 
can temporarily suspend the current SCA session by using the OS paragraph (see Section 
E.4).  The file SCAOUTP.OTP can be viewed using a local editor. 

If the SCA System is accessed through the SCA Windows/Graphics Package, output 
information is automatically stored on the file SCAOUTP.OTP on our PC and appears in the 
SCA output window.  Output information can be reviewed at any time during the SCA 
session by scrolling the output window.  The file SCAOUTP.OTP exists in the PC 
subdirectory \SCAWIN and is available at the end of an SCA session. 

The file SCAOUTP.OTP is automatically opened and rewound when a new SCA 
session is started.  Hence, if we want to keep a permanent copy of this file, we must either 
rename the file, or copy the file, before we invoke a new SCA session. 
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E.2.2   Adjusting input and output width  

The default display (output) width for the SCA System is 80 columns.  Similarly the 
default input width is 72 columns.  These defaults accommodate all input and output devices.  
We may find it convenient to “re-adjust” these defaults to better reflect the devices we are 
employing or the output we will generate.  For example, we can extend the input width to 80 
columns and display (output) width to 132 columns by entering 

 PROFILE   IWIDTH IS 80.    OWIDTH IS 132. 
 
To be certain that we have these widths throughout our session, we should make this the first 
command within our SCA session. 

E.3   Managing the SCA Workspace: the WORKSPACE paragraph 

Although the SCA System manages the workspace automatically, on occasion we may 
need to manage the workspace ourselves.  This is especially true if we need to “create” more 
space in our workspace for large data sets (by deleting current variables from our workspace) 
or if we wish to copy (or retrieve) our workspace to (from) an external file. 

E.3.1   Saving and retrieving a workspace 

We can “suspend” an SCA session, and continue from where we were, by saving the 
contents of our current workspace to a file, and later retrieving it.  The SCA System 
automatically assigns a workspace file as unit 9 when we start a session.  To save workspace 
to this file, we can enter 

 WORKSPACE   MEMORY IS SAVED (9) 
 
or simply 
 
 WORKSPACE   SAVED 
 
To recall this workspace at some later time, we can enter 
 
 WORKSPACE   MEMORY IS RECALLED (9) 
 
or simply 
 
 WORKSPACE   RECALLED 
 
Note that if we use a file name other than the one assigned by the SCA System, we must use 
the ASSIGN paragraph to associate the file with the appropriate unit number (see Example 1 
in Section E.1). 
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E.3.2   Deleting variables from the workspace 

The WORKSPACE paragraph is used if we need to remove variables from the current 
workspace.  For example, if we need to delete the variables A1DATA, BDATA, and CDATA, 
we can enter 

 WORKSPACE   DELETE A1DATA, BDATA, CDATA.  COMPRESS. 
 
The COMPRESS sentence is included to compress the space occupied by remaining 
variables.  If we do not specify this sentence, then the SCA System may not compress the 
workspace automatically. 

E.3.3   Workspace content 

We can display the content of our workspace (i.e., variable and model names) and the 
amount of space occupied, by entering the command 

 WORKSPACE   CONTENT 

E.3.4   Increasing the size of the SCA workspace  

On occasions in an SCA session, especially when a large data set is involved or in the 
estimation of many parameters in a multivariate time series model, the amount of available 
workspace may not be sufficient.  If we find that more workspace is necessary to continue an 
analysis, the following steps should be taken in an interactive SCA session: 

(1)  Save the contents of the current SCA workspace to an external file.  This is 
accomplished by the WORKSPACE paragraph (using the SAVED option of the 
MEMORY sentence). 

 
(2)  Exit the SCA System (i.e., STOP).  
 
(3)  Re-execute the SCA load module with more workspace allocated.  (See Appendix D 

of The SCA Statistical System: Reference Manual for Fundamental Capabilities or a 
local computer consultant for the instructions appropriate for the host computer 
environment.) 

 
(4)  Once in a new SCA session, we may recall the contents of the old SCA workspace 

back to the current session by the WORKSPACE paragraph (using the RECALLED 
option of the MEMORY sentence). 

 
As a result of the above steps, we now have the contents of the previously saved SCA 
workspace but with a larger size at our disposal.  In this way an analysis may continue from 
the point it was stopped.  However, if the SCA System is exited before the current workspace 
is saved to an external file, the contents of the current memory are lost. 
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E.4   Access to the Host Operating System, the OS Paragraph  

 Frequently it is desirable to be able to access the operating system commands of the 
host computer while still in an SCA session.  The SCA System provides us with such a 
capability with the use of the OS (Operating System) paragraph.  If we enter OS during an 
SCA session, we temporarily enter the operating system environment.  At this time, most of 
the operating system commands, such as text editing, file allocation, de-allocation (freeing), 
copying, and listing can be performed. However, some operating system commands may be 
inaccessible.  For more information on what may be accessed, we may need to check with 
Appendix D of The SCA Statistical System: Reference Manual for Fundamental Capabilities 
or local consultants.  We may return to the SCA session by issuing a QUIT or END statement 
(or exit statement on HP/UX).  

E.5   The RESTART Paragraph 

In some situations, we may work on several unrelated analyses during the same SCA 
session.  It may be desirable to re-initialize the workspace once a task is completed.  This can 
be achieved by issuing a RESTART statement.  This effectively erases the current workspace. 
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SUMMARY OF THE SCA PARAGRAPHS IN APPENDIX E 

 
This section provides a summary of those SCA paragraphs employed in this appendix.  

In most cases, the syntax presented for a paragraph reflects only a portion of the capabilities 
of the paragraph.  More complete information may be found in Chapter 8 of The SCA 
Statistical System: Reference Manual for Fundamental Capabilities. 

Each SCA paragraph begins with a paragraph name and is followed by modifying 
sentences.  Sentences that may be used as modifiers for a paragraph are shown below and the 
types of arguments used in each sentence are also specified.  Sentences not designated 
required may be omitted as default conditions (or values) exist.  The most frequently used 
required sentence is given as the first sentence of the paragraph.  The portion of this sentence 
that may be omitted is underlined.  This portion may be omitted only if this sentence appears 
as the first sentence in a paragraph.  Otherwise, all portions of the sentence must be used.  The 
last character of each line except the last line must be the continuation character, ‘@’. 

The paragraphs to be explained in this summary are ASSIGN, PROFILE, 
WORKSPACE, OS, and RESTART. 

 Legend (see Chapter 2 for further explanation) 
 
  v : variable name 
  i : integer 
  w : keyword 
  ‘c’ : character data (must be enclosed within single apostrophes) 
  
 
 
ASSIGN Paragraph 
 
Syntax of the ASSIGN Paragraph 
 
(A) Assigning an existing file 

 
 

 
 

ASSIGN FILE  IS  i.      @  
  EXTERNAL-NAME  IS  'c'.    @  
  ATTRIBUTE  IS  ACCESS(READ/WRITE/BOTH), @  
                  SHARE(YES/NO).  
 
Required sentences:  FILE and EXTERNAL  
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(B) Assigning a new file  

 
Sentences 
 
FILE sente

The FIL
SCA se
same SC

EXTERNA
The EX
operatin
should c

NEW-FILE
The NE
default i

ATTRIBU
The AT
in this s

ACCES
  
  
  

SHARE
  
  
  

FILE_F
  

 

ASSIGN NEW-FILE.      @ 
  FILE  IS  i.      @  
  EXTERNAL-NAME  IS  'c'.    @  

 ATTRIBUTES  ARE     @  
  ACCESS(READ/WRITE/BOTH),SHARE(YES/NO), @  
  FILE_FORMAT(FORMAT/BINARY),   @  
  TRACKS(i),BLKSIZE(i),RECLENGTH(i),  @  
  DISPOSITION(CATALOG/DELETE). 
 
Required sentences:  FILE, EXTERNAL and NEW-FILE 
Used in the ASSIGN Paragraph 

nce  
E sentence is used to specify a file unit number for a new or an existing file in an 
ssion. On some operating systems, this unit number may only be valid within the 
A session.  

L-NAME sentence  
TERNAL-NAME sentence specifies the file name used by the host computer's 
g system. File name conventions may differ from computer to computer. The user 
onsult local documentation for external file name conventions. 

 sentence 
W-FILE sentence is used to indicate that the file to be assigned is a new file. The 
s NO NEW-FILE, i.e., the file exists.  

TE sentence  
TRIBUTE sentence is used to specify the characteristics of a file.  The keywords 
entence are: 

S : specifies whether the file is READ only, WRITE only, or both READ and  
WRITE (BOTH).  The specification is only valid within the same SCA  
session.  The default is READ only.  Note that a file used for saving data,  
workspace, or output must be assigned as writable.  

 : specifies whether the file will be used in sharing or exclusive mode.  Sharing 
denotes the file may be used by more than one user at the same time.   
Exclusive denotes that the file may not be shared.  The default is YES, i.e., 
sharing mode.  

ORMAT : specifies whether the file is a FORMATTED or BINARY file.  The 
 default is FORMATTED file.  
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TRACKS : specifies the number of tracks to be initially assigned to the file.  The 
default is 10 tracks.  

BLKSIZE : specifies the block size (in characters) of the file.  The default is 1600 
characters.  

RECLENGTH: specifies the logical record length (in characters) of the file. The   
default is 80 characters.  

DISPOSITION : specifies whether the file is to be CATALOGUED or DELETED 
after file is freed.  The default is CATALOG. 

 
  
PROFILE Paragraph 
 

The PROFILE paragraph is used to control key features of an SCA session, such as 
routing information to a file, the width of input/output devices, and the level of output desired. 

Syntax for the PROFILE Paragraph 

 
Sentences Used in the PROFILE Paragraph 
 
REVIEW sentence 

The REVIEW sentence is used to specify that output will be simultaneously displayed on 
the terminal device and routed to the file SCAOUTP.OTP.  This dual routing is continued 
until the sentence NO REVIEW is specified.   

STYLE sentence  
The STYLE sentence is used to specify the level of prompting provided to the user during 
an SCA session.  The style of an SCA session is either batch or interactive.  The keyword 
BATCH  must be specified if the system is used in batch mode.  For the interactive mode, 
the style may be either ALL or PARTIAL.  The default style is PARTIAL. 

In a PARTIAL session, required sentences and some other important sentences are 
prompted if they are not provided as basic instructions.  All logical sentences and 
assignment sentences with defaults are not prompted.  An ALL style will cause all 

PROFILE REVIEW/NO REVIEW. @ 
  STYLE  IS  w.   @  

 ECHO./NO ECHO.  @  
  IWIDTH  IS  i.   @  

 OWIDTH  IS  i.   @  
  OUTPUT-LEVEL  IS  w.  
 
Required sentences:  none 
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sentences to be prompted unless the sentence is specified in the basic set of user 
instructions or the sentence is rarely used. 

ECHO sentence  
The ECHO sentence is used to specify the echo (display) of user's instructions.  When 
ECHO is specified, the SCA System will display user instructions after they are entered.  
This option is also useful when the input instructions come from cards (e.g., in batch 
mode) rather than from the terminal or when a macro procedure (see Appendix D) is 
invoked.  When the input instructions come from the terminal, the ECHO option is also 
useful since the communication line which connects the terminal and the computer may be 
noisy (defective) on occasions.  This option allows the user to know what information the 
computer actually received.  The NO ECHO instruction turns off the  display of basic 
instructions. The default option is ECHO. 

IWIDTH sentence 
The IWIDTH sentence is used to specify the width (in number of characters) for the input 
device.  The width may range from 60 to 80 characters.  The IWIDTH also applies to 
statements from a macro procedure (see Appendix D) or data from a file.  The width of 
records on a data file can also be specified in the INPUT paragraph (see Chapter 2).  Since 
columns 73 to 80 on a record are usually reserved for sequence numbers, the default width 
is assumed to be 72. 

OWIDTH sentence  
The OWIDTH sentence is used to specify the width (in number of characters) of the 
output device.  Both the analytic and English-like statements automatically adjust the 
output format according to the specified output device width.  The default output width is 
80 characters.  

OUTPUT-LEVEL sentence  
The OUTPUT-LEVEL sentence is used to indicate the overall output level desired in an 
SCA session.  The keyword is NONE, BRIEF, NORMAL, or DETAILED.  The default 
output amount is NORMAL. If NONE is specified, the echo of the basic instructions is 
also turned off.  No output is displayed when an analytic statement is used, and the output 
from an English-like statement is same as in BRIEF level.  The user is responsible for 
most of the output.  This option is useful when the SCA System is used strictly as a 
programming language.  If BRIEF, NORMAL, or DETAILED is specified, the SCA 
System sets a default level of output for each English-like statement according to the 
specified level.  This default option may be modified in a particular paragraph by the 
OUTPUT sentence of the paragraph.  
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WORKSPACE Paragraph  
 

The WORKSPACE paragraph is used to manage the user's workspace, such as 
displaying current status, deleting unneeded variables, saving or recalling the workspace, or 
consolidating the unused workspace. 

Syntax for the WORKSPACE Paragraph 

 
Sentences Used in the WORKSPACE Paragraph 
 
MEMORY sentence   

The MEMORY sentence is used to save the contents of the current SCA workspace to a 
file or recall a previously saved SCA workspace from a file.  The SAVED keyword 
specifies the logical unit of the file where the workspace will be saved, and RECALLED 
specifies the logical unit of the file containing the workspace to be recalled.  If both 
SAVED and RECALLED are used, the current workspace is first saved to the designated 
file and then a previous workspace is recalled from another name.  The default logical unit 
for a workspace file is 9.  Therefore if the default file unit is used, the following two 
statements are both acceptable 

WORKSPACE   MEMORY IS SAVED. (or simply WORKSPACE  SAVED.) 

WORKSPACE   MEMORY IS RECALLED. (or simply WORKSPACE  RECALLED.) 

DELETE sentence 
The DELETE sentence is used to specify the names of the variables and/or models to be 
deleted.  Note that the deletion does not increase the available workspace unless the 
workspace is compressed.  

COMPRESSION sentence   
The COMPRESSION sentence is used to specify the compression of the SCA workspace.  
When a variable is deleted, whether implicitly by the processor or explicitly by the user, 
the SCA System does not compress the workspace immediately.  When the user runs out 
of workspace, unneeded variables and models may be deleted and the workspace 
compressed in order to release unused workspace.  The default option is NO 
COMPRESSION.  

WORKSPACE MEMORY  IS  SAVED(i), RECALLED(i). @  
  DELETE v1, v2, --- .    @  

   COMPRESSION./NO COMPRESSION. @  
   NOVAR-REQUIRED  IS  i.   @  

  CONTENT./NO CONTENT.  
 
Required sentences: none  
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NOVAR sentence  
The NOVAR sentence is used to specify the number of additional variables desired in an 
SCA session beyond those already in the workspace.  The SCA System initially allows up 
to 150 variables in the workspace.  If the user requires more than 150 variables, the 
variable list may be expanded to meet the user's requirement.  

CONTENT sentence  
The CONTENT sentence requests the system to display the bookkeeping information of 
an SCA session.  The bookkeeping information includes the names of the variables and 
models in the workspace, and the amount of workspace used.  The default is NO 
CONTENT. 
 

OS Paragraph  
 

The OS paragraph is used to access the host computer's operating system commands 
during an SCA session.  Most of the operating system commands, such as file allocation, de-
allocation (freeing), copying, listing, and text editing, can then be accessed.  However, some 
operating system commands may be inaccessible.  The OS paragraph does not have any 
modifying sentences.  The user may return to the SCA session by issuing a QUIT statement.  

 
 
RESTART Paragraph 
 

The RESTART paragraph is used to initialize the SCA workspace and begin another 
SCA session.  The RESTART paragraph has no modifying sentences.  
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