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CHAPTER 1 

INTRODUCTION 

This document serves as a supplement to the primary SCA user guides which document the well 
established capabilities in Release 7.0 of the SCA System and earlier. New and enhanced capabilities 
in Release 8.0 of the SCA System are described in this document along with the newer capabilities 
introduced in Release 7.3.  

Release 8.0 of the SCA System is organized into editions designed to meet the needs of users with 
varying capability requirements and expertise in time series analysis and forecasting applications.  The 
current SCA editions are 

• Educational Edition 
• Practitioner Edition 
• Professional Edition (A) 
• Professional Edition (B) 
• Advanced Edition 
 
For academic users teaching or learning the fundamentals of time series methods, the Educational 

Edition encapsulates time-tested capabilities in time series analysis and forecasting.  Users who require 
automatic time series modeling and automatic outlier handling methods in addition to traditional user-
directed methods will find the Practitioner Edition suited to their applications.  This edition also 
appeals to users with large-scale forecasting applications or users interested in time series data mining 
and exploration. 

For those users with interest in expanded capabilities, Professional Edition A or B of the SCA 
System add vector ARIMA and simultaneous transfer function models, causality tests, time-varying 
parameter models, segmented time series modeling and forecasting, GARCH and other nonlinear 
modeling, and more.   

In an appendix to this document, all SCA System commands are summarized.  The appendix 
indicates which SCA edition(s) the capability can be found, and the SCA user guide that best 
documents the capability’s usage. A listing of the SCA System user guides is provided below: 

(A) SCA Reference Manual for Fundamental Capabilities 
(B) SCA Reference Manual for General Statistical Analysis 
(C) Forecasting and Time Series Analysis Using the SCA Statistical System, Volume 1 
(D) Forecasting and Time Series Analysis Using the SCA Statistical System, Volume 2 
(E) GARCH Modeling using SCAB34S-GARCH and SCA WorkBench 
(F) New and Enhanced Capabilities in Release 8 of the SCA Statistical System (this document) 
(G) On-line Syntax Help (Accessible through SCA WorkBench) 
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An in-depth discussion of the forecasting and time series analysis capabilities in the SCA System 
are also provided in the book, Time Series Analysis and Forecasting (Second Edition) by Liu (2006).  
For those interested in using the SCA System in a classroom environment, we highly recommend this 
book.  The book can be purchased on the SCA website (www.scausa.com).   

New Features (Release 8.0) 

The SCA System provides many new capabilities and enhancements related to the following topics: 

• Time series power transformation analysis and diagnostics 
• Improved forecasting using power transformations 
• Time-varying parameter models 
• Generalized threshold AR and ARIMA modeling 
• Segmented time series modeling and forecasting 
• GARCH modeling and application environment 
• New seasonal ARIMA identification method 
• Unit root testing 
• Causality tests using vector ARIMA models 
• Improved estimation with root checking of ARMA factors 
• Date building, handling, indexing, and aggregation 

 

These new capabilities of the SCA System are contained within select editions based on topic. We 
begin by summarizing the focus of the SCA System editions below.  

Educational Edition 

The SCA Educational Edition includes essential time series analysis and forecasting capabilities for 
teaching and learning.  It is this fundamental module on which other SCA forecasting and time series 
products are built.  The Educational Edition focuses on time-tested modeling capabilities, providing all 
the necessary tools to identify, estimate, diagnostically check, and forecast using various time series 
models. The SCA Educational Edition includes 

• Box-Jenkins nonseasonal/seasonal ARIMA modeling 
• New identification method for seasonal ARIMA models 
• Powerful transfer function modeling and forecasting 
• Effective LTF model identification for transfer functions 
• Lagged regression with autocorrelated errors 
• Intervention (impact) analysis 
• Exponential smoothing using various methods 
• Time series simulation 
• Constrained parameter estimation 
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• A wide array of capabilities for general statistical analysis  
• Large workspace (60,000 words) allocation 
 

Practitioner Edition 

The SCA Practitioner Edition builds on the Educational Edition by adding expert-system automatic 
time series modeling and forecasting features.  In addition, it includes power packed capabilities to 
automatically detect and adjust for outliers during estimation which is a great tool for time series data 
mining.  The Practitioner Edition offers an effective solution to handle repetitive modeling and 
forecasting tasks on a large number of time series.  It is a natural choice in driving large scale 
forecasting applications that require automation.  The SCA Practitioner Edition builds on the 
Educational Edition by adding 

• Automatic identification of seasonal and nonseasonal ARIMA models 
• Automatic transfer function modeling and intervention analysis 
• Automatic detection and adjustment for outliers using a joint estimation algorithm by C. Chen 

and L.-M. Liu 
• Automatically handles level shifts, temporary changes, additive, and innovational outliers 
• Improved estimates of intervention effects through joint estimation of model parameters and 

outlier effects 
• Better forecasting results by special handling of outliers occurring at the end of a time series 
• Time series data mining and exploration 
• Improve forecasting using power transformation 
• Model identification and estimation with missing data 
• Trading day and moving holiday adjustment 
• Date functions to facilitate daily, weekly, and monthly modeling and forecasting 
• Unrestricted workspace allocation 
 

Professional Edition (A) 

The SCA Professional Edition (A) builds on the Practitioner Edition by adding multivariate time series 
analysis and forecasting using vector ARIMA and simultaneous transfer function (STF) models.  These 
advanced modeling approaches are well-suited to business, economic, industrial and social science 
time series data. The SCA Professional Edition (A) builds on the Practitioner Edition by adding 

• Analysis and forecasting of multivariate time series using vector ARIMA models  
• Causality tests using vector ARIMA models 
• Analysis and forecasting of multivariate time series using simultaneous transfer function 

models that accommodate for intervention, trading day and moving holiday effects 
• Analysis of spatial time series data 
• Multivariate time series simulation using vector ARIMA and STF models 
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• Study of contemporaneous effects using structural form models employing STF models, or use 
reduced form vector ARMA models to leverage lagged dependencies 

• Extend upon conventional econometric models by addressing serially correlated errors 
• Model-based seasonal adjustment 
 

Professional Edition (B) 

The SCA Professional Edition (B) builds on the Practitioner Edition by adding power transformation, 
segmented time series modeling, nonlinear time series testing, identification, modeling, forecasting 
using TAR, threshold ARIMA, and threshold transfer function models.  Also included are new analysis 
capabilities for time-varying parameter models and GARCH models. The SCA Professional Edition 
(B) adds capabilities for 

• New criterion for power transformation to improve forecasting accuracy 
• Segmented time series modeling and forecasting using weighted estimation methods 
• Effective handling of clustered outliers, and desensitizing parameter estimates from temporary 

structural changes 
• Threshold autoregressive (TAR) and general threshold ARIMA modeling and forecasting 
• Piecewise and threshold transfer function modeling and forecasting 
• Nonlinearity tests on time series  
• Analysis using time-varying parameter models 
• GARCH modeling (See SCAB34S GARCH below) 
 

Advanced Edition 

The Advanced Edition provides SCA’s full breadth of capabilities to model and forecast time series 
data combining the features of Professional Editions (A) and (B). 

 



 

 

CHAPTER 2 

DATE HANDLING AND TIME SERIES AGGREGATION 

The SCA Statistical System (Practitioner Edition and above) includes capabilities for date handling 
and aggregation of time series. In this chapter, the commands DATEBUILD, DOWEEK, 
DAGGREGATE, and DVECTOR are discussed.  These capabilities are particularly helpful for 
modeling and forecasting daily and weekly time series.  Through these commands, time series can also 
be modeled in a more deterministic manner which often is useful in understanding the characteristics 
of a time series.  Related capabilities including AGGREGATE, DAYS, DMATRIX, and EASTER are 
documented in the SCA reference manual, Forecasting and Time Series Analysis Using the SCA 
Statistical System, Volume 1. 

A date variable must be stored as a double precision variable in the SCA System.  The 
DATEBUILD command automatically creates a date variable in double precision.  If a date variable is 
read into the SCA System workspace from a file, the user must specify its precision as DOUBLE in the 
INPUT command.  Storing a date variable with single precision will cause the date values to lose 
accuracy after the seventh digit.  Dates are represented as 8-digit numbers of the format YYYYMMDD 
in the SCA System, where YYYY is the 4-digit year, MM is the 2-digit month, and DD is the 2-digit 
day.  For example, August 1, 2007 is represented as the double precision number 20070801 in the SCA 
System. 

2.1 Creating a Date Variable Using the DATEBUILD Command 

The DATEBUILD command is used to generate a sequence of dates within a specified beginning 
period and ending period.  An example of the DATEBUILD command follows.  We begin by creating 
a yearly date variable beginning from 1970 to 2005.  The following DATEBUILD command is 
specified 

 DATEBUILD VYRS.  BEGIN 1970.  END 2005. 

Alternatively, it is sometimes easier to specify the beginning period and the number of date values 
needed. This can be achieved using the command (the generated information is printed below) 

 DATEBUILD VYRS.  BEGIN 1970.  NOBS 36. 
 PRINT VYRS 

  VYRS    IS  A    36  BY     1  VARIABLE; DOUBLE PRECISION 
  1970.000  1971.000  1972.000  1973.000  1974.000  1975.000  1976.000 
  1977.000  1978.000  1979.000  1980.000  1981.000  1982.000  1983.000 
  1984.000  1985.000  1986.000  1987.000  1988.000  1989.000  1990.000 
  1991.000  1992.000  1993.000  1994.000  1995.000  1996.000  1997.000 
  1998.000  1999.000  2000.000  2001.000  2002.000  2003.000  2004.000 
  2005.000   
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We now illustrate the creation of quarterly, monthly, and daily dates using the DATEBUILD 
command.  The BEGIN subcommand requires two arguments for quarterly and monthly dates.  The 
first argument specifies the 4-digit year.  The second argument specifies the beginning quarter or 
month.  In the case of daily dates, a third argument is required to specify the beginning day. 

 DATEBUILD VQTRS.  BEGIN 1970,1.  QUARTERLY.  NOBS 36. 
 DATEBUILD VMNTHS.  BEGIN 1970,1.  NOBS 36. 
 DATEBUILD VDATES.  BEGIN 1970,1,1.  NOBS 36. 
 PRINT VYRS, VQTRS, VMNTHS, VDATES.  FORMAT ‘4F12.0’.  

 VYRS     IS  A    36  BY     1  VARIABLE; DOUBLE PRECISION 
 VQTRS    IS  A    36  BY     1  VARIABLE; DOUBLE PRECISION 
 VMNTHS   IS  A    36  BY     1  VARIABLE; DOUBLE PRECISION 
 VDATES   IS  A    36  BY     1  VARIABLE; DOUBLE PRECISION 
 
 VARIABLE        VYRS       VQTRS      VMNTHS       VDATES                     
   ROW     
     1            1970      197001      197001    19700101 
     2            1971      197002      197002    19700102 
     3            1972      197003      197003    19700103 
     4            1973      197004      197004    19700104 
     5            1974      197101      197005    19700105 
     6            1975      197102      197006    19700106 
     7            1976      197103      197007    19700107 
     8            1977      197104      197008    19700108 
     9            1978      197201      197009    19700109 
    10            1979      197202      197010    19700110 
    11            1980      197203      197011    19700111 
    12            1981      197204      197012    19700112 
    13            1982      197301      197101    19700113 
    14            1983      197302      197102    19700114 
    15            1984      197303      197103    19700115 
    16            1985      197304      197104    19700116 
    17            1986      197401      197105    19700117 
    18            1987      197402      197106    19700118 
    19            1988      197403      197107    19700119 
    20            1989      197404      197108    19700120 
    21            1990      197501      197109    19700121 
    22            1991      197502      197110    19700122 
    23            1992      197503      197111    19700123 
    24            1993      197504      197112    19700124 
    25            1994      197601      197201    19700125 
    26            1995      197602      197202    19700126 
    27            1996      197603      197203    19700127 
    28            1997      197604      197204    19700128 
    29            1998      197701      197205    19700129 
    30            1999      197702      197206    19700130 
    31            2000      197703      197207    19700131 
    32            2001      197704      197208    19700201 
    33            2002      197801      197209    19700202 
    34            2003      197802      197210    19700203 
    35            2004      197803      197211    19700204 
    36            2005      197804      197212    19700205 
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Weekly dates can be created from the daily dates using a two step procedure.  The DATEBUILD 
command contains a HOLD subcommand that stores the components of the generated date variable.  
Through the HOLD subcommand, the user can store the year, quarter, month, day-of-month, and day-
of-week information.  Using the following commands, a weekly date variable (with the dates of 
Monday in each week) is created 

 DATEBUILD VDATES.  BEGIN 1970,1,1.  NOBS 36.  HOLD DOWEEK(VDOW). 
 SELECT VDOW, VDATES.  VALUES (1,1).  NEW DOWT,WKBEGIN. 

 VARIABLE   VDOW   IS EDITED, THE RESULT IS STORED IN VARIABLE   DOWT   
 VARIABLE   DOWT   IS  A    5  BY   1  MATRIX 
 VARIABLE  VDATES  IS EDITED, THE RESULT IS STORED IN VARIABLE WKBEGIN  
 VARIABLE WKBEGIN  IS  A    5  BY   1  MATRIX 
 

 PRINT WKBEGIN.  FORMAT ‘F12.0’. 

   WKBEGIN  IS  A     5  BY     1  VARIABLE; DOUBLE PRECISION 
     19700105 
     19700112 
     19700119 
     19700126 
     19700202 

 

2.2 Extracting Day-of-Week Information from a Date Variable Using DOWEEK  

In the previous example, we used the HOLD subcommand in DATEBUILD to store the day-of-week 
information of the generated date variable. Sometimes a double precision date variable (say VDATES) 
in the form YYYYMMDD already exists in the SCA workspace (e.g., read into the SCA workspace 
through the INPUT command).  In such a case, the following DOWEEK command can be used to 
generate the day-of-week information 

 DOWEEK VDATES.  DAYOFWEEK VDOW.  
 PRINT VDATES, VDOW.  FORMAT ‘F12.0, F4.0’. 

 VDATES   IS  A    36  BY     1  VARIABLE; DOUBLE PRECISION 
 VDOW     IS  A    36  BY     1  VARIABLE 
 
VARIABLE       VDATES  VDOW                                                   
   ROW     
     1        19700101   4 
     2        19700102   5 
     3        19700103   6 
     4        19700104   7 
     5        19700105   1 
     6        19700106   2 
     7        19700107   3 
     8        19700108   4 
     9        19700109   5 
    10        19700110   6 
    11        19700111   7 
    12        19700112   1 
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    13        19700113   2 
    14        19700114   3 
    15        19700115   4 
    16        19700116   5 
    17        19700117   6 
    18        19700118   7 
    19        19700119   1 
    20        19700120   2 
    21        19700121   3 
    22        19700122   4 
    23        19700123   5 
    24        19700124   6 
    25        19700125   7 
    26        19700126   1 
    27        19700127   2 
    28        19700128   3 
    29        19700129   4 
    30        19700130   5 
    31        19700131   6 
    32        19700201   7 
    33        19700202   1 
    34        19700203   2 
    35        19700204   3 
    36        19700205   4 
 

The DOWEEK command can also extract the year, month, and day components of a date variable 
by specifying the optional DATEPARTS subcommand as illustrated below 

 DOWEEK VDATES.  DAYOFWEEK VDOW. @  
     DATEPARTS YRDATE, MNDATE, DYDATE. 

 PRINT VDATES, VDOW, YRDATE, MNDATE, DYDATE.  FORMAT 'F12.0,4F7.0' 

VARIABLE       VDATES   VDOW  YRDATE MNDATE DYDATE                            
   ROW     
     1        19700101      4   1970      1      1 
     2        19700102      5   1970      1      2 
     3        19700103      6   1970      1      3 
     4        19700104      7   1970      1      4 
     5        19700105      1   1970      1      5 
     6        19700106      2   1970      1      6 
     7        19700107      3   1970      1      7 
     8        19700108      4   1970      1      8 
     9        19700109      5   1970      1      9 
    10        19700110      6   1970      1     10 
    11        19700111      7   1970      1     11 
    12        19700112      1   1970      1     12 
    13        19700113      2   1970      1     13 
    14        19700114      3   1970      1     14 
    15        19700115      4   1970      1     15 
    16        19700116      5   1970      1     16 
    17        19700117      6   1970      1     17 
    18        19700118      7   1970      1     18 
    19        19700119      1   1970      1     19 
    20        19700120      2   1970      1     20 
    21        19700121      3   1970      1     21 
    22        19700122      4   1970      1     22 
    23        19700123      5   1970      1     23 
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    24        19700124      6   1970      1     24 
    25        19700125      7   1970      1     25 
    26        19700126      1   1970      1     26 
    27        19700127      2   1970      1     27 
    28        19700128      3   1970      1     28 
    29        19700129      4   1970      1     29 
    30        19700130      5   1970      1     30 
    31        19700131      6   1970      1     31 
    32        19700201      7   1970      2      1 
    33        19700202      1   1970      2      2 
    34        19700203      2   1970      2      3 
    35        19700204      3   1970      2      4 
    36        19700205      4   1970      2      5 

 

2.3 Building Dummy Variables Using the DVECTOR Command 

The DVECTOR command is used to construct a set of dummy variables (design matrix) from the 
values of factor variables and stores the dummy variables as vector variables. The resultant dummy 
variables can then be used in subsequent time series modeling and forecasting. 

The functionality of DVECTOR is similar to that of the DMATRIX command, but  the resultant 
dummy variables are in vector form (as opposed to  matrix form) and are more convenient to use in 
time series modeling  and forecasting.  By default, the dummy variables generated from DVECTOR 
are in a form such that their effect will be estimated as a deviation from the overall mean in a 
regression-like or time series model.  The TYPE subcommand is used to specify whether a dummy 
variable will be created as a deviation from the model’s mean (TYPE is DEVIATION); the first level 
contained in the factor variable is to be omitted (TYPE is T01); the last level contained in the factor 
variable is to be omitted (TYPE is T10); or whether a dummy variable should be generated for all 
levels in the factor variable (TYPE is T11).  The default TYPE is DEVIATION. 

To illustrate, the following DVECTOR command creates a set of dummy variables from the day-
of-week factor variable VDOW.  Using the default type (TYPE is DEVIATION), only six dummy 
variables are created since the last factor is confounded with the overall mean in a model.  The root 
name for the dummy variables is defined in the MAIN-EFFECTS subcommand.  Here, DY is specified 
as the root name which generates variable names DY1 to DY6 in our example. 

 DVECTOR VDOW.  MAIN-EFFECTS DY.   
 PRINT VDATES, VDOW, DY1 TO DY6.  FORMAT 'F12.0,8F4.0' 

 VARIABLE       VDATES VDOW DY1 DY2 DY3 DY4 DY5 DY6                            
   ROW     
     1        19700101   4   0   0   0   1   0   0 
     2        19700102   5   0   0   0   0   1   0 
     3        19700103   6   0   0   0   0   0   1 
     4        19700104   7  -1  -1  -1  -1  -1  -1 
     5        19700105   1   1   0   0   0   0   0 
     6        19700106   2   0   1   0   0   0   0 
     7        19700107   3   0   0   1   0   0   0 
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     8        19700108   4   0   0   0   1   0   0 
     9        19700109   5   0   0   0   0   1   0 
    10        19700110   6   0   0   0   0   0   1 
    11        19700111   7  -1  -1  -1  -1  -1  -1 
    12        19700112   1   1   0   0   0   0   0 
    13        19700113   2   0   1   0   0   0   0 
    14        19700114   3   0   0   1   0   0   0 
    15        19700115   4   0   0   0   1   0   0 
    16        19700116   5   0   0   0   0   1   0 
    17        19700117   6   0   0   0   0   0   1 
    18        19700118   7  -1  -1  -1  -1  -1  -1 
    19        19700119   1   1   0   0   0   0   0 
    20        19700120   2   0   1   0   0   0   0 
    21        19700121   3   0   0   1   0   0   0 
    22        19700122   4   0   0   0   1   0   0 
    23        19700123   5   0   0   0   0   1   0 
    24        19700124   6   0   0   0   0   0   1 
    25        19700125   7  -1  -1  -1  -1  -1  -1 
    26        19700126   1   1   0   0   0   0   0 
    27        19700127   2   0   1   0   0   0   0 
    28        19700128   3   0   0   1   0   0   0 
    29        19700129   4   0   0   0   1   0   0 
    30        19700130   5   0   0   0   0   1   0 
    31        19700131   6   0   0   0   0   0   1 
    32        19700201   7  -1  -1  -1  -1  -1  -1 
    33        19700202   1   1   0   0   0   0   0 
    34        19700203   2   0   1   0   0   0   0 
    35        19700204   3   0   0   1   0   0   0 
    36        19700205   4   0   0   0   1   0   0 

 

In a later chapter, the DVECTOR command is used to generate a set of day-of-week dummy variables 
to explore time-varying parameters in time series models through the TVPEXPLORE command. 

In some circumstances, the user may want to create the dummy variables in an alternative form.  
In such cases, the user can specify the keyword T11, T01, or T10 in the TYPE subcommand.  In the 
next example, the T11 keyword is specified in the TYPE subcommand.  This will create a dummy 
variable for each factor in the VDOW variable (DY1 to DY7).   

 DVECTOR VDOW.  MAIN-EFFECTS DY.  TYPE T11. 

THE MAIN-EFFECT DESIGN MATRIX FOR THE FACTOR   DOW     IS GENERATED. 
 THE RESULT IS STORED IN VECTOR VARIABLES       DY# .  THE LEVELS ARE: 
        1        2        3        4        5        6        7 
 

 PRINT VDATES,VDOW, DY1 TO DY7.  FORMAT 'F12.0,8F4.0'. 

 VARIABLE       VDATES VDOW DY1 DY2 DY3 DY4 DY5 DY6 DY7                        
   ROW     
     1        19700101   4   0   0   0   1   0   0   0 
     2        19700102   5   0   0   0   0   1   0   0 
     3        19700103   6   0   0   0   0   0   1   0 
     4        19700104   7   0   0   0   0   0   0   1 
     5        19700105   1   1   0   0   0   0   0   0 
     6        19700106   2   0   1   0   0   0   0   0 
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     7        19700107   3   0   0   1   0   0   0   0 
     8        19700108   4   0   0   0   1   0   0   0 
     9        19700109   5   0   0   0   0   1   0   0 
    10        19700110   6   0   0   0   0   0   1   0 
    11        19700111   7   0   0   0   0   0   0   1 
    12        19700112   1   1   0   0   0   0   0   0 
    13        19700113   2   0   1   0   0   0   0   0 
    14        19700114   3   0   0   1   0   0   0   0 
    15        19700115   4   0   0   0   1   0   0   0 
    16        19700116   5   0   0   0   0   1   0   0 
    17        19700117   6   0   0   0   0   0   1   0 
    18        19700118   7   0   0   0   0   0   0   1 
    19        19700119   1   1   0   0   0   0   0   0 
    20        19700120   2   0   1   0   0   0   0   0 
    21        19700121   3   0   0   1   0   0   0   0 
    22        19700122   4   0   0   0   1   0   0   0 
    23        19700123   5   0   0   0   0   1   0   0 
    24        19700124   6   0   0   0   0   0   1   0 
    25        19700125   7   0   0   0   0   0   0   1 
    26        19700126   1   1   0   0   0   0   0   0 
    27        19700127   2   0   1   0   0   0   0   0 
    28        19700128   3   0   0   1   0   0   0   0 
    29        19700129   4   0   0   0   1   0   0   0 
    30        19700130   5   0   0   0   0   1   0   0 
    31        19700131   6   0   0   0   0   0   1   0 
    32        19700201   7   0   0   0   0   0   0   1 
    33        19700202   1   1   0   0   0   0   0   0 
    34        19700203   2   0   1   0   0   0   0   0 
    35        19700204   3   0   0   1   0   0   0   0 
    36        19700205   4   0   0   0   1   0   0   0 

 

2.4 Temporal Aggregation of a Time Series Using the DAGGREGATE Command 

The DAGGREGATE command is used to generate a new time series through the temporal aggregation 
of a specified time series according to a companion date variable. The aggregated series will be 
organized based on a specified time interval such as year, quarter, month, week, or day. Aggregation 
method may be specified as the sum, mean, first, last, high or low of the data values in each  date 
period.  

In the following illustration of the DAGGREGATE command, we first generate values 1 to 36 and 
store them in a variable Y.  The VDATES variable is used from the earlier example. The generated 
data is printed below. 

 GENERATE Y.  NROWS 36.  PATTERN STEP(1,1). 
 PRINT VDATES,Y.  FORMAT ‘F12.0, F7.1’. 

 VARIABLE       VDATES     Y                                                   
   ROW     
     1        19700101    1.0 
     2        19700102    2.0 
     3        19700103    3.0 
     4        19700104    4.0 
     5        19700105    5.0 
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     6        19700106    6.0 
     7        19700107    7.0 
     8        19700108    8.0 
     9        19700109    9.0 
    10        19700110   10.0 
    11        19700111   11.0 
    12        19700112   12.0 
    13        19700113   13.0 
    14        19700114   14.0 
    15        19700115   15.0 
    16        19700116   16.0 
    17        19700117   17.0 
    18        19700118   18.0 
    19        19700119   19.0 
    20        19700120   20.0 
    21        19700121   21.0 
    22        19700122   22.0 
    23        19700123   23.0 
    24        19700124   24.0 
    25        19700125   25.0 
    26        19700126   26.0 
    27        19700127   27.0 
    28        19700128   28.0 
    29        19700129   29.0 
    30        19700130   30.0 
    31        19700131   31.0 
    32        19700201   32.0 
    33        19700202   33.0 
    34        19700203   34.0 
    35        19700204   35.0 
    36        19700205   36.0 

 

Below, we use the DAGGREGATE command to aggregate the Y variable into a monthly time 
series YMNTHLY. The new monthly dates are stored in the variable MN and the number of cases 
aggregated in each period is stored in the variable MNNOBS. 

 DAGGREGATE Y.  NEW YMNTHLY.  DATE VDATES.  METHOD MONTH(SUM). @ 
  HOLD DATE(MNDATE), NOBS(MNNOBS). 

 PRINT MNDATE, YMNTHLY,MNNOBS.  FORMAT 'F12.0,F7.1,F7.0' 

VARIABLE       MNDATE  YMNTHLY MNNOBS                                          
   ROW     
     1          197001  496.0     31 
     2          197002  170.0      5 

 

The DAGGREGATE command can also aggregate a series by year, quarter, week, and day. Next, we 
perform a weekly temporal aggregation of the Y series using the subcommand METHOD 
WEEK(LAST).  The keyword LAST in parenthesis selects the last value in each period as the 
aggregation method.  
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When aggregating daily data into weekly periods, it is necessary to define the first day of the 
week.  By default, DAGGREGATE uses Monday as the first day of the week.  If a different first day 
of the week is required, the WBEGIN subcommand is employed to specify the first day of the week 
using 1=Monday, 2=Tuesday, …, or 7=Sunday.  In this example, Monday is treated as the first day in 
the week if we set WBEGIN to 1 (the default value).  If WBEGIN is set to 2, then Tuesday will be 
treated as the first day of the week, and so on. 

In the following command, the weekly aggregated series is stored in YWEEK.  The dates of the 
newly aggregated series are stored in WKDATE, and the number of cases aggregated within each 
period is stored in WKNOBS. 

 DAGGREGATE Y.  NEW YWEEK. DATE VDATES.  METHOD WEEK(LAST). @ 
  WBEGIN 1.  HOLD DATES(WKDATE), NOBS(WKNOBS). 

 PRINT WKDATE,YWEEK,WKNOBS.  FORMAT 'F12.0,F7.1, F7.0'. 

VARIABLE       WKDATE  YWEEK  WKNOBS                                          
   ROW     
     1      1970010101    4.0      4 
     2      1970010501   11.0      7 
     3      1970011202   18.0      7 
     4      1970011903   25.0      7 
     5      1970012604   32.0      7 
     6      1970020205   36.0      4 

 

Notice that the WKDATE variable is a 10-digit number instead of an 8-digit number.  When a series is 
aggregated into weekly periods, the 2-digit week-in-year value is appended to the usual date value in 
the format, YYYYMMDDWW.  If the user wants to separate the week-in-year component from the 
regular date value, the following commands may be employed 

 PROFILE PRECISION DOUBLE. 
 WEEKDT=INT(WKDATE/100) 
 WEEKNUM=MOD(WKDATE,100) 
 PRINT WKDATE,WEEKDT,WEEKNUM.  FORMAT ‘2F12.0, F7.0’. 

VARIABLE       WKDATE      WEEKDT  WEEKNUM                                      
   ROW     
     1      1970010101    19700101      1 
     2      1970010501    19700105      1 
     3      1970011202    19700112      2 
     4      1970011903    19700119      3 
     5      1970012604    19700126      4 
     6      1970020205    19700202      5 

 

The DAGGREGATE command also aggregates a series using the method of SUM, MEAN, 
FIRST, LAST, HIGH or LOW of the data values in each period being aggregated.  The FIRST and 
LAST methods are well suited to aggregate financial time series where FIRST is the price on Monday 
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and LAST is the price on Friday.  The HIGH and LOW methods also have application in finance as 
well as other areas such as load forecasting where HIGH is considered as peak load. 

 



 

 

CHAPTER 3 

UNIT ROOT TESTS 

The SCA System provides the UROOT command to perform unit root tests on a time series following 
the works by Dickey and Fuller (1979,1981), Phillips and Perron (1988), and others. 

3.1 Dickey-Fuller Unit Root Tests 

To begin discussion of unit root testing in the SCA System, first consider the following regression 
model that represents a first-order autoregressive AR(1) process: 

t t 1 tY Y a−= ρ +   (3.1) 

Subtracting t 1Y −  from both sides of equation (3.1), the above regression model can be recast into its 
equivalent form 

t t 1 tY Y a−∇ = γ +  (3.2) 

where  1γ = ρ − . 

The regression model in (3.2) can be estimated using ordinary least squares (OLS) and the one-
tailed unit root test is based on the estimated parameter where the null and alternative hypotheses are 

 
0 t

1 t

H : 0 (Y  contains a unit root)
H : 0 (Y  is stationary).

γ =

γ <  

In addition to the unit root regression model in (3.2), Dickey and Fuller (1979) consider two 
alternative regression models for time series that can be represented by an AR(1) process.  The 
regression models are 

t t 1 tY Y a−∇ = μ + γ +   (3.3)
  

 t t 1 tY t Y a−∇ = μ +β + γ +  (3.4) 

Whereas the regression model in (3.2) is appropriate to test a time series that follows a pure random 
walk process, the regression model in (3.3) adds a constant parameter μ  to better represent a time 
series that exhibits drift.  Further, if a time series exhibits drift and linear trend, the regression model in 
(3.4) extends (3.3) by including the time trend parameterβ .   
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In the SCA System, the regression model in (3.2) is referred to as the simple Dickey-Fuller test 
(DF), the regression model in (3.3) is referred to as the Augmented Dickey-Fuller test with constant 
(DFC), and the regression model in (3.4) is referred to as the Augmented Dickey-Fuller test with both 
constant and trend (DFT).   

If a time series cannot be adequately represented by an AR(1) process, the regression models in 
(3.3) and (3.4) can be expanded to include higher-order autoregressive terms, AR(p), as shown below: 

 t t 1 1 t 1 2 t 2 p t p tY Y Y Y ... Y a− − − −∇ = μ + γ + φ ∇ + φ ∇ + + φ ∇ +  (3.5) 

 t t 1 1 t 1 2 t 2 p t p tY t Y Y Y ... Y a− − − −∇ = μ +β + γ + φ ∇ + φ ∇ + + φ ∇ +  (3.6) 

The common parameter γ  in the above regression models is the key to the Dickey-Fuller unit root 
tests.  After the model is estimated using ordinary least squares (OLS) method, if γ is not statistically 
different from zero, the time series is determined to contain a unit root.  The test statistic for γ  is the t-
statistic derived from the OLS estimation, where 

t-statistic = ˆ sγγ . (3.7) 

However, the critical values to test the hypothesis of a unit root do not follow a typical t-distribution.  
Dickey and Fuller (1981) derive a non-standard set of critical values to account for bias in the OLS 
estimators.  The SCA UROOT command uses the critical values that are interpolated from the Dickey-
Fuller tables to test the hypothesis of a unit root.   

It is important to note that the asymptotic distribution of the t-statistic on γ̂  is independent of the 
number of lagged first-order differences ( t iY 's−∇ ) included in the Augmented Dickey-Fuller testing 
models in (3.5) and (3.6).  Therefore, the nonstandard critical value tables derived by Dickey-Fuller are 
still applicable when lagged first-order difference terms are included in the Augmented Dickey-Fuller 
models. 

The usual i.i.d. assumptions apply on the Dickey-Fuller unit tests.  However, these assumptions 
are relaxed under the Phillips-Perron method of unit root testing. 

Mills (1993) indicates that it is desirable to include enough lagged first-order differences in the 
Dickey-Fuller regression models because as the sample size increases, the effects of the correlation 
structure of the residuals become more precise on the shape of the distribution of the non-standard 
critical values.  The exact number of lagged first-order differences included in the regression model is 
arbitrary, and may be influenced by both sample size and seasonality of the time series.  For example, 
Schwert (1987) recommends setting the number of lags (p) to  
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( )( )0.25INT s n 100  , 

where “s” is the seasonal lag (e.g., 12 for monthly seasonality) and “n” is the sample size.  On the other 
hand, Diebold and Nerlove (1990) recommend that in practice the simpler function 

( )0.25INT n , 

is adequate and works well in practice.   

3.2 Phillips-Perron Unit Root Tests 

Phillips and Perron (1988) presented an alternative unit root test method based on nonparametric 
methods.  By doing so, the i.i.d. assumptions on the innovations of the estimated regression models can 
be relaxed.  This is appealing to those working with financial time series, since it is often desirable to 
allow for heterogeneity of the variance.  The Phillips-Perron unit root test is based on the same models 
employed by Dickey-Fuller, namely the equations in (3.2) - (3.4), to obtain the estimate of γ .  Since 
lagged differencing terms are not included in these regression models, Phillips-Perron provide a 
correction for general forms of serial correlation and heterogeneity in the computation of the test 
statistic for γ  .   

The derivation of the Phillips-Perron unit root test will not be detailed in this document.  For those 
interested in its derivation, the original works of Phillips (1987) and Phillips and Perron (1988) are 
recommended.  Hamilton (1994) also provides a detailed discussion regarding this topic.   

To provide a brief overview of the Phillips-Perron unit root test, consider the regression equation 
in (3.3), which is repeated below for convenience: 

 t t 1 tY Y a−∇ = μ + γ +  

An OLS estimation is performed on this model to obtain an estimate of γ  without regard to possible 
serial correlation in the residuals,  tâ .  Given γ , Phillips proposes that the test statistic be adjusted to 
correct for serial correlation and/or the lack of constant variance in the residuals as shown below 

( ) ( ) ( ) ( )
0.5n 22 2 2

j t 1 1j j
t 2

ˆ ˆ ˆ ˆ ˆz 0.5 n Y Y
−

μ μ τ − −τ τ
=

⎧ ⎫⎪ ⎪τ = τ σ σ − σ −σ σ −∑⎨ ⎬
⎪ ⎪⎩ ⎭  (3.8) 

where 2σ̂  is the sample variance of  ta  
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3.3 Example: Canadian Real Exchange Rate 

In this section we illustrate unit root tests using an example of Canadian real exchange rates 
(RCANADA).  The data consist of monthly series from February 1973 up to and including December 
1989 (a total of 203 observations), see Enders (1995, page 261) for more information regarding this 
time series.   

Time Series Plot of Real Exchange Rates in Canada 
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The sample autocorrelation functions of the original series and the first-order difference of the 
RCANADA series are: 

Sample ACF of Real Exchange Rates in Canada (Original) 
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Sample ACF of Real Exchange Rates in Canada (1st Order Difference) 

 

We are interested in testing whether a unit root is present using both the Augmented Dickey-Fuller 
and Phillips-Perron tests.  After the data are brought into the SCA System, we begin by performing an 
Augmented Dickey-Fuller test with a constant term (DFC) on the RCANADA series. The equation 
used for this test is presented in (3.5).  It is shown below for convenience 

 t t 1 1 t 1 2 t 2 p t p tY Y Y Y ... Y a− − − −∇ = μ + γ + φ ∇ + φ ∇ + + φ ∇ + . 

The UROOT command is specified using the DFC method and orders of 0 and 12.  The order of 0 
denotes that no lagged first-order differences will be employed in the above model which assumes that 
the time series follows a random walk process.  The order of 12 denotes that lagged first-order 
differences of 1 through 12 will be employed to accommodate for higher-order autoregressive 
processes in the residual series. 

  UROOT RCANADA.  METHOD IS DFC.  ORDERS ARE  0, 12. 

 AUGMENTED DICKEY-FULLER TEST WITH CONSTANT 
 SERIES TO BE TESTED FOR UNIT ROOT(S) IS:   RCANADA 
 TEST BASED ON SAMPLE SIZE:                     203 
 PROBABILITY OF A SMALLER VALUE IS SET TO:    0.050 
  
                      (<----  INTERPOLATED D-F TABLE  ---->) 
                     CRITICAL VALUE BASED ON OLS t-STATISTIC 
            TEST       0.010     0.050     0.100     0.050 
 ORDER   STATISTIC     LEVEL     LEVEL     LEVEL     LEVEL   UROOT 
     0       -1.81     -3.48     -2.88     -2.57     -2.88     YES    
    12       -1.51     -3.48     -2.88     -2.57     -2.88     YES    
  
                      (<----  INTERPOLATED D-F TABLE  ---->) 
                       CRITICAL VALUE BASED ON OLS AR COEFF. 
            TEST       0.010     0.050     0.100     0.050 
 ORDER   STATISTIC     LEVEL     LEVEL     LEVEL     LEVEL   UROOT 
     0       -7.15    -20.14    -13.91    -11.14    -13.91     YES    
    12       -7.23    -20.14    -13.91    -11.14    -13.91     YES    
 

Upon executing the UROOT command, the above results are obtained.  The output provides two forms 
of the DFC test statistic and corresponding critical values across multiple significance levels.  If a 
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significance level is not specified by the user, the UROOT command bases the one-tailed hypothesis 
test on a critical value of 0.05 (i.e., 5% one-tailed test) which are interpolated from the published tables 
of Dickey and Fuller (1981).  The upper portion of the UROOT table, which is based on the OLS t-
statistic, indicates that the null hypothesis of a unit root cannot be rejected at the 5% level with lag 0 
(t=-1.81) or lags 1 to 12 (t=-1.51).  Therefore, we conclude that a unit root is present in the 
RCANADA time series.  The second table provides the unit root test results based on the estimated AR 
parameters of the Dickey-Fuller regression model. 

It may be interesting to compare the results from the Augmented Dickey-Fuller test with constant 
(DFC) with the results of the corresponding Phillips-Perron test with constant (PPC).  The same model 
used by the DFC method is also used for the PPC method.  The difference is that Phillips and Perron 
(1988) adjust the test statistic using a nonparametric approach. 

 UROOT RCANADA.  METHOD IS PPC.  ORDERS ARE  0, 12. 

 AUGMENTED PHILLIPS-PERONE TEST WITH CONSTANT 
 SERIES TO BE TESTED FOR UNIT ROOT(S) IS:   RCANADA 
 TEST BASED ON SAMPLE SIZE:                     203 
 PROBABILITY OF A SMALLER VALUE IS SET TO:    0.050 
  
                      (<----  INTERPOLATED D-F TABLE  ---->) 
                     CRITICAL VALUE BASED ON OLS t-STATISTIC 
            TEST       0.010     0.050     0.100     0.050 
 ORDER   STATISTIC     LEVEL     LEVEL     LEVEL     LEVEL   UROOT 
     0       -1.81     -3.48     -2.88     -2.57     -2.88     YES    
    12       -1.59     -3.48     -2.88     -2.57     -2.88     YES    
  
                      (<----  INTERPOLATED D-F TABLE  ---->) 
                       CRITICAL VALUE BASED ON OLS AR COEFF. 
            TEST       0.010     0.050     0.100     0.050 
 ORDER   STATISTIC     LEVEL     LEVEL     LEVEL     LEVEL   UROOT 
     0       -7.15    -20.14    -13.91    -11.14    -13.91     YES    
    12       -5.62    -20.14    -13.91    -11.14    -13.91     YES    
 

Notice that the same critical values proposed by Dickey-Fuller are used for the Phillips-Perron test.  
However, the test statistic for lag 12 (t=-1.59) differs slightly from the test statistic obtained by using 
the DFC method (t=-1.51).  Both methods conclude that the real exchange rate of Canada has a unit 
root at the 5% level. 

 



 

 

CHAPTER 4 

NEW IDENTIFICATION METHOD FOR SEASONAL TIME SERIES 

The SCA Statistical System (Educational Edition and above) includes a new method of model 
identification for seasonal or periodic time series. In this chapter, the RSFILTER command is 
presented.  A few supporting commands, ACF, PACF, TSMODEL, and ESTIM, are also used to 
complete the RSFILTER examples.  Related capabilities to RSFILTER including IARIMA and 
IESTIM are documented in the SCA reference manual, Forecasting and Time Series Analysis Using 
the SCA Statistical System, Volume 2. 

The RSFILTER command is intended as an educational tool for seasonal time series model 
identification. RSFILTER implements the filtering identification method (Liu, 1989) to generate a pure 
nonseasonal (Rt) series and a pure seasonal (St) series from the original series.  The models for the Rt 
and St series can then be easily identified, leading to simplification of seasonal model identification.  
The IARIMA command, discussed later in this document, internally uses the filtering identification 
method to automatically identify time series models.  The RSFILTER is intentionally designed not to 
provide the user with the final model.   

To illustrate the RSFILTER command, we begin by displaying a graph of the log transformed 
quarterly nominal gross national product (GNP, in billions of current dollars) of the United States 
between the first quarter of 1947 and the fourth quarter of 1969.  This series will be referred to by 
LNGNP in this example.  This series is not seasonally adjusted; therefore we observe distinct recurring 
patterns from year to year.  A time series plot of the LNGNP series is displayed using SCAGRAF by 
issuing the command 

 GRAPH LNGNP.  TYPE TSPLOT. 
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The printed values of the LNGNP series are displayed below for reference. 

 
First 
quarter 

Second 
quarter 

Third 
quarter 

Fourth 
quarter 

1947 3.9778 4.0236 4.0518 4.1667 
1948 4.0843 4.1287 4.1790 4.2584 
1949 4.1239 4.1304 4.1667 4.2195 
1950 4.1589 4.2017 4.2973 4.3883 
1951 4.3386 4.3808 4.4212 4.4853 
1952 4.4067 4.4224 4.4509 4.5475 
1953 4.4705 4.5142 4.5031 4.5602 
1954 4.4601 4.4965 4.4998 4.5911 
1955 4.5283 4.5788 4.6092 4.6784 
1956 4.5911 4.6338 4.6454 4.7336 
1957 4.6482 4.6923 4.7059 4.7622 
1958 4.6434 4.6895 4.7158 4.8122 
1959 4.7283 4.7991 4.7816 4.8668 
1960 4.7916 4.8331 4.8251 4.8911 
1961 4.7925 4.8536 4.8606 4.9572 
1962 4.8775 4.9388 4.9280 5.0206 
1963 4.9258 4.9843 4.9870 5.0764 
1964 5.0006 5.0569 5.0518 5.1393 
1965 5.0639 5.1305 5.1293 5.2402 
1966 5.1716 5.2332 5.2274 5.2973 
1967 5.2284 5.2842 5.2903 5.3552 
1968 5.2978 5.3813 5.3744 5.4467 
1969 5.3822 5.4485 5.4587 5.5074 

 

Traditional means to identify an ARIMA model for time series typically involve interpretation of 
time series plots, autocorrelation functions (ACF), partial autocorrelation functions (PACF), and 
extended autocorrelation functions (EACF) of the time series.  Whereas it is usually not difficult to 
identify models for nonseasonal time series using these tools, the task of model identification becomes 
more complex when seasonal time series are involved due to the interaction patterns of seasonal and 
nonseasonal information generated by these identification tools.  By generating pure seasonal and 
nonseasonal series using RSFILTER, traditional model identification methods can be employed on 
these component series easily.  

The RSFILTER command first determines if differencing (seasonal and nonseasonal) is required 
to induce stationarity.   This step is determined automatically by RSFILTER based on the patterns of 
sample ACF’s and parameter estimates of the intermediary filtering models.  The filtering method uses 
an intermediary model of the form ARMA(1,1) x ARMA(1,1)s.  Once the differencing orders are 
determined, the nonseasonal (Rt) and seasonal (St) component series are obtained by filtering the 
differenced Yt series (denoted as yt) such that 

( ) ( )s s
t 1 1 1 ty C 1 B 1 B R ,  and= + −Θ −Φ  (4.1) 

( ) ( )t 2 1 1 ty C 1 B 1 B S= + −θ − φ  (4.2) 
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Note that Rt is like the residual series generated using (4.1) and St is like the residual series generated 
using (4.2). 

Once the Rt and St series are generated as pure nonseasonal and pure seasonal component series 
using this filtering method, model identification becomes much easier.  The RSFILTER command also 
displays the intermediary models which provide the user with information regarding the differencing 
orders selected by RSFILTER.  The user can also employ alternative differencing in the RSFILTER 
command by specifying the DFORDER and NODFORDER subcommands. 

We continue the example by displaying autocorrelation function (ACF) plots of the LNGNP series 
with no differencing, first-order differencing, fourth-order differencing, and first and fourth-order 
differencing using the command 

 GRAPH LNGNP.  TYPE ACF. PAUSE 

The PAUSE subcommand allows the user to overwrite the options of the ACF plots generated.  The 
following dialog box will be displayed where the differencing orders scenarios are specified for a 
quarterly time series  

 

Clicking on the OK button then displays the ACF plots below that are typically used for ARIMA 
model identification. 
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ACF (No Differencing) 

 

ACF (First-order Differencing) 

 

ACF (Fourth-order Differencing) 

 

ACF (First and Fourth-order Differencing) 

 

Partial Autocorrelation function (PACF) plots of the LNGNP series with no differencing, first-
order differencing, fourth-order differencing, and first and fourth-order differencing are also displayed 
in SCAGRAF using the command 
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 GRAPH LNGNP. TYPE PACF. PAUSE 

PACF (No Differencing 

 
 

PACF (1st Order Differencing) 

 
 

PACF (4th Order Differencing) 

 
 

PACF (1st and 4th Order Differencing) 

 
 

Using traditional identification methods, the ACF plots suggest a fourth-order differencing is 
appropriate for the LNGNP series.  A first-order differencing is not needed since the ACF plot does not 
possess a slow die-out pattern after a fourth-order differencing is employed.  We now explore the 
RSFILTER capability to help in ARIMA model identification. 

The RSFILTER command shown below is employed to assist in the identification of an ARIMA 
model for the LNGNP series.  Potential seasonality is specified using the SEASONALITY 
subcommand.  In this example, the LNGNP series is a quarterly time series and therefore a potential 
seasonality of four is specified.  Failure to specify potential seasonality in the RSFLITER command 
will result in the use of inappropriate intermediate models and produce undesirable results.  The 
nonseasonal and seasonal component series are saved under the NEW-SERIES subcommand.    
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 RSFILTER LNGNP.  NEW-SERIES R,S.  SEASONALITY 4. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- UTSMODEL 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
 
  LNGNP     RANDOM     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
  
 PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1                    CNST      1      0     NONE    14.0528   14.4065    .98  
   2           LNGNP     MA       1      1     NONE     -.1715     .1305  -1.31  
   3           LNGNP     MA       2      4     NONE      .6008     .1033   5.81  
   4           LNGNP    D-AR      1      1     NONE      .8402     .0732  11.47  
   5           LNGNP    D-AR      2      4     NONE      .9936     .0115  86.75  
 
 TOTAL NUMBER OF OBSERVATIONS . . . .            92 
 EFFECTIVE NUMBER OF OBSERVATIONS . .            87 
 RESIDUAL STANDARD ERROR. . . . . . .  0.190659E-01 
 
 PARAMETER ESTIMATES DURING DIFFERENCING DETERMINATION  
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- UTSMODEL 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         4 
  LNGNP     RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1                    CNST      1      0     NONE      .0623     .0085   7.36  
   2           LNGNP     MA       1      1     NONE     -.1312     .1433   -.92  
   3           LNGNP     MA       2      4     NONE      .2811     .1872   1.50  
   4           LNGNP    D-AR      1      1     NONE      .8531     .0843  10.13  
   5           LNGNP    D-AR      2      4     NONE     -.3206     .1743  -1.84  
 
 TOTAL NUMBER OF OBSERVATIONS . . . .            92 
 EFFECTIVE NUMBER OF OBSERVATIONS . .            83 
 RESIDUAL STANDARD ERROR. . . . . . .  0.190460E-01 

 

The output displayed by the RSFILTER command provides two model summaries.  The initial 
model summary shows the filtering model prior to its determination of differencing required to induce 
stationarity.  The second model summary shows the filtering model after differencing has been 
determined.  Based on this second model, the Rt and St series are generated. 

We now direct our attention to model identification of the nonseasonal Rt series.  The IDEN 
keyword for the TYPE subcommand in the following GRAPH command will generate both ACF and 
PACF plots. 
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 GRAPH R.  TYPE IDEN.  PAUSE. 

ACF (No Differencing) 

 

PACF (No Differencing) 

 

The extended autocorrelation function (EACF) is also a valuable tool in identifying ARIMA models.  
The EACF table is computed using the EACF command 

 EACF R.  

 THE EXTENDED ACF TABLE  
 (Q-->)   0    1    2    3    4    5    6    7    8    9   10   11   12 
 ------------------------------------------------------------------------ 
 (P= 0)  .87  .71  .48  .30  .12  .01 -.05 -.08 -.09 -.11 -.11 -.10 -.06 
 (P= 1)  .24  .38  .18  .22  .13  .02 -.09 -.08 -.02 -.11 -.03 -.10 -.05 
 (P= 2) -.47  .35 -.20  .20 -.05 -.10  .07 -.08  .02 -.12  .04 -.11  .06 
 (P= 3)  .17 -.15  .00  .19 -.06 -.12 -.04 -.03  .17  .05  .02  .05  .00 
 (P= 4)  .45 -.20  .01  .04 -.07 -.04  .02 -.03  .15 -.03  .01  .04 -.00 
 (P= 5)  .35  .26 -.10 -.06 -.01 -.05  .04 -.03  .14  .01 -.01  .04 -.01 
 (P= 6) -.30  .38 -.44  .03 -.03 -.00  .00 -.02  .10 -.03 -.08  .06 -.02 
 
 SIMPLIFIED EXTENDED ACF TABLE (5% LEVEL)  
 (Q-->)  0  1  2  3  4  5  6  7  8  9 10 11 12 
 ----------------------------------------------- 
 (P= 0)  X  X  X  O  O  O  O  O  O  O  O  O  O 
 (P= 1)  X  X  O  O  O  O  O  O  O  O  O  O  O 
 (P= 2)  X  X  O  O  O  O  O  O  O  O  O  O  O 
 (P= 3)  O  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 4)  X  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 5)  X  O  O  O  O  O  O  O  O  O  O  O  O 
 (P= 6)  X  X  X  O  O  O  O  O  O  O  O  O  O 

 

Based on the ACF, PACF, and EACF of the nonseasonal component series, an AR(3) or 
ARMA(1,2) model may be appropriate for Rt.  We now produce the ACF and PACF plots for the 
seasonal component series, St 
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 GRAPH S. TYPE IDEN. PAUSE. 

ACF (No Differencing) 

 

PACF (No Differencing) 

 

Based on the ACF and PACF of the seasonal component series, a seasonal MA(1)4 model is 
appropriate for St.  Now, the models for the nonseasonal and seasonal component series can be 
combined.  We specify the first candidate model as an ARIMA(3,0,0) x ARIMA(0,1,1)4 using the 
TSMODEL command, 

 TSMODEL MODELA.  MODEL IS @  
  LNGNP(4)=C1+(4 ; TH4A)/(1,2,3 ; PH1A,PH2A,PH3A)NOISE. 

The model is then estimated using exact maximum likelihood using the ESTIMATE command shown 
below. 

 ESTIMATE MODELA.  METHOD EXACT.  HOLD RESIDUALS(RESA). 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODELA  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         4 
  LNGNP     RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
    1    C1              CNST      1      0     NONE      .0609     .0041  14.91  
   2   TH4A    LNGNP     MA       1      4     NONE      .4237     .1123   3.77  
   3   PH1A    LNGNP    D-AR      1      1     NONE     1.0437     .1005  10.38  
   4   PH2A    LNGNP    D-AR      1      2     NONE      .0181     .1516    .12  
   5   PH3A    LNGNP    D-AR      1      3     NONE     -.3375     .1013  -3.33  
 
 EFFECTIVE NUMBER OF OBSERVATIONS . .            85 
 R-SQUARE . . . . . . . . . . . . . .         0.998 
 RESIDUAL STANDARD ERROR. . . . . . .  0.173031E-01 
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The second candidate model ARIMA(1,0,2) x ARIMA(0,1,1)4 is specified and estimated below 
using the TSMODEL and ESTIMATE commands 

 TSMODEL MODELB. MODEL IS @  
  LNGNP(4)=C2+(1,2 ; TH1B,TH2B)(4 ; TH4B)/(1; PH1B)NOISE. 

 ESTIMATE MODELB.  METHOD EXACT.  HOLD RESIDUALS(RESB). 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODELB  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         4 
  LNGNP     RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1    C2              CNST      1      0     NONE      .0611     .0057  10.64  
   2   TH1B    LNGNP     MA       1      1     NONE     -.3034     .1187  -2.56  
   3   TH2B    LNGNP     MA       1      2     NONE     -.3434     .1106  -3.10  
   4   TH4B    LNGNP     MA       2      4     NONE      .5607     .0930   6.03  
   5   PH1B    LNGNP    D-AR      1      1     NONE      .7460     .0904   8.25  
 
 EFFECTIVE NUMBER OF OBSERVATIONS . .            87 
 R-SQUARE . . . . . . . . . . . . . .         0.998 
 RESIDUAL STANDARD ERROR. . . . . . .  0.175058E-01 
 

The user can now perform diagnostic tests on the residual series, evaluate the two candidate 
models, and select the one that best fits the user’s application.   

The determination of differencing is handled very well in the RSFILTER command automatically 
and typically should be accepted by the user.  However in some situations, the user may have special 
reasons to impose alternative differencing other than the differencing automatically determined by the 
RSFILTER command.  This can be accomplished using the DFORDER and NODFORDER 
subcommands.  For example, if we want to generate the Rt  and St component series based on first-
order and fourth-order differencing, the RSFILTER command is 

 RSFILTER LNGNP.  NEW-SERIES R, S.  SEASONALITY 4.  DFORDERS 1, 4. 

If the user wants to exclude fourth-order differencing and impose first-order differencing, the 
following RSFILTER command can be specified 

 RSFILTER LNGNP.  NEW-SERIES R, S.  SEASONALITY 4.  @  
  DFORDERS 1.  NODFORDER 4.  

Other examples for the use of the optional DFORDER and NODFORDER subcommands can be found 
in the next chapter which describes the IARIMA command. 
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CHAPTER 5 

ENHANCED EXPERT ARIMA MODELING 

The SCA expert ARIMA modeling capabilities (IARIMA) are detailed in Chapter 2 of the SCA 
reference manual, Forecasting and Time Series Analysis Using the SCA Statistical System, Volume 2 
along with related commands such as IESTIM.  The other related command, RSFILTER, is discussed 
in the previous chapter of this document.  In Release 7.0 (and above) of the SCA System, the 
capabilities of the IARIMA command have been further enhanced. 

The algorithms and the rules for identifying ARIMA models using the IARIMA capability have 
been modified to perform more robustly.  In addition, new options have been added to the IARIMA 
capability that provides more control to the user in final model determination.  Specifically, options are 
now available to set the critical value for determining the statistical significance of parameter estimates 
retained in a model (through the CRITERIA subcommand), and for overriding differencing employed 
in the final model (through the DFORDER and NODFORDER subcommands). 

The algorithm for the IARIMA command has been enhanced to better identify an ARIMA model 
when the selection between a pure AR and mixed ARMA model is marginal.  For example, in earlier 
releases of the SCA System, the IARIMA command sometimes identified an AR(2) model when an 
ARMA(1,1) model may have been more appropriate.  The SCA System now addresses such marginal 
cases more appropriately.  Other improvements are made to the automatic model identification 
methods used in the IARIMA command on an ongoing basis.  Modifications are typically made 
whenever users report data sets that prove to adversely affect general model identification. 

The SEASONALITY (or PERIODICITY) subcommand in the IARIMA capability has been 
enhanced to search for seasonal patterns at very long lags.  The previous release of the SCA System 
limited the seasonality cycle to 120 periods.  Release 7.0 (and above) of the SCA System removes all 
practical limitations related to the identification of potential seasonality in a time series.  For example, 
when considering hourly data, it is often important to include the 24 hour periodicity.  Due to weekly 
patterns, it then becomes necessary to include a 168 periodicity in the model.  The new release of the 
SCA System now allows for modeling high-order seasonal or periodic behaviors.  However, when 
high-orders are used to handle higher frequency data, the exact maximum likelihood estimation 
method cannot be used.  This is due to the fact that exact maximum likelihood estimation requires 
matrix inversion of high-order (e.g., 168 x 168).  This will cause problems for matrix inversion in both 
accuracy and storage space.  Therefore, conditional likelihood estimation must be used for such high-
order models. 

In previous releases of the SCA System, the DFORDER subcommand in the IARIMA command 
allowed the user to include specific differencing orders in an identified ARIMA model.  However, if 
the IARIMA command found that the specified differencing order was not needed, it would exclude it 
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from the final model.  This behavior has been modified so that differencing orders specified in the 
DFORDER subcommand will always be retained in the final model. 

Whereas the DFORDER subcommand allows the inclusion of specific differencing orders in the 
final model, it did not preclude the possibility that additional differencing orders may be found 
important and therefore added into the final model.  For example, if a user specified a first-order 
difference using the DFORDER subcommand, the IARIMA command may also include a seasonal 
differencing term if the time series requires a seasonal differencing.   

In the event a user wants to exclude specific differencing orders from the final model, Release 7.0 
(and above) of the SCA System now includes a new subcommand, NODFORDER, that can be used in 
conjunction with the DFORDER subcommand to achieve full control of differencing orders in the 
automatic model identification of a time series. 

If the NODFORDER subcommand is not specified, the IARIMA command will automatically 
determine whether any differencing orders are to be employed in the final model.  Typically, if a 
differencing order is forced out of consideration through the NODFORDER subcommand, the 
IARIMA algorithm will compensate for the lack of differencing through one or more ARMA 
parameters. 

The previous release of the IARIMA command used a critical value of 1.96 when determining 
whether a parameter estimate is statistically significant.  A subcommand, CRITERIA, has been added 
to the IARIMA command to allow users more control over parameters included in the final model.  
This option is particularly useful when the time series to be modeled is either very long or rather short. 

The IARIMA command uses the same approach of model identification as described for the 
RSFILTER command.  However, the IARIMA command will provide the final identified model 
besides generating the nonseasonal and seasonal component series. 

To illustrate the use of the IARIMA command, we use the LNGNP series introduced in the 
previous chapter to explain the RSFILTER command.  The LNGNP series is the log transformed 
quarterly nominal gross national product (GNP, in billions of current dollars) of the United States 
between the first quarter of 1947 and the fourth quarter of 1969.  

The IARIMA command requires the user to specify the potential seasonality of the time series 
being modeled (e.g., a monthly series would have a potential seasonality of 12, a daily series would 
have a potential seasonality of 7, and so on).  Since the LNGNP series is a quarterly time series, it has 
a potential seasonality of 4.  The following IARIMA command can be easily specified to automatically 
identify an appropriate model for the LNGNP series.   
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 IARIMA LNGNP.  SEASONALITY 4.   

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- UTSMODEL 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         4 
  LNGNP     RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1                    CNST      1      0     NONE      .0606     .0041  14.96  
   2           LNGNP     MA       1      4     NONE      .4306     .1167   3.69  
   3           LNGNP    D-AR      1      1     NONE     1.0401     .1005  10.35  
   4           LNGNP    D-AR      1      2     NONE      .0234     .1516    .15  
   5           LNGNP    D-AR      1      3     NONE     -.3405     .1011  -3.37  
 
 TOTAL NUMBER OF OBSERVATIONS . . . .            92 
 EFFECTIVE NUMBER OF OBSERVATIONS . .            85 
 RESIDUAL STANDARD ERROR. . . . . . .  0.174545E 
 

This model is good and can immediately be used for further application such as forecasting.  By 
simply specifying the potential seasonality of the series, the IARIMA command automatically 
determines whether seasonal differencing and/or regular differencing is required to induce stationarity.  
In typical circumstances, the user should not override the differencing order(s) automatically 
determined by the IARIMA command unless there is good reason to do so.  If the need to override 
differencing arises, the DFORDER and NODFORDER subcommands can be specified to force 
inclusion or exclusion of certain differencing order(s) in the final model similar to the RSFILTER 
command explained in a previous chapter.   

In the above example, fourth-order differencing was automatically determined by the IARIMA 
command.  If first-order differencing is also desired in the model, it can be forced into the final model 
by the following IARIMA command 

 IARIMA LNGNP.  SEASONALITY 4.  DFORDER 1. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- UTSMODEL 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         4       1 
  LNGNP     RANDOM     ORIGINAL     (1-B  ) (1-B  )  
 ----------------------------------------------------------------------- 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1           LNGNP     MA       1      1     NONE     -.1982     .1050  -1.89  
   2           LNGNP     MA       1      2     NONE     -.2522     .1068  -2.36  
   3           LNGNP     MA       2      4     NONE      .5997     .0906   6.62  
 
 TOTAL NUMBER OF OBSERVATIONS . . . .            92 
 RESIDUAL STANDARD ERROR. . . . . . .  0.193055E-01 
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Note that by employing the “DFORDER 1” subcommand in the above IARIMA command, we 
effectively force first-order differencing in the model.  Because IARIMA determined that seasonal 
differencing is also needed, the fourth-order differencing remains in the final model.  

Whereas it is possible to force differencing by specifying the DFORDER subcommand, it is also 
possible to exclude differencing by specifying the NODFORDER subcommand.  For example, if we 
had reason to force first-order differencing and exclude fourth-order differencing for the LNGNP 
series, the following command can be specified.   

 IARIMA LNGNP.  SEASONALITY 4.  DFORDER 1.  NODFORDER 4. 

 THE CRITICAL VALUE FOR SIGNIFICANCE TESTS OF ACF AND ESTIMATES IS 1.875 
 SAMPLE ACF OF THE RESIDUALS (** SIGNIFICANT VALUES EXIST **) 
  1 - 12    -.01  .02 -.12  .00 -.30 -.08 -.08  .07  .00  .11 -.00 -.07 
 T-VALUE    -.14  .15-1.09  .03-2.75 -.67 -.69  .56  .02  .94 -.04 -.60 
 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- UTSMODEL 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1 
  LNGNP     RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
  
 PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1           LNGNP     MA       1      1     NONE     -.1703     .1031  -1.65  
   2           LNGNP     MA       1      2     NONE     -.3072     .1066  -2.88  
   3           LNGNP     MA       2      4     NONE      .6068     .0920   6.60  
   4           LNGNP    D-AR      1      4     NONE      .9739     .0129  75.25  
 
 TOTAL NUMBER OF OBSERVATIONS . . . .            92 
 RESIDUAL STANDARD ERROR. . . . . . .  0.188898E-01 

 
The IARIMA command (and RSFILTER command) does a very good job at determining 

appropriate differencing for the final model.  Overriding the automatically determined differencing by 
alternative differencing is done at your own risk as it may result in over-differencing (or under-
differencing) and produce less than optimal models.  In the event the final model does not remove all 
significant autocorrelation from the residuals, the output from the IARIMA command informs the user 
that significant values exist in the autocorrelations of the residuals.  This indicates that the model may 
have problems as demonstrated in the case of over differencing in the above example.   

In practice, if the user is alerted to potential problems by significant residual autocorrelations, the 
user should check if potential seasonality is specified appropriately and then allow the IARIMA 
command to determine differencing automatically.  Significant autocorrelations in the residual series 
may also be caused by other issues such as calendar effects, outliers, or the exclusion of important 
explanatory variables in the model.  Such issues must be handled in an appropriate manner by studying 
the underlying causes rather than simply adding more ARMA parameters to the model. 



 

 

CHAPTER 6 

POWER TRANSFORMATION IN TIME SERIES FORECASTING 

The Practitioner Edition (and above) provides the RETRANSFORM command to retransform 
forecasts back into original units when the forecasted series was transformed.  It is important to note 
that a straight retransformation of forecasts produces biased forecasts.  The RETRANSFORM 
command, based on the work of Guerrero (1993), adjusts for such bias.  In this chapter, the 
RETRANSFORM command is presented.  A few supporting SCA analytic statements are also used to 
complete the examples.  More information on SCA analytic statements is documented in the SCA 
Reference Manual for Fundamental Capabilities.  A related command, TSEARCH, which is used to 
search for the best power transformation for forecasting is described in Chapter 10. 

Pankratz and Dudley (1987) and Guerrero (1993) developed a unified method to adjust for bias in 
retransforming forecasts.  In the SCA System, we have implemented the RETRANSFORM command 
which is based on the method provided in Guerrero (1993).  The capability provided in the 
RETRANSFORM command is not only appropriate for ARIMA model forecasts, it is also appropriate 
for forecasts generated by other models such as transfer function models, STF models, and vector 
ARMA models.  Below is a brief summary of the method provided in Guerrero (1993). 

In univariate time series analysis, Box and Jenkins (1976) discussed the feasibility of obtaining an 
ARIMA model with homogenous residual variance based on a time series derived from a power 
transformed series similar to that proposed in Box and Cox (1964).  Using tY  to denote the original 
series with positive value (if tY  is non-positive, a positive constant value can be added to tY  before the 
transformation), this class of transformation can be expressed as 

tt
t

(Y 1) / if  0 Z
n(Y ) if  0 

λ⎧ − λ λ ≠⎪= ⎨
λ =⎪⎩A  (6.1) 

where tZ  is the transformed series, λ  (referred to as lambda) is the power value of the transformation, 
and t=1, 2, …, n.  The above formulation of power transformations is continuous in the parameter λ .  
While the transformation in (6.1) has desirable properties such as continuity of λ  at 0, the variances of 
transformed series are not comparable when 'sλ  are different.  To address this issue, the following 
scaled power transformation is recommended by Box and Jenkins (1976), and Ansley, Spivey, and 
Wrobleski (1977) 
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where 1/n
1 2 nY (Y  Y   Y )= ⋅⋅⋅�  is the geometric mean of the series.  We shall refer to the formulation of 

transformation in (6.1) and (6.2) as Type 1 power transformations. 

In addition to using the above power transformation, the following formulation of power 
transformation is also considered 

tt
t

Y if  0 Z  
n(Y ) if  0 .

λ⎧ λ ≠⎪= ⎨
λ =⎪⎩A  (6.3) 

This form of power transformation has a discontinuity at 0λ = , and may possess some other 
undesirable properties.  However this form of power transformation is simple, and therefore is 
frequently used.  We shall refer to this formulation of transformation as Type 2 power transformations. 

There are two primary issues in the application of the power transformations shown above.  The 
first is to select an appropriate lambda value that will either improve the efficacy of the model or the 
accuracy of the forecasts.  This will be discussed in an upcoming chapter that documents the 
TSEARCH command.  The second issue is the correction of biases induced by the retransformation on 
the forecasts.  We will address the latter issue in this chapter. 

6.1 Retransformation of Power Transformed Forecasts 

When a transformation is applied to a time series, the forecasts are based on the transformed series and 
therefore must be retransformed back into the original metric.  An issue with power transformation is 
that the straight retransformation of the forecasts is biased.  This occurs because an estimated mean of 
a symmetric distribution in the transformed data becomes an estimated median after retransformation 
of the estimate.  A number of research papers have attempted to address this issue.  Pankratz and 
Dudley (1987) and Guerrero (1993) developed a unified method to adjust for the bias in retransforming 
forecasts.  Below is a summary of the method provided in Guerrero (1993). 

Unbiased Retransformation 
 
The power transformation described in (6.1), (6.2) and (6.3) can be generally expressed as 

t tZ T(Y )=  (6.4) 

where ( )T i   is the transformation operator, and  ( )1T− i  is the inverse-transformation operator.  Thus, 

we have 

1
t tY T (Z )−= . (6.5) 
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Assuming that nẐ ( )A  is the A -step-ahead MMSE forecast of  nZ +A  at the forecast origin t n= , the 

straight retransformation of nẐ ( )A  under (6.1) is  

n

1/
n1

n n Ẑ ( )

ˆ( Z ( ) 1) if  0ˆ ˆY ( ) T (Z ( ))
e if  0 .

λ
−

⎧ λ + λ ≠⎪= = ⎨
⎪ λ =⎩

A

A
A A  (6.6) 

It has been shown that nŶ ( )A  is biased.  To correct for the bias, Guerrero (1993) derives the following 

unbiased estimate nY ( )� A  where 

1
n nˆY ( ) T (Z ( )) C ( )−

λ= ⋅� A A A . (6.7) 

The  C ( )λ A  is the debiasing factor which can be expressed as 

( ) ( )
( )

2

11 21 2
1

n

2

0.5 0.5 1 2 1 R , R if  0
ˆC Z

e if  =0

λ
−

−
λ

σ

⎧⎧ ⎫ σ⎪ ⎪⎡ ⎤⎪ + + λ − = λ ≠⎨ ⎬⎪ ⎢ ⎥⎣ ⎦= λ +⎪ ⎪⎨⎩ ⎭
⎪
⎪ λ⎩ A

A
AAA A  (6.8) 

and σA  is the  A -step-ahead forecast standard error of nẐ ( )A .  It is readily seen that the debiasing factor 
is a function of the transformed forecast and its standard error if 0λ ≠ , and is a function of forecast 
standard error only if 0λ = . 

The forecast limits of nZ +A  can be expressed as 

( )n 2Ẑ zα± ⋅σAA . (6.9) 

The straight retransformation of the above forecast limits ( )( )1
n 2ˆT Z z−

α± ⋅σAA  is also biased.  To 

correct for the bias, Guerrero (1993) suggests multiplying the forecast limits by their respective 
debiasing factors. 

The unbiased retransformation of the forecasts under (6.2) and (6.3) can be derived similarly.  In 
the case of  (6.2), the straight retransformation of ( )nẐ A  is 

( ) ( )( ) ( )( )( )
( )n

11
n1

n n
Ẑ

Ẑ Y 1 if 0ˆ ˆY T Z

e if 0 .

λλ−
−

⎧
λ + λ ≠⎪⎪= = ⎨

⎪
λ =⎪⎩

A

�A
A A  (6.10) 

Again the above retransformed forecast nŶ ( )A  is biased.  Using equation (6.7), the unbiased forecast 

( )nY� A can be obtained by using the following debiasing factor C ( )λ A  
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For the class of power transformation in (6.3) which we refer to as Type 2 power transformations, 
the straight retransformation of nẐ ( )A  is  

( ) ( )( ) ( )
( )n

1
n1

n n Ẑ

Ẑ if 0ˆ ˆY T Z
e if 0

λ
−

⎧ λ ≠⎪= = ⎨
⎪ λ =⎩

A

A
A A  (6.12) 

which is also biased.  Using equation (6.7), the unbiased forecast nY ( )� A  can be obtained by using the 
following debiasing factor C ( )λ A  

( ) ( ) ( )
2

11 21 2

n

2

0.5 0.5 1 2 1 R , R if  0
ẐC
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λ
−

λ
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⎪
⎪ λ⎩ A

A
AA AA  (6.13) 

 
6.2 U.S. GNP Example of Retransformation 

In previous chapters of the document, the log transformed quarterly nominal gross national product of 
the United States (LNGNP) was used to illustrate the RSFILTER and IARIMA commands.  The 
LNGNP series shall be used to illustrate the retransformation of forecasts back into original units.  
Using the model identified by the IARIMA command, the model is re-specified below using the 
TSMODEL command and estimated using the ESTIMATE command.  The FORECAST command is 
then specified to generate eight forecasts from the end of the LNGNP series 

 TSMODEL UTSMODEL.  MODEL LNGNP(4)=C+(4)/(1 TO 3)NOISE. 
 ESTIMATE UTSMODEL.  METHOD EXACT. 
 FORECAST UTSMODEL.  NOFS 8.  HOLD FORECAST(FLN), STDERR(FSELN). 

 ---------------------------------- 
   8 FORECASTS, BEGINNING AT   92 
 ---------------------------------- 
  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
    93      5.4366      0.0175 
    94      5.4934      0.0252 
    95      5.4930      0.0317 
    96      5.5490      0.0349 
    97      5.4822      0.0399 
    98      5.5469      0.0422 
    99      5.5524      0.0434 
   100      5.6133      0.0436 
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The RETRANSFORM command is used to retransform the forecasts back into original units.  The 
unbiased method is employed.  However, it is necessary to specify 0λ = (indicating that a logarithmic 
transformation was applied to the original series) and TYPE=1 (indicating Type 1 transformation was 
applied)  

 VLAMBDA=0.0 
 VTYPE=1 
 RETRANSFORM FLN, FSELN.  METHOD UNBIASED. @  

  FORM VLAMBDA, VTYPE. 

TIME     FORECAST    STD. ERROR  RETRANSFORMED  
  1         5.437         0.017       229.751 
  2         5.494         0.025       243.287 
  3         5.494         0.032       243.332 
  4         5.550         0.035       257.363 
  5         5.483         0.040       240.833 
  6         5.548         0.042       256.983 
  7         5.554         0.043       258.452 
  8         5.614         0.043       274.618 
 

For comparison purposes, the following straight retransformation of the forecasts is presented. 

 RETRANSFORM FLN, FSELN.  METHOD STRAIGHT. @  
  FORM VLAMBDA, VTYPE. 

TIME     FORECAST    STD. ERROR  RETRANSFORMED  
  1         5.437         0.017       229.716 
  2         5.494         0.025       243.211 
  3         5.494         0.032       243.211 
  4         5.550         0.035       257.209 
  5         5.483         0.040       240.644 
  6         5.548         0.042       256.755 
  7         5.554         0.043       258.210 
  8         5.614         0.043       274.358 
 

As shown in the above table, the unbiased and straight retransformed forecasts for this series are 
somewhat different, with the unbiased forecasts slightly larger than the straight retransformed 
forecasts.   

The natural logarithmic transformation is often used in practice because of its desirable properties 
and the ease of interpretation when used for business and econometric applications.  However, in some 
situations we may wish to investigate alternative power transformations that may be better suited for 
the time series under study.  Such capability is provided by the TSEARCH command. 
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CHAPTER 7 

CAUSALITY TESTING 

The Professional Edition (A) of the SCA Statistical System implements new capabilities for causality 
testing following the work of Chen and Lee (1990) and others.  In this chapter, the CAUSALTEST 
command is presented.  Related commands including MTSMODEL and MESTIM are documented in 
the SCA reference manual, Forecasting and Time Series Analysis Using the SCA Statistical System, 
Volume 2. 

Chen and Lee (1990) used vector ARMA (VARMA) models for causality testing.  The traditional 
hypothesis testing procedure provides a framework to contrast a null hypothesis versus an alternative 
hypothesis.  Without imposing a priori restrictions, an empirical study of dynamic relationships often 
involves several non-nested hypotheses.  Consequently, a more systematic approach is required to 
examine the multiple hypotheses so that the test conclusion is not affected by a priori choice of the 
alternative.  The bivariate VARMA test developed by Chen and Lee (1990) addresses these issues 
more adequately and is the focus of causality testing discussed in this chapter. 

7.1 Causality Testing Using Vector ARMA Models 

A number of time series models can be employed for causality testing (see e.g., Sims, 1972; and 
Haugh, 1976).  Because vector ARMA (VARMA) models have been shown to be effective in 
forecasting, this class of models can also be used for causality testing (see e.g., Pierce and Haugh, 
1977; Kang, 1981; Koreisha, 1983; and Chen and Lee, 1990).  Using conventional notations, a 
bivariate VARMA(p,q) model can be expressed as 

t 1tp q
1 p 1 q

t 2t

Y a
( B B ) ( B B )

X a
⎡ ⎤ ⎡ ⎤

− − ⋅⋅ ⋅ − = + − − ⋅⋅⋅ −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

I C Iφ φ θ θ  (7.1) 

where  i 'sφ  and j 'sθ  are 2 2×  matrices, C is a 2 1×  constant vector, and t 1t 2t[a ,  a ]'=a  is a sequence of 

2 1×  random shock vectors identically and independently distributed as a normal distribution with zero 

mean and covariance matrix Σ  with 11 12

21 22

σ σ⎡ ⎤
= ⎢ ⎥σ σ⎣ ⎦

Σ .  For convenience, the model in (7.1) can be re-

written as 

t 1t11 12 11 12

21 22 t 21 22 2t

Y a(B) (B) (B) (B)
  

(B) (B) X (B) (B) a
φ φ θ θ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥φ φ θ θ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
C  (7.2) 

where 2
ij ij0 ij1 ij2(B) B Bφ = φ − φ − φ − ⋅⋅ ⋅ , and 2

ij ij0 ij1 ij2(B) B Bθ = θ − θ − θ − ⋅⋅ ⋅ .  It is important to note that 

ij0 ij0 1φ = θ =  if i j= , and ij0 ij0 0φ = θ =  if i j≠ . 
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Assuming the form of the model in (7.2) is known, sufficient conditions for testing the hypotheses 
1H , 2H , 3H , 4H , and 5H  using ij(B)φ  and ij(B)θ  of equation (7.2) are listed below: 

Hypothesis Sufficient Conditions (Constraints) 

1H : Y X∧  12 21 12 21 12 21(B) (B) 0,   (B) (B) 0,    0φ = φ = θ = θ = σ = σ = . 

2H : Y X↔  12 21 12 21(B) (B) 0,   (B) (B) 0φ = φ = θ = θ = . 

3H : Y X⇐/  12 12(B) (B) 0φ = θ =  (7.3) 

4H : Y X⇒/  21 21(B) (B) 0φ = θ =  

5H : Y X⇔  no constraints 

The conditions in (7.3) become necessary and sufficient conditions if the model in (7.2) is a pure 
vector AR or a pure vector MA model.  In the above hypotheses, 3H  implies the past X does not help 
to predict future Y, and 4H  implies the past Y does not help to predict X.  In both situations, we 
assume 12σ  may be nonzero.  However, if 12σ  equals to zero, the hypotheses 3H , 4H , and 5H  can be 
tested under a more stringent condition.  Therefore the following three additional hypotheses should 
also be considered: 

Hypothesis Sufficient Conditions (Constraints) 

*
3H : Y X<⇐/  12 12 12(B) (B) 0,    0φ = θ = σ =  

*
4H : Y X⇒>/  21 21 12(B) (B) 0,    0φ = θ = σ =  (7.4) 

*
5H : Y X<⇔>  12 0σ =  

In the above hypotheses, *
3H  implies both past and concurrent X do not help to predict Y, and *

4H  

implies both past and concurrent Y do not help to predict X.  For *
5H , it implies a “true” feedback 

relationship since Y and X are not contemporaneously related. 

7.2 A Decision Tree Approach for Detecting Dynamic Relationships 

It is important to note that the eight hypotheses stated in (7.3) and (7.4) are neither nested nor mutually 
exclusive to each other.  This situation leads to significant complications in conducting appropriate 
hypothesis testing.  In the causality testing literature (see e.g., Sims, 1972; Haugh, 1976; Pierce, 1977; 
Feige and Pearce, 1979; and Hsiao, 1979), most tests are designed to discriminate between 
independency and an alternative hypothesis.  The primary purpose of these tests is to reject the 
independency (so called “neutrality”) hypothesis.  However, it is more useful to identify the true nature 
of the relationship between two series.  To accomplish this goal, Chen and Lee (1990) proposed a 
decision tree approach which consists of testing a sequence of pair-wise hypotheses that are defined by 
each of the above relationships.  This inference procedure is based on the principle that a maintained 
hypothesis should not be rejected unless there is sufficient evidence against it. 



Causality Testing 43 

 

Two procedures for identifying dynamic relationships are considered here: (1) the backward 
procedure and (2) the forward procedure.  The backward procedure takes the position that a hypothesis 
should not be rejected in favor of a more restrictive one unless sufficient evidence indicates otherwise.  
Consequently, the statistical procedure starts from the most general hypothesis, 5H , and then examines 
the relative validity of competing hypotheses in an increasing order of parameter restrictions.  On the 
other hand, the forward procedure asserts that a simpler model is preferred unless the evidence strongly 
suggests otherwise.  Hence, the forward procedure starts its test from the most restrictive hypothesis, 

1H , and moves toward less restrictive hypotheses.  In both procedures, each step of the test examines 
one or two pairs of nested hypotheses.  Typically, both testing procedures result in the same 
conclusion.  In some marginal situations, the backward procedure tends to favor more complicated 
relationships while the forward procedure tends to favor simpler relationships. 

Generally speaking, the forward procedure works better (i.e., the test procedure has higher 
discriminating power) if the variables considered are likely to be independent or have a more 
restrictive relationship.  On the other hand, the backward procedure works better if the variables 
considered are likely to have more complex relationships.  Since we are more interested in the latter 
situation, the backward procedure is discussed first.  The flow charts for both testing procedures are 
included in the following discussion. 

The Backward Procedure 
 
The first step of backward procedure, B1, is to examine two pairs of hypotheses: (a) 3H  vs 5H  and (b) 

4H  vs 5H .  This step, distinguishing the feedback relationship from unidirectional relationship, gives 
rise to four possible outcomes, 1E  to 4E , as follows: 

1E : 3H  is not rejected in the pair-wise test (a) and 4H  is rejected in the pair-wise test (b), 

2E : 3H  is rejected in test (a) and 4H  is not rejected in test (b), 

3E : 3H  is not rejected in test (a) and 4H  is not rejected in (b), 

4E : 3H  is rejected in test (a) and 4H  is rejected in test (b). 

The outcome of 1E  implies that the past information of Y may help to predict current X, but the 

past X does not help to predict current Y.  Hence, this outcome leads to the next pair-wise test (g), *
3H  

vs 3H , where we try to detect the contemporaneous effect in the unidirectional relationship.  If *
3H  is 

rejected in test (g), the conclusion, Y X⇒ , is reached; otherwise the conclusion, Y X⇒> , would be 
made.  Similarly, the occurrence of events 2E  and 4E , respectively, suggests a possible unidirectional 
relationship from X to Y and a possible feedback relationship between Y and X.  Therefore, the 
outcome of 2E  leads to the pair-wise test (h), which helps us to choose between *

4H  and 4H .  Under 
the outcome of 4E , it requires the test (i) which discriminates between the strong feedback hypothesis 
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( *
5H ) and the weak feedback hypothesis ( 5H ).  The rejection of *

4H  in test (h) implies Y X⇐ .  

Otherwise, the conclusion, Y X<⇐ , would be reached.  In test (i), the rejection of *
5H  implies Y X⇔ .  

If *
5H  is not rejected, we can conclude Y X<⇔> . 

When one of the events, 1E , 2E , and 4E , occurs in sequence B1, the backward procedure stops at 
the end of test (g), test (h), and test (i) respectively.  If neither 3H  nor 4H  is rejected, (i.e., 3E  is 
realized), the backward procedure will move to sequence B2 where two pairs of hypotheses will be 
examined: (c) 2H  vs 3H  and (d) 2H  vs 4H .  Again, four possible results may come out of this 
sequence.  They are summarized as follows: 

5E : 2H  is rejected in pair-wise test (c) but is not rejected in test (d), 

6E : 2H  is not rejected in test (c) but is rejected in test (d), 

7E : 2H  is rejected in either test (c) or test (d), 

8E : 2H  is rejected in both test (c) and test (d). 

Since test (c) examines the possibility of Y X⇒  and test (d) examines that of Y X⇐ , outcome 5E  
implies that the relationship Y X⇒  is more probable than Y X⇐ .  Therefore, the result of event 5E  
leads to test (g).  A similar argument suggests that the occurrence of 6E  leads to test (h).  A definitive 
conclusion will be reached at the end of tests (g) and (h).  The rejection of 2H  in both test (c) and test 
(d) indicate the equal possibility of Y X⇐  and Y X⇒ .  Hence, the result of 8E  calls for test (f): 2H  
versus 5H .  If 2H  is rejected at test (f), then the possibility of the feedback relationship is established 
and the backward procedure moves to test (i).  When 2H  is not rejected at test (f) or when event 7E  is 
realized, the backward procedure then proceeds to test (e), which discriminates between the 
independency and the contemporaneous relationship.  If 1H  is rejected in test (e), the conclusion of 
Y X↔  is reached.  Otherwise, Y X∧  will be the case.  In each step of the hypothesis testing, the 
likelihood ratio test is conducted.  A flow chart representation of the backward procedure is displayed 
below. 
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The Forward Procedure 
 
The forward procedure begins by testing the validity of the independency hypothesis at sequence F1.  
The hypothesis indices, 1H  to 5H , the outcome indices, 1E  to 8E , and the pair-wise test indices, (a) to 
(h), are consistent in flow chart of the backward procedure shown above, and the flow chart of the 
forward procedure that follows.  The sequence F1 considers two pairs of hypotheses testing, test (e) 
and test (j).  If 1H  is not rejected in either test, the conclusion of Y X∧  is reached and the forward 
procedure stops.  Otherwise, the procedure will move forward to sequence F2, which examines the 
relative likelihood of the contemporaneous relationship versus the unidirectional relationship.  Notice 
that sequence F2 is identical to sequence B2, where one of the four possible outcomes, 5E , 6E , 7E , 
and 8E , will emerge.  Using the same argument on sequence B2, the outcomes of 5E  and 6E  lead to 
tests (g) and (h) respectively.  A conclusion from one of the four possible unidirectional relationships 
can be reached as a result and the forward procedure stops.  The outcome of 7E  implies Y X↔  and 
stops the forward procedure.  However, the outcome of 8E , which rules out the case of a 
contemporaneous relationship, leads the forward procedure to sequence F3, which corresponds to 
sequence B1 in the backward procedure.  Tests (a) and (b) may generate one of four possible 
outcomes, 1E , 2E , 3E , and 4E .  Similar to sequence B1 in the backward procedure, the outcomes of 
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1E  and 2E  lead to tests (g) and (h) respectively.  One of the four unidirectional relationships will be 
detected as a result and the procedure stops.  The outcome of 4E  implies a possible feedback 

relationship, and a further study, test (i), is needed to identify its nature.  When *
5H  is rejected in test 

(i), we conclude Y X⇔ ; otherwise, we conclude Y X<⇔> .  The outcome of 3E  implies that Y may 
help to predict X and X may help to predict Y, but the nature of this dynamic relationship is not clear.  
Therefore, test (f) is needed.  When 2H  is not rejected in test (f), the conclusion Y X↔  is reached and 
the procedure stops.  If 2H  is rejected in test (f), the procedure moves to test (i) to determine the nature 
of the feedback relationship.  Consequently, either Y X⇔  or Y X<⇔>  is shown to exist.  A flow chart 
representation of the forward procedure is presented below. 
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7.3 Test Statistic for Each Pair-wise Test 

In practice, the model(s) for the time series under study are unknown.  However, the order of the 
vector ARMA model for the series can be determined using the model identification procedure 
discussed in Chapter 14 of Liu (2006).  The test procedures are rather robust with respect to the 
selected model as long as the order of the model is generally correct.  Corresponding to each 
hypothesis, the parameters of the constrained model can be estimated using the maximum likelihood 
estimation method discussed in Liu (2006) (also see Hillmer and Tiao, 1979).  The likelihood ratio 
statistic is then calculated for each pair of hypotheses: 

i j i jLR(H  vs H ) (H ) (H )= −A A  (7.5) 

where i(H ) 2*= −A (log of the maximum likelihood value under iH ).  The above likelihood ratio statistic 

follows a 2χ -distribution with ν  degrees of freedom where ν  in each test is the difference between the 
numbers of estimated parameters under the null (the more restrictive one) and the alternative (the less 
restrictive one) hypotheses.  A chi-square table can then be used to determine the significance of the 
test statistic for the tested hypotheses.   

In each procedure, an α  significance level will be used in conducting all pair-wise tests.  Note that 
this α  level is not the Type I error probability for the overall performance of the procedures.  It serves 
only as a cut-off point in a sequential decision procedure.  The smaller the α , the higher is the 
probability that the more restrictive hypothesis will not be rejected.  Hence, taking a smaller α  is 
equivalent to favoring the more restrictive hypotheses (i.e., simpler relationships), and taking a larger 
α  is equivalent to favoring the more complicated relationships. 

We shall employ two actual examples to illustrate causality testing using vector ARMA models.  
The first example is the United States yearly price index and long-term interest rate.  This data set is 
used in various studies of the Gibson paradox.  The second example is the non-seasonally adjusted 
monthly housing market data in the United States.  The housing starts and houses sold series are 
employed in this study.  Additional examples can be found in Liu (2006). 
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7.4 Causal Relationships between Price and Interest Rate in the United States 

The United States yearly price index and interest rate between 1800 and 1981 are shown below using 
the SCAGRAF capability. 

U.S. yearly price index and long-term interest rate (1800-1981) 

 

 

In the above figure, we observe the striking positive association between the price level and the interest 
rate.  Such a relationship has been repetitively confirmed by various statistical methods ranging from 
correlation to spectral analysis, and is considered to be an established fact (see e.g., Fisher, 1907; 
Wicksell, 1907; Keynes, 1930; Sargent, 1973; Shiller and Siegel, 1977; Lee and Petruzzi, 1986; and 
Barsky and Summers, 1988).  Keynes (1930) called this association the “Gibson paradox” due to 
conflicting conclusions on this phenomenon when various statistical methods are used.  Nelson and 
Schwertz (1982) compare several methods including usual correlation, pre-whitening, two-sided 
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regression, and vector ARMA models by simulation studies.  They conclude that vector ARMA 
models provide the most powerful test for the presence of Granger causality.     

Chen and Lee (1990) also employ vector ARMA models to examine the dynamic relationships 
between prices and interest rates in United States.  The dynamic relationships revealed by vector 
ARMA models provide economists new insight in discriminating among competing theories about the 
nature of the Gibson paradox derived from the data.  Instead of using the entire series, the non-gold 
standard period between 1914 and 1981 are used in this example and logarithmic transformation is 
applied to both series for the convenience of interpretation.  The series tY  and tX  in the following 
discussions are defined as 

 tY :  log transformed United States yearly price index between 1914 and 1981, and 
 tX :  log transformed United States yearly interest rate between 1914 and 1981. 

During this sub-period, we have 68 observations for each series. 

Following vector ARMA model identification procedures, we find that a vector ARMA(1,1) 
model of the form 

t
t

t

Y
( B) ( B)

X
⎡ ⎤

− = + −⎢ ⎥
⎣ ⎦

I C I aφ θ  . (7.6) 

is appropriate for these two series.  The model is specified using the MTSMODEL command 

 MTSMODEL  ARMA11. SERIES ARE LUSP,LUSR.               @  
             MODEL IS (1-PHI*B)SERIES=C+(1-TH1*B)NOISE. 

After the vector ARMA(1,1) model is specified, the causality test is run using the CAUSALTEST 
command 

 CAUSALTEST MODEL ARMA11.  OUTPUT PRINT(CORR) 

----------------------- 
 ERROR COVARIANCE MATRIX 
 ----------------------- 
                1           2 
   1      .008147 
   2     -.000286     .006977 
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 ============================================================== 
 SUMMARY OF FINAL PARAMETER ESTIMATES AND THEIR STANDARD ERRORS 
 ============================================================== 
 
 PARAMETER              PARAMETER                   FINAL         ESTIMATED 
  NUMBER               DESCRIPTION                ESTIMATE       STD.  ERROR 
 ----------    -----------------------------     ------------    ------------ 
     1                CONSTANT( 1)                -0.006581        0.167474 
     2                CONSTANT( 2)                -0.460388        0.117567 
     3          AUTOREGRESSIVE ( 1, 1, 1)          1.004013        0.037627 
     4          AUTOREGRESSIVE ( 1, 1, 2)          0.015832        0.039399 
     5          AUTOREGRESSIVE ( 1, 2, 1)          0.100840        0.026400 
     6          AUTOREGRESSIVE ( 1, 2, 2)          0.971504        0.027438 
     7          MOVING AVERAGE ( 1, 1, 1)         -0.312030        0.114152 
     8          MOVING AVERAGE ( 1, 1, 2)          0.196522        0.125885 
     9          MOVING AVERAGE ( 1, 2, 1)         -0.279190        0.113242 
    10          MOVING AVERAGE ( 1, 2, 2)          0.048165        0.123562 
 
 CAUSALITY TEST BETWEEN VARIABLES   LUSP   AND   LUSR   
 
 -2*(LOG LIKELIHOOD) UNDER H1,H2,H3,H3*,H4,H4*,H5,H5* ARE: 
  -0.49779553E+03 
  -0.49780307E+03 
  -0.51833948E+03 
  -0.51828082E+03 
  -0.49996078E+03 
  -0.49990012E+03 
  -0.52080267E+03 
  -0.52071661E+03 
 
 RESULT BASED ON THE BACKWARD PROCEDURE ( Y:LUSP    ,  X: LUSR    ) 
     LUSP =>> LUSR     (Y STRONGLY CAUSES X) 
 
 RESULT BASED ON THE FORWARD PROCEDURE  ( Y:LUSP    ,  X: LUSR    ) 
     LUSP =>> LUSR     (Y STRONGLY CAUSES X) 
 

Based on the above output, the values of i(H )A  under various hypotheses are 

1

2

3
*
3

4
*
4

5
*
5

(H ) 497.796
(H ) 497.803
(H ) 518.339

(H ) 518.281
(H ) 499.961

(H ) 499.900
(H ) 520.803

(H ) 520.717 .

= −
= −
= −

= −

= −

= −
= −

= −

A
A
A

A
A

A
A

A

 (7.7) 
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Summarizing the SCA output of the log likelihood ratio statistics for various pairs of hypotheses and 
their corresponding 2χ  critical values at 5%α = , the following table is constructed: 

2
3 5 3 5 0.05

2
4 5 4 5 0.05

2
2 3 2 3 0.05

2 4

LR(H  vs H ) (H ) (H )   2.463  (2) 5.991 (insignificant)

LR(H  vs H ) (H ) (H ) 20.842  (2) 5.991 (significant)

LR(H  vs H ) (H ) (H ) 20.534  (2) 5.991 (significant)

LR(H  vs H )

= − = < χ =

= − = > χ =

= − = > χ =

=

A A

A A

A A

A 2
2 4 0.05

2
1 2 1 2 0.05

2
2 5 2 5 0.05
* *
3 3 3 3

(H ) (H )  2.158  (2) 5.991 (insignificant)

LR(H  vs H ) (H ) (H )   0.008  (1) 3.841 (insignificant)

LR(H  vs H ) (H ) (H ) 22.996  (4) 9.488 (significant)

LR(H  vs H ) (H ) (H

− = < χ =

= − = < χ =

= − = > χ =

= −

A

A A

A A

A A 2
0.05

* * 2
4 4 4 4 0.05
* * 2
5 5 5 5 0.05

1 5 1 5

)   0.059  (1) 3.841 (insignificant)

LR(H  vs H ) (H ) (H )  0.061  (1) 3.841 (insignificant)

LR(H  vs H ) (H ) (H )   0.086  (1) 3.841 (insignificant)

LR(H  vs H ) (H ) (H )

= < χ =

= − = < χ =

= − = < χ =

= − =

A A

A A

A A 2
0.05 23.007  (5) 11.070 (significant) .> χ =

 (7.8) 

Using the above likelihood ratio statistics and both the backward and forward procedures 
suggested by Chen and Lee (1990), the CAUSALTEST concludes is that price strongly causes interest 
rates as shown in the output of the CAUSALTEST command.  More information on the backward and 
forward procedures used in CAUSALTEST can be found in Chen and Lee (1990) and Liu (2006). 

7.5 Causal Relationships between Housing Starts and Houses Sold in the United States 
(Based on Non-Seasonally Adjusted Series) 

In this example, we consider non-seasonally adjusted (NSA) U.S. monthly single-family housing starts 
and houses sold.  The monthly data for these series between January 1963 and December 2003 are 
shown below.   
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U.S. monthly single-family housing starts and houses sold (NSA, 1/1963 – 12/2005) 

 

 

Instead of using the entire series, here we only use the data between January 1986 and December 2003 
to illustrate causality testing using vector ARMA models.  The series tY  and  tX  in the following 
discussion are defined as   

tY : Non-seasonally adjusted monthly housing starts in U.S. between 1986 and 2003 
tX : Non-seasonally adjusted monthly houses sold in U.S. between 1986 and 2003. 

During this sub-period, we have 216 observations for each series. 

Following vector ARMA model identification procedures, the following seasonal vector ARMA 
model was obtained:  

12 t 12
t

12 t

Y
( B) ( B)( B )

X
∇∇⎡ ⎤

− = − −⎢ ⎥∇∇⎣ ⎦
I I I aφ θ Θ  . (7.9) 
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In the above model, the constant term is insignificant and hence omitted from the model.  The model is 
first specified in the SCA System using the MTSMODEL command followed by the CAUSALTEST 
command 

 MTSMODEL NAME VARMASEASONAL.  SERIES HSTART(1,12),HSOLD(1,12). @   
     MODEL IS (1-PHI1*B)SERIES=(1-THETA1*B)(1-THETA2*B**12)NOISE.   

 CAUSALTEST VARMASEASONAL.  OUTPUT PRINT(CORR). 

 ----------------------- 
 ERROR COVARIANCE MATRIX 
 ----------------------- 
                1           2 
   1    26.917782 
   2     7.226946   19.205436 
 
 ============================================================== 
 SUMMARY OF FINAL PARAMETER ESTIMATES AND THEIR STANDARD ERRORS 
 ============================================================== 
 PARAMETER              PARAMETER                   FINAL         ESTIMATED 
  NUMBER               DESCRIPTION                ESTIMATE       STD.  ERROR 
 ----------    -----------------------------     ------------    ------------ 
     1          AUTOREGRESSIVE ( 1, 1, 1)         -0.068799        0.103855 
     2          AUTOREGRESSIVE ( 1, 1, 2)         -0.240153        0.200579 
     3          AUTOREGRESSIVE ( 1, 2, 1)         -0.058576        0.068029 
     4          AUTOREGRESSIVE ( 1, 2, 2)          0.417557        0.087700 
     5          MOVING AVERAGE ( 1, 1, 1)          0.725354        0.094989 
     6          MOVING AVERAGE ( 1, 1, 2)         -0.726185        0.194046 
     7          MOVING AVERAGE ( 1, 2, 1)          0.018602        0.035440 
     8          MOVING AVERAGE ( 1, 2, 2)          0.721436        0.076811 
     9     SEAS MOVING AVERAGE (12, 1, 1)          0.927476        0.042646 
    10     SEAS MOVING AVERAGE (12, 1, 2)         -0.070954        0.052423 
    11     SEAS MOVING AVERAGE (12, 2, 1)          0.074544        0.038916 
    12     SEAS MOVING AVERAGE (12, 2, 2)          0.812825        0.043798 
 
CAUSALITY TEST BETWEEN VARIABLES  HSTART  AND  HSOLD   
 
-2*(LOG LIKELIHOOD) UNDER H1,H2,H3,H3*,H4,H4*,H5,H5* ARE: 
   0.17518177E+04 
   0.17268096E+04 
   0.17221825E+04 
   0.17360510E+04 
   0.16851187E+04 
   0.17095935E+04 
   0.16818872E+04 
   0.16968655E+04 
 
 RESULT BASED ON THE BACKWARD PROCEDURE ( Y:HSTART  ,  X: HSOLD   ) 
   HSTART <= HSOLD    (Y IS CAUSED BY X) 
 
 RESULT BASED ON THE FORWARD PROCEDURE  ( Y:HSTART  ,  X: HSOLD   ) 
   HSTART <= HSOLD    (Y IS CAUSED BY X) 
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Based on the CAUSALTEST output, the values of i(H )A  under various hypotheses are 

1

2

3
*
3

4
*
4

5
*
5

(H ) 1751.818
(H ) 1726.810
(H ) 1722.183

(H ) 1736.051
(H ) 1685.119

(H ) 1709.594
(H ) 1681.887

(H ) 1696.866 .

=
=
=

=

=

=
=

=

A
A
A

A
A

A
A

A

 (7.10) 

Summarizing the SCA output of the log likelihood ratio statistics for various pairs of hypotheses and 
their corresponding 2χ  critical values at 5%α = , the following table is constructed: 

2
3 5 3 5 0.05

2
4 5 4 5 0.05

2
2 3 2 3 0.05

2

LR(H  vs H ) (H ) (H )  40.295  (3) 7.815 (significant)

LR(H  vs H ) (H ) (H )   3.231  (3) 7.815 (insignificant)

LR(H  vs H ) (H ) (H )   4.627  (3) 7.815 (insignificant)

LR(H  vs H

= − = > χ =

= − = < χ =

= − = < χ =

A A

A A

A A
2

4 2 4 0.05
2

1 2 1 2 0.05
2

2 5 2 5 0.05
* *
3 3 3

) (H ) (H ) 41.691  (3) 7.815 (significant)

LR(H  vs H ) (H ) (H )  25.008  (1) 3.841 (significant)

LR(H  vs H ) (H ) (H ) 44.922  (6) 12.592 (significant)

LR(H  vs H ) (H ) (H

= − = > χ =

= − = > χ =

= − = > χ =

= −

A A

A A

A A

A A 2
3 0.05

* * 2
4 4 4 4 0.05
* * 2
5 5 5 5 0.05

1 5 1 5

)  13.869  (1) 3.841 (significant)

LR(H  vs H ) (H ) (H ) 24.475  (1) 3.841 (significant)

LR(H  vs H ) (H ) (H )  14.978  (1) 3.841 (significant)

LR(H  vs H ) (H ) (H )  69.9

= > χ =

= − = > χ =

= − = > χ =

= − =

A A

A A

A A 2
0.0531  (7) 14.067 (significant) .> χ =

 (7.11) 

Using the above likelihood ratio statistics and both the backward and forward procedures suggested by 
Chen and Lee (1990), the CAUSALTEST concludes that housing starts is caused by houses sold. 

  



 

 

CHAPTER 8 

INTRODUCTION TO NONLINEAR TIME SERIES ANALYSIS  
IN THE SCA SYSTEM 

Time series models, such as ARIMA and transfer function models discussed in Box and Jenkins (1976) 
and other literatures, typically assume the model parameters and innovation variances are constant 
(i.e., invariant) regardless of the time and the values of the series.  While the behavior (processes) for a 
vast variety of real-life time series can be approximated by such constancy models, there are situations 
that different forms of time series models may be more useful in either understanding the 
behavior/relationships of the time series, or improving the accuracy of forecasting models.  We 
collectively refer to this class of models as nonlinear time series models.  It is useful to note that 
transfer function models in fact can capture certain types of nonlinear dynamic relationships between 
output and input time series.  However it still assumes the parameters representing such nonlinear 
relationships remain the same (i.e., constancy parameters) regardless of the time and values of the 
series. 

A classic issue in time series modeling is the non-homogeneity of innovation variances.  When the 
innovation variances increase as the values of the time series increase, a class of power transformation 
(see e.g., Box and Jenkins 1976) is often find useful in both linearizing the relationships and 
homogenizing the variances.  The issues related to power transformation are discussed in the next 
chapter (Chapter 9) as well as in Chapter 6.  In some situations however (e.g., in financial time series 
analysis), our primary interest is to model and understand the behavior of innovation variances.  Engle 
(1982), Bollerslev (1986), and others have developed a variety of conditional heteroscedastic models, 
generally known as ARCH/GARCH or their extended models.  Such models are discussed in Chapter 
10. 

A common and more serious threat to the usability of traditional time series models is the non-
constancy of the model parameters.  The model parameters may evolve over time without a particular 
pattern.  In some situations, however, the model parameters may remain constant (stable) during 
particular time frames, or seasons, or within certain ranges of input or output time series.  Under such a 
situation, time-segmented or value-segmented time series models can be useful in the analysis and 
forecasting of such time series.  Value-segmented time series models are commonly referred to as 
threshold time series models. 

In Chapter 11, the TVPEXPLORE command is introduced to examine the potential time-varying 
(non-constancy) properties of the parameters in a time series model.  Depending upon the information 
obtained in TVPEXPLORE analysis, we can then decide what sort of models could be employed for 
the next step of analysis.  TVPEXPLORE not only provides a convenient method of studying the time-
varying properties of estimated parameters, the information that is provides may help the analyst find 
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hidden characteristics in the time series that can be useful in business analysis or essential to improve 
forecasting performance as well. 

In Chapter 12, we discuss weighted estimation and forecasting method.  This method is employed 
using the WESTIM and WFORECAST commands.   Chapter 12 provides examples to show how 
WESTIM and WFORECAST commands are useful for time-segmented time series analysis and 
forecasting.  The WESTIM command is very flexible and can be used for value-segmented modeling 
in various situations.   

In Chapter 13, we discuss several special types of value-segmented time series models known as 
threshold models.  In this chapter, examples of threshold autoregressive (TAR) models are shown.  
Other novel extensions are also discussed such as threshold transfer function models, and general 
threshold models with more complex noise models that go beyond the typical threshold autoregressive 
approach.  The SCA commands presented in Chapter 13 include TARTEST, TARXTEST, THMTEST, 
THMEXPLORE, TARESTIM, and TARFORECAST commands. 



 

 

CHAPTER 9 

SEARCH FOR THE BEST POWER TRANSFORMATION FOR  
TIME SERIES FORECASTING 

The Professional Edition (B) of the SCA Statistical System implements new capabilities to search for 
the best transformation that can be applied to a time series for the purpose of improving forecasting 
accuracy, linearizing (and thus simplifying) time series models, or improving estimation of 
intervention effects. In this chapter, the TSEARCH command is discussed.  A related command, 
RETRANSFORM, to retransform forecasts back into original units was presented in an earlier chapter.  
A few supporting SCA analytic statements are also used to complete the examples.  More information 
on SCA analytic statements is documented in the SCA Reference Manual for Fundamental 
Capabilities. 

In univariate time series analysis, Box and Jenkins (1976) discussed the feasibility of obtaining an 
ARIMA model with homogenous residual variance based on a time series derived from a power 
transformed series similar to that proposed in Box and Cox (1964).  Using tY  to denote the original 
series with positive value (if tY  is non-positive, a positive constant value can be added to tY  before the 
transformation), this class of transformation can be expressed as 

tt
t

(Y 1) / if  0 Z
n(Y ) if  0 

λ⎧ − λ λ ≠⎪= ⎨
λ =⎪⎩A  (9.1) 

where tZ  is the transformed series, λ  (referred to as lambda) is the power value of the transformation, 
and t=1, 2, …, n.  The above formulation of power transformations is continuous in the parameter λ .  
While the transformation in (9.1) has desirable properties such as continuity of λ  at 0, the variances of 
transformed series are not comparable when 'sλ  are different.  To address this issue, the following 
scaled power transformation is recommended by Box and Jenkins (1976), and Ansley, Spivey, and 
Wrobleski (1977) 

1
t

t
t

(Y 1) / ( Y ) if  0 
Z

Y n(Y ) if  0 

λ λ−⎧ − λ λ ≠⎪= ⎨
λ =⎪⎩

�

� A  (9.2) 

where 1/n
1 2 nY (Y  Y   Y )= ⋅⋅⋅�  is the geometric mean of the series.  We shall refer to the formulation of 

transformation in (9.1) and (9.2) as Type 1 power transformations. 

In addition to using the above power transformation, the following formulation of power 
transformation is also considered 
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tt
t

Y if  0 Z  
n(Y ) if  0 .

λ⎧ λ ≠⎪= ⎨
λ =⎪⎩A  (9.3) 

This form of power transformation has a discontinuity at 0λ = , and may possess some other 
undesirable properties.  However this form of power transformation is simple, and therefore is 
frequently used.  We shall refer to this formulation of transformation as Type 2 power transformations. 

There are two primary issues in the application of the power transformations shown above.  The 
first is to select an appropriate lambda value that will either improve the efficacy of the model or the 
accuracy of the forecasts.  This issue is discussed in this chapter.  The second issue is the correction of 
biases induced by the retransformation on the forecasts.   More information on the RETRANSFORM 
command can be found in Chapter 6.  

9.1 Procedures for Searching a Power Transformation 

To search for an appropriate value of lambda for power transformation, Box and Jenkins (1976), and 
Ansley, Spivey, and Wrobleski (1977) suggest that the method of Box and Cox (1964) be used.  This 
method is based on the maximization of a likelihood function (or equivalently minimization of residual 
standard error) which depends on lambda and the unknown parameters of the model.  Details of the 
proof can be found in Ansley, Spivey, and Wrobleski (1977).   

Assuming that a specific ARIMA model has already been chosen, Box and Jenkins (1976) show 
that the lambda value which minimizes the residual standard error of the scaled tZ  in (9.2) is the best 
power value of the transformation for the model considered.  We shall also refer to such residual 
standard error as the within-sample RMSE (root mean squared error) which can be expressed as   

2 1/2
t t

1 ˆRMSE( , , ) ( (Z Z ) )
m

λ φ θ = −∑  (9.4) 

where tZ  is the scaled transformed tY  as shown in (6.2), tẐ  is the one-step-ahead forecast of tZ , and 
m is the effective number of observations used in computing the RMSE (thus m < n).  The TSEARCH 
command of the SCA System provides the capability to compute the within-sample RMSE for a 
specific model over a range of lambda values.  The lambda value that minimizes the RMSE’s of the 
scaled tZ  is considered to be the best choice of the lambda value for the power transformation. 

From a forecasting point of view, we may consider a criterion to select the lambda value based on 
the minimization of the RMSE of the original observations tY  (Liu, 2006), which is  

2 1/2
t t

1 ˆRMSE( , , ) ( (Y Y ) )
m

λ φ θ = −∑  (9.5) 
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where tŶ  is the retransformed one-step-ahead forecast tẐ .  The TSEARCH command also provides 
such a capability for the determination of the lambda value. 

It is useful to note that the value of tY  generally increases over time for most business and 

economic time series, therefore the forecast error t tˆY Y−  also increases over time.  Consequently, the 

within-sample RMSE based on the original scale (i.e., using RMSE defined in (9.5)) is more 
influenced by the latter observations of the series and less influenced by the earlier observations.  This 
implicitly imposes the importance of time order in searching the power transformation.  This is not the 
case if the scaled tZ  is used in the minimization of RMSE since we expect ( t tˆZ Z− ) to have a similar 
distribution throughout the entire transformed series.  In forecasting, we are primarily interested in the 
accuracy of the most current forecasts.  Hence, the forecasting accuracy (reflected by the one-step-
ahead forecast errors) for the latter part of the series is more important than the earlier part.  We expect 
the RMSE criterion in (9.5) to provide a better choice of lambda for forecasting applications compared 
to the lambda obtained by (9.4). 

The power transformation in (9.1) and (9.2) are both Type 1 transformations and are basically the 
same (see Chapter 6 for the difference between Type 1 and Type 2 power transformation). The only 
difference between (9.1)  and (9.2) is that the transformation in (9.2) is scaled by the geometric mean.  
Unlike Type 1 power transformations, Type 2 power transformations have a discontinuity at 0λ = , 
which renders it inappropriate to use when searching for a lambda value based on the minimization of 
the RMSE of the scaled tZ .  However, it is still appropriate to search for a lambda value based on the 
minimization of the RMSE of the original series tY .  This is part of the rationale that leads us to 
strongly recommend a Type 1 transformation when considering power transformations in time series 
analysis and forecasting. 

We shall use one example to illustrate the search of the lambda value for an appropriate power 
transformation.  Additional examples can be found in Liu (2006). 

9.2 Peak Electricity Load Forecasting Example of Power Transformation Search 

In this section we provide an example of power transformation in time series analysis using the 
monthly electricity peak load data in a certain service area of Taiwan.  The data analyzed are from 
January 1982 up to and including December 1999 (a total of 219 monthly observations).  The original 
monthly peak load data (PEAKLOAD) is displayed below. 
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Time Series Plot of Monthly Electricity Peak Loads 

 

By examining the above time series plot, we find the first four years of data have a different trend 
when compared with the rest of the time series.  To simplify our discussion, first a power 
transformation analysis is conducted using the data starting in the fifth year which corresponds to time 
periods between t=49 and t=192.  We reserve the data between t=193 and t=216 for post-sample 
forecasting comparison.  Power transformation analysis that includes the first four years of data can be 
found in Liu (2006) and will be discussed later in this chapter as well.  After performing a preliminary 
analysis, the following model is chosen for this time series which can be expressed as 

 
12 12

t 1 1 t(1 B)(1 B )Y (1 B)(1 B )a− − = − θ −Θ  .    

The model is specified in the SCA System using the following TSMODEL command 

 TSMODEL MODEL1.  MODEL IS PEAKLOAD(1,12)=(1)(12)NOISE. 

In the above command, MODEL1 is used to reference the specified model in the SCA System.  The 
model reference is subsequently used in the TSEARCH command to find a power value (lambda) 
which is the best power transformation under this model. 

Before the TSEARCH command is employed, an analytic statement is used in the SCA System to 
assign the value 1 to a variable named VTYPE.  This variable will be used in the TSEARCH command 
shown below.   

 VTYPE=1 
 TSEARCH MODEL1.   POWER 0.05,-1.0,1.0.   FORM  VTYPE,GMEAN. @  

  SPAN 49,192,216.   WITHIN-RMSE VPOWER,WRMSEO,WRMSET.    @  
  POST-RMSE VPOWER, PRMSEO, PRMSET.  
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In the above TSEARCH command, we use the data between t=49 and t=192 (a total of 144 
observations) to determine the lambda value.  The last 24 observations (between t=193 and t=216) are 
reserved for computing the post-sample RMSE for forecasting.  This is specified using the SPAN 
subcommand.  The FORM subcommand is used to specify the type of transformation (TYPE=1) and 
whether the geometric mean should be used to scale the data.  We indicate the use of geometric mean 
scaling by including a variable name (GMEAN is used here) as the second argument.  After the 
TSEARCH command is executed, the GMEAN variable will hold the geometric mean value which can 
then be used later in an SCA session for retransformation or other applications. 

The POWER subcommand is used to specify the range of power values (lambda values) that will 
be considered.  The first argument specifies the increment of the lambda value and the second and third 
arguments specify the lower and upper bounds of the lambda values. 

The WITHIN-RMSE and POST-RMSE subcommands are used to specify the variables to hold 
information related to the within-sample and post-sample RMSE’s across the range of power values 
considered.  The output results from the TSEARCH command are shown below.  Some output has 
been suppressed for brevity. 

 THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN    49  THRU   192 
 THE POST-SAMPLE  RMSE  IS BASED ON TIME SPAN   193  THRU   216 
 
 --------------------------------------------------- 
 POWER TRANSFORMATION USING LAMDA (POWER):   -1.0000 
 --------------------------------------------------- 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODEL1  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1      12 
 PEAKLOAD   RANDOM     ORIGINAL     (1-B  ) (1-B  )  
 ----------------------------------------------------------------------- 
  
 PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1          PEAKLOAD   MA       1      1     NONE      .6470     .0665   9.73  
   2          PEAKLOAD   MA       2     12     NONE      .5108     .0795   6.42  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           144 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           131 
 RESIDUAL STANDARD ERROR (WITHOUT OUTLIER ADJUSTMENT). .  0.486509E+03 
 
 LAMDA VALUE OF POWER TANSFORMATION=      -1.0000 
 WITHIN-SAMPLE RMSE (UNTRANSFORMED)= 0.651556E+03     N. OF OBS.=   131 
 POST-SAAMPLE  RMSE (UNTRANSFORMED)= 0.734450E+03     N. OF OBS.=    24 
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  --------------------------------------------------- 
 POWER TRANSFORMATION USING LAMDA (POWER):   -0.9500 
 --------------------------------------------------- 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODEL1  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1      12 
 PEAKLOAD   RANDOM     ORIGINAL     (1-B  ) (1-B  )  
 ----------------------------------------------------------------------- 
  
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1          PEAKLOAD   MA       1      1     NONE      .6501     .0672   9.68  
   2          PEAKLOAD   MA       2     12     NONE      .5228     .0780   6.70  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           144 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           131 
 RESIDUAL STANDARD ERROR (WITHOUT OUTLIER ADJUSTMENT). .  0.482516E+03 
 
 LAMDA VALUE OF POWER TANSFORMATION=      -0.9500 
 WITHIN-SAMPLE RMSE (UNTRANSFORMED)= 0.644508E+03     N. OF OBS.=   131 
 POST-SAAMPLE  RMSE (UNTRANSFORMED)= 0.725407E+03     N. OF OBS.=    24 
  . 
  . 
  . 
 --------------------------------------------------- 
 POWER TRANSFORMATION USING LAMDA (POWER):    0.9500 
 --------------------------------------------------- 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODEL1  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1      12 
 PEAKLOAD   RANDOM     ORIGINAL     (1-B  ) (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1          PEAKLOAD   MA       1      1     NONE      .9865     .0097 101.50  
   2          PEAKLOAD   MA       2     12     NONE      .5074     .0786   6.46  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           144 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           131 
 RESIDUAL STANDARD ERROR (WITHOUT OUTLIER ADJUSTMENT). .  0.559287E+03 
 
 LAMDA VALUE OF POWER TANSFORMATION=       0.9500 
 WITHIN-SAMPLE RMSE (UNTRANSFORMED)= 0.564448E+03     N. OF OBS.=   131 
 POST-SAAMPLE  RMSE (UNTRANSFORMED)= 0.620066E+03     N. OF OBS.=    24 
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 --------------------------------------------------- 
 POWER TRANSFORMATION USING LAMDA (POWER):    1.0000 
 --------------------------------------------------- 
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODEL1  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1      12 
 PEAKLOAD   RANDOM     ORIGINAL     (1-B  ) (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1          PEAKLOAD   MA       1      1     NONE      .9784     .0148  66.30  
   2          PEAKLOAD   MA       2     12     NONE      .4975     .0793   6.27  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           144 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           131 
 RESIDUAL STANDARD ERROR (WITHOUT OUTLIER ADJUSTMENT). .  0.569440E+03 
 
 LAMDA VALUE OF POWER TANSFORMATION=       1.0000 
 WITHIN-SAMPLE RMSE (UNTRANSFORMED)= 0.569440E+03     N. OF OBS.=   131 
 POST-SAMPLE  RMSE (UNTRANSFORMED)= 0.620799E+03      N. OF OBS.=    24 
 

Upon executing the above TSEARCH command, the within-sample RMSE based on the original 
series (WRMSEO), the within-sample RMSE based on the Box-Cox scaled transformation 
(WRMSET), and the post-sample RMSE based on the original data (PRMSEO) are stored in the SCA 
workspace.  The PRINT command is used to display the results summary. 

 PRINT POWER,WRMSEO,WRMSET, PRMSEO. 

VARIABLE     POWER    WRMSEO    WRMSET    PRMSEO                     
   ROW     
     1       -1.000   651.556   486.509   734.450    
     2        -.950   644.508   482.516   725.407    
     3        -.900   636.692   478.575   721.012    
     4        -.850   629.213   474.988   713.962    
     5        -.800   621.536   471.678   707.540    
     6        -.750   614.143   468.559   700.238    
     7        -.700   606.763   465.690   693.165    
     8        -.650   599.403   463.020   684.942    
     9        -.600   592.168   460.623   676.430    
    10        -.550   585.034   458.505   666.929    
    11        -.500   578.049   456.673   656.588    
    12        -.450   571.281   455.184   645.208    
    13        -.400   564.832   454.070   632.860    
    14        -.350   558.803   453.378   619.705    
    15        -.300   553.332   453.161   606.019    
    16        -.250   548.541   453.449   592.283    
    17        -.200   544.411   454.277   579.160    
    18        -.150   541.310   455.652   566.860    
    19        -.100   539.055   457.570   556.329    
    20        -.050   537.691   459.996   548.768    
    21         .000   536.996   462.901   543.140    
    22         .050   536.918   466.228   539.730    
    23         .100   537.342   469.926   538.461    
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    24         .150   538.157   473.938   539.115    
    25         .200   539.269   478.215   541.400    
    26         .250   540.602   482.710   544.951    
    27         .300   542.100   487.387   549.349    
    28         .350   543.714   492.215   554.173    
    29         .400   545.399   497.168   559.081    
    30         .450   547.113   502.223   563.840    
    31         .500   548.811   507.355   568.290    
    32         .550   550.447   512.535   572.297    
    33         .600   551.965   517.718   575.720    
    34         .650   553.288   522.837   578.394    
    35         .700   554.289   527.771   580.105    
    36         .750   554.666   532.236   579.899    
    37         .800   545.576   526.732   624.905    
    38         .850   552.012   537.507   619.311    
    39         .900   558.690   548.670   620.456    
    40         .950   564.448   559.287   620.066    
    41        1.000   569.440   569.440   620.799    

 

Based on these results, we obtain a lambda value of 0.05 if the within-sample RMSE based on the 
original scale is used as the selection criterion.  The corresponding post-sample RMSE is 539.730, 
which is very close to the smallest post-sample RMSE 538.461 (where 0.10λ = ), and much smaller 
than the post-sample RMSE of 620.799 when no transformation is applied (i.e., when 1.00λ = ).  If the 
within-sample RMSE based on the scaled transformed data is used as a selection criterion for lambda, 
we obtain a lambda value of -0.30.  The corresponding post-sample RMSE is 606.019, which is about 
12% higher than the post-sample RMSE if 0.05λ =  is used.  In the analysis shown above, we find that 
for forecasting applications, it is better to use the within-sample RMSE based on the original scale as a 
selection criterion for lambda rather than the traditional Box-Cox criterion which bases lambda 
selection using the scaled transformed series.   

In some situations, the post-sample RMSE for a lambda that was selected based on the scaled 
transformed series may be higher than the post-sample RMSE of the non-transformed original series.  
This raises the question about the usefulness of traditional Box-Cox power transformation in 
forecasting applications.  Using all data between t=1 and t=192 (i.e., not excluding the first four years 
of data), the within-sample RMSE based on the original series (WRMSEO), the within-sample RMSE 
based on the Box-Cox scaled transformation (WRMSET), and the post-sample RMSE based on the 
original data (PRMSEO) are computed by the TSEARCH command and summarized below.   

     POWER    WRMSEO    WRMSET    PRMSEO  
    -1.000   568.140   400.624   770.280 
     -.950   561.371   395.330   764.340 
     -.900   555.078   390.197   760.422 
     -.850   547.730   385.368   755.751 
     -.800   540.831   381.113   751.246 
     -.750   533.886   377.020   746.435 
     -.700   526.602   373.269   740.699 
     -.650   519.204   369.934   733.382 
     -.600   511.615   367.009   724.031 
     -.550   503.967   364.536   711.548 
     -.500   496.428   362.638   695.359 
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     -.450   489.414   361.390   674.882 
     -.400   483.410   360.901   651.183 
     -.350   478.789   361.197   626.563 
     -.300   475.758   362.281   603.256 
     -.250   474.227   364.097   583.136 
     -.200   473.919   366.562   567.206 
     -.150   474.520   369.593   555.147 
     -.100   475.767   373.108   546.523 
     -.050   477.458   377.048   540.675 
      .000   479.445   381.366   536.990 
      .050   481.628   386.023   534.945 
      .100   483.939   390.997   534.136* 
      .150   486.333   396.270   534.258 
      .200   488.781   401.831   535.088 
      .250   491.261   407.671   536.460 
      .300   493.760   413.786   538.252 
      .350   496.268   420.172   540.373 
      .400   498.780   426.830   542.760 
      .450   501.291   433.758   545.363 
      .500   504.078   440.968   549.313 
      .550   506.485   448.433   551.698 
      .600   509.020   456.188   554.868 
      .650   511.489   464.219   557.878 
      .700   513.970   472.537   561.096 
      .750   516.434   481.143   564.353 
      .800   518.894   490.043   567.713 
      .850   521.347   499.242   571.139 
      .900   523.796   508.745   574.644 
      .950   526.242   518.557   578.220 
     1.000   528.685   528.685   581.872 
 

From the above table, we obtain a lambda value of -0.20 if the within-sample RMSE based on the 
original scale is used as a selection criterion for lambda.  The corresponding post-sample RMSE is 
567.206.  However, if the within-sample RMSE based on the scaled transformed series is used, we 
obtain a lambda value of -0.40.  The corresponding post-sample RMSE is 651.183 which is much 
larger than the post-sample RMSE 581.872 if no transformation is applied to the time series (i.e., when 

1.00λ = ).  Such a result gives practitioners reasons to question the usefulness of power transformations 
in forecasting.  The lambda selected based on the original scale does not have this problem.  More 
discussion of this issue can be found in Liu (2006). 
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CHAPTER 10 

GARCH MODELING AND ANALYSIS 

The Professional Edition (B) of the SCA Statistical System includes GARCH modeling, analysis, and 
forecasting capabilities through SCA WorkBench and the SCAB34S GARCH product.  The SCAB34S 
product is a subset of capabilities from the B34S ProSeries Econometric System.  More on the B34S 
family of products can be found in Stokes (1997).   SCAB34S GARCH is included as an integrated 
component of the Professional Edition (B).  The user is directed to the document, General 
Autoregressive Conditional Heteroscedastic (GARCH) Modeling Using the SCAB34S-GARCH and 
SCA WorkBench, for a detailed discussion of GARCH capabilities in the SCA System.  A detailed and 
comprehensible discussion of GARCH models can be found in Liu (2006).  An example of the 
ARCH/GARCH modeling environment is displayed below: 

 

The SCA System provides options to estimate a variety of conditional heteroscedastic models 
including the autoregressive conditional heteroscedastic (ARCH) model of Engle (1982), the 
generalized ARCH (GARCH) model of Bollerslev (1986), the integrated GARCH (IGARCH) model 
of Nelson (1990, 1991), the GARCH-M model of Engle, Lilien, and Robins (1987), the GJR-GARCH 
model of Glosten, Jagannathan, and Runkle (1993), the exponential GARCH (EGARCH) model of 
Nelson (1991), and a variety of threshold GARCH models discussed in Zachoian (1994) and Tsay 
(2005).  In addition, the non-normal error distributions including Student-t, Cauchy, and GED are 
supported. 
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CHAPTER 11 

TIME SERIES MODELS WITH TIME-VARYING PARAMETERS 

The Professional Edition (B) of the SCA Statistical System provides capabilities to employ time series 
models with time-varying parameters.  In this chapter, the TVPEXPLORE command is presented.  
Other commands such as TSMODEL and ESTIMATE are also used to complete the illustrative 
examples.  These additional commands are documented in the SCA reference manual, Forecasting and 
Time Series Analysis Using the SCA Statistical System, Volume 1. 

The TVPEXPLORE command is very useful to explore the stability and time-varying properties 
of the estimated model parameters.  It can also be used to study seasonal effects, structural shifts, and 
overall model performance as it relates to both parameter estimates and windows of time. 

11.1 Example of the TVPEXPLORE Command Using a Day-of-Week Effect Model 

To illustrate an application of time-varying parameter analysis through the TVPEXPLORE command, 
we consider the daily per store sales (DSALES) of a service-related product from January 1, 2004 
through December 31, 2006. 

Daily Sales  (1/1/2004 – 12/31/2006) 

 

The plot reveals that DSALES has a very strong weekly periodic pattern and thus is dominated by 
strong day-of-week effects.  Weekends (Friday to Sunday) have consistently higher sales than 
weekdays.  In addition, Monday, Tuesday,…, and Sunday seem to have their own unique means, often 
referred to as day-of-week effects.  In this example, we are interested in studying the characteristics of 
the day-of-week effects over time.  
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We begin by generating the day-of-week dummy variables using the DOWEEK and DVECTOR 
commands.  The DATE and DSALES variables have been input into the SCA workspace prior to the 
commands shown below. 

 DOWEEK DATE.  DAYOFWEEK VDOW. 
 DVECTOR VDOW.  MAIN-EFFECT X. 

The first twenty-one rows of the generated dummy variables (X1 to X6) are now printed along with the 
DATE, DSALES and VDOW variables for illustration.  For more information on the use of the 
DOWEEK and DVECTOR commands, please refer to Chapter 2. 

 PRINT VARIABLES DATE, DSALES,VDOW, X1 TO X6. @  
 FORMAT '2F12.0,7F5.0'.  SPAN 1,21. 

 VARIABLE         DATE      DSALES  VDOW X1   X2   X3   X4   X5   X6                                          
   ROW     
     1        20040101        3632    4    0    0    0    1    0    0 
     2        20040102        4261    5    0    0    0    0    1    0 
     3        20040103        4314    6    0    0    0    0    0    1 
     4        20040104        3257    7   -1   -1   -1   -1   -1   -1 
     5        20040105        2203    1    1    0    0    0    0    0 
     6        20040106        2093    2    0    1    0    0    0    0 
     7        20040107        2220    3    0    0    1    0    0    0 
     8        20040108        2555    4    0    0    0    1    0    0 
     9        20040109        4690    5    0    0    0    0    1    0 
    10        20040110        4413    6    0    0    0    0    0    1 
    11        20040111        3070    7   -1   -1   -1   -1   -1   -1 
    12        20040112        1922    1    1    0    0    0    0    0 
    13        20040113        1981    2    0    1    0    0    0    0 
    14        20040114        2236    3    0    0    1    0    0    0 
    15        20040115        2712    4    0    0    0    1    0    0 
    16        20040116        4869    5    0    0    0    0    1    0 
    17        20040117        4740    6    0    0    0    0    0    1 
    18        20040118        3591    7   -1   -1   -1   -1   -1   -1 
    19        20040119        2379    1    1    0    0    0    0    0 
    20        20040120        2417    2    0    1    0    0    0    0 

21        20040121        2505    3    0    0    1    0    0    0  
 

We now specify a deterministic seasonal regression model with an AR(1) term using the 
TSMODEL command.  The AR(1) term is used to accommodate day-to-day serial correlation.  This 
model is then estimated using the ESTIMATE command. 

 TSMODEL SALESMDL. MODEL IS @  
    DSALES=C+(B1)X1+(B2)X2+(B3)X3+(B4)X4+(B5)X5+(B6)X6+1/(1;PH1)NOISE. 

 ESTIMATE SALESMDL. 
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SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  SALESMDL  
----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
 
  DSALES    RANDOM     ORIGINAL     NONE 
    X1      RANDOM     ORIGINAL     NONE 
    X2      RANDOM     ORIGINAL     NONE 
    X3      RANDOM     ORIGINAL     NONE 
    X4      RANDOM     ORIGINAL     NONE 
    X5      RANDOM     ORIGINAL     NONE 
    X6      RANDOM     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1    C               CNST      1      0     NONE  3212.6734   19.8714 161.67  
   2    B1       X1     NUM.      1      0     NONE  -970.1566   10.2090 -95.03  
   3    B2       X2     NUM.      1      0     NONE  -892.6729   10.2113 -87.42  
   4    B3       X3     NUM.      1      0     NONE  -663.1560   10.2075 -64.97  
   5    B4       X4     NUM.      1      0     NONE  -288.0881   10.2013 -28.24  
   6    B5       X5     NUM.      1      0     NONE  1599.5879   10.1879 157.01  
   7    B6       X6     NUM.      1      0     NONE  1152.0953   10.1881 113.08  
   8   PH1     DSALES   D-AR      1      1     NONE      .7675     .0192  39.95  
 
 EFFECTIVE NUMBER OF OBSERVATIONS . .          1095 
 R-SQUARE . . . . . . . . . . . . . .         0.975 
 RESIDUAL STANDARD ERROR. . . . . . .  0.152890E+03 

 
The day-of-week effects ( B1 Monday≡ ,…, B6 Saturday≡ ) are estimated as deviations from the overall 
mean of DSALES (which is represented by C in the model).  Since such a model uses the constraint 
B1+B2+…+B7=0, the Sunday effect is equal to –(B1+B2+…+B6).  The use of the above deterministic 
seasonal model assumes that the day-of-week effects remain constant over time.   

The TVPEXPLORE command can be used to explore the validity of the assumption of invariant 
day-of-week effects for the DSALES series.  The WINDOWSIZE subcommand is used to specify the 
number of time periods in moving window estimation of the model parameters.  The window size can 
be increased or decreased depending upon desired sensitivity in detecting the time-varying properties 
of the model parameters.  In this example, the window size is specified as 84 observations (twelve 
weeks).  Here, the first estimation will be from time span 1 to 84; the second estimation will be from 2 
to 85; and so on.  The parameter values and their t-values are saved for each estimation window in 
designated variables.  All model parameters that have been specified with labels in the TSMODEL 
command will accumulate in this manner during the TVPEXPLORE estimation.  Note that the first 83 
values of the estimated parameters and their t-values are padded with missing values since the initial 
window size is specified as 84 observations. 
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 TVPEXPLORE SALESMDL.  WINDOWSIZE 84.  HOLD VARIANCE(VRNCE) 

VARIABLE        C  STORES PARAMETER ESTIMATES (WITH  1096 VALUES) 
 VARIABLE       _C  STORES THE t-VALUES OF THE ABOVE ESTIMATES 
 VARIABLE       B1  STORES PARAMETER ESTIMATES (WITH  1096 VALUES) 
 VARIABLE      _B1  STORES THE t-VALUES OF THE ABOVE ESTIMATES 
 VARIABLE       B2  STORES PARAMETER ESTIMATES (WITH  1096 VALUES) 
 VARIABLE      _B2  STORES THE t-VALUES OF THE ABOVE ESTIMATES 
 VARIABLE       B3  STORES PARAMETER ESTIMATES (WITH  1096 VALUES) 
 VARIABLE      _B3  STORES THE t-VALUES OF THE ABOVE ESTIMATES 
 VARIABLE       B4  STORES PARAMETER ESTIMATES (WITH  1096 VALUES) 
 VARIABLE      _B4  STORES THE t-VALUES OF THE ABOVE ESTIMATES 
 VARIABLE       B5  STORES PARAMETER ESTIMATES (WITH  1096 VALUES) 
 VARIABLE      _B5  STORES THE t-VALUES OF THE ABOVE ESTIMATES 
 VARIABLE       B6  STORES PARAMETER ESTIMATES (WITH  1096 VALUES) 
 VARIABLE      _B6  STORES THE t-VALUES OF THE ABOVE ESTIMATES 
 VARIABLE      PH1  STORES PARAMETER ESTIMATES (WITH  1096 VALUES) 
 VARIABLE     _PH1  STORES THE t-VALUES OF THE ABOVE ESTIMATES 
 VARIABLE    VRNCE  STORES THE VARIANCE FOR EACH ESTIMATION WINDOW 

 
The above output echoes the names of the variables containing the parameter estimates, associated t-
values, and residual variance.  As mentioned earlier, the effect of Sunday (B7) can be computed using 
the following SCA analytic statement 

 B7= -(B1+B2+B3+B4+B5+B6) 

In order to better visualize the time-varying properties of the constant and day-of-week effects, the 
overall mean of the vector C is computed and added to the day-of-week effects using the following 
analytic statements 

 CMEAN=MEAN(C) 
 TB1=CMEAN+B1 
 TB2=CMEAN+B2 
 TB3=CMEAN+B3 
 TB4=CMEAN+B4 
 TB5=CMEAN+B5 
 TB6=CMEAN+B6 
 TB7=CMEAN+B7 
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The time-varying properties of the day-of-week effects can now be graphed using the SCAGRAF 
command or other graphing program. 
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The above plot provides an abundance of information regarding this daily sales series.  First, we find 
that the day-of-week effects are not stable over time.  Second, weekends (Friday through Sunday) have 
higher variability (and higher sales volumes) than weekdays.  Third, the estimated constant (labeled as 
CNST in the graph) reveals that sales are decreased in 2006 in comparison with 2005.   

A yearly cyclical pattern is also present.  Higher sales typically occur around February and lower 
sales typically occur around the September or October months.  In addition, we find that the 
distribution of day-of-week effects across the week is somewhat dynamic.  For example, during the 
peak cycle (around February), the relative increase of sales in the weekend periods are greater than the 
weekday periods.  Also, during the yearly cycle with lower sales (around September or October), 
weekday sales are increasing at a relatively greater rate over weekend sales.  Finally, it seems that 
Friday sales are eroding at a faster rate than other days and the gap between Friday and Saturday sales 
is somewhat narrowing.   

As shown, the use of traditional deterministic models with TVPEXPLORE reveals much about the 
series at hand that may lead to better operational planning and business decisions.  However, with such 
high instability among the day-of-week effects over time, it would be unwise to rely on such 
deterministic models for forecasting applications.  Therefore, if forecasting is the primary application, 
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adaptive models such as ARIMA are better suited.  In addition, time-segmented or value-segmented 
(threshold) time series models may be useful in the analysis and forecasting of such series.  A time-
segmented model will be applied to the DSALES series to illustrate such application in the next 
chapter. 

The residual variances for the estimation windows were also stored using the HOLD subcommand 
in the TVPEXPLORE command.  Besides exploring the time-varying properties of the day-of-week 
effects (or other parameter estimates in the model), it may be useful to explore the residual standard 
errors of the model over time.  In the TVPEXPLORE command, the residual variances were stored in 
the VRNCE variable.  We now use the SQRT analytic statement to get the residual standard errors. 

 STDERR=SQRT(VRNCE) 

The residual standard errors (STDERR) can now be plotted using the SCAGRAF program or other 
graphing program as shown below. 
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The plot reveals that the residual standard errors are also not stable over time.  The standard errors 
are relatively high earlier in each year but lower near the end of each year.  This may be partially due 
to holidays and seasonal business conditions.  With evidence of cyclical behavior in residual standard 
errors, we would also expect forecasting accuracy to be highly dependent upon the time of year in 
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which it is measured.  This information may be important to a business for seasonal planning, and to 
understand the underlying causes of such cyclical behavior in forecasting accuracy.    

11.2 Example of TVPEXPLORE in the Context of Simple Moving Averages 

The concept and power behind the TVPEXPLORE command is quite extraordinary.  Even the use of a 
very simple model with the time-varying parameter approach can provide important information.  
Consider the following simple mean model 

t tDSALES C a .= +  (11.1) 

If the above model is applied to the DSALES series using the traditional estimation method, we obtain 
Ĉ 3217.03=  as the estimate of the fixed mean.  However, if we employ the TVPEXPLORE command 
with a moving window size of 84 observations, as in the previous example, we gain information on the 
year-to-year movement of the mean for the DSALES series similar to that shown in the previous 
model.  Below are the SCA commands for such an analysis. 

 TSMODEL MEANMDL.  MODEL DSALES=C+NOISE. 
 TVPEXPLORE MEANMDL.  WINDOWSIZE 84. 

In the table below, the first fourteen non-missing constant estimates from the model with day-of-
week effects and the above simple mean model are displayed.  Rows 1-83 are missing since the initial 
moving window size was specified as 84. 

Row 
Constant from 

Day-of-Week Model 
Constant from 

Simple Mean Model 
% Difference 

84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 

3332.07 
3407.06 
3382.19 
3343.90 
3342.44 
3378.36 
3399.23 
3421.24 
3438.69 
3419.70 
3411.95 
3403.82 
3429.59 
3425.50 

3361.89 
3352.19 
3359.52 
3360.71 
3360.17 
3359.57 
3362.77 
3368.36 
3376.23 
3382.39 
3385.52 
3387.66 
3392.82 
3397.65 

 -0.89% 
 1.61% 
 0.67% 
 -0.50% 
 -0.53% 
 0.56% 
 1.07% 
 1.55% 
 1.82% 
 1.09% 
 0.77% 
 0.47% 
 1.07% 
 0.81% 

 

From the above table, we find the estimates for the mean are very similar in each window. To better 
illustrate the similarity between these two estimates, the mean estimates from the above two models 
using time-varying parameter estimation are displayed below.   
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From the above graphs, it is evident that the time-varying estimates of the mean are very similar to 
one another even though the models are of different form.  The average difference of these two 
estimates is 0.9% in relative terms of percent.  From the above graph, we can also see the systematic 
cyclical level movements from year to year.  The estimates of time-varying means based on the simple 
mean model is the same as the traditional “moving average” approach.  However, by including the 
time-varying day-of-week effects in the model (as shown in the first example), we gain more insight 
into the characteristics of the DSALES series without distorting the information provided by the simple 
mean model.   

 



 

 

CHAPTER 12 

WEIGHTED TIME SERIES MODEL ESTIMATION AND FORECASTING 

The Professional Edition (B) of the SCA Statistical System includes weighted time series model 
estimation and weighted forecasting capabilities.  The commands WESTIM and WFORECAST are 
documented in this chapter.  These two commands can be employed for both time-segmented and 
value-segmented analysis and forecasting.  Related commands including TARTEST, TARXTEST, 
TARESTIM, TARFORECAST, THMTEST, and THMEXPLORE are for value-segmented models 
discussed in the next Chapter.  Additional information can be found in Liu (2006). 

This chapter includes three examples to illustrate weighted time series model estimation and 
forecasting.  The first example illustrates time-segmented analysis and forecasting of the daily sales 
series (DSALES), discussed in the previous chapter, by leveraging separate models for weekday and 
weekend periods.  The second example uses stock market data to illustrate how the WESTIM 
command can be used to discount the effect of atypical sections of data in a time series without 
disrupting the serial correlations in the data.  The third example illustrates how the WESTIM command 
can be used for a value-segmented (threshold) transfer function model to study the symmetrical (or 
asymmetrical) elasticity characteristics of new home sales with respect to interest rate increases or 
decreases. 

Statistical modeling is used to capture homogeneous patterns or relationships that may exist in the 
data.  However in time series data, such patterns may be dependent on the day of the week, or the 
month of the year, often referred to as periodic time series (Cleveland and Tiao, 1979).  In other 
situations, such patterns or relationships may be temporarily disrupted by outliers or transient structural 
changes.  If disruptions are isolated and not exceedingly large, outlier detection and adjustment 
techniques are sufficient to correct for the biases caused by such disruptions.  However if the 
disruptions are clustered together or if their atypical effects are persistent over a period of time, it may 
be more appropriate to discount or disregard those portions of the data in time series modeling.  In 
regression analysis, we can accomplish this by simply deleting such portions of the data during model 
estimation.  In time series analysis, however, data cannot be arbitrarily deleted during model 
estimation due to the existence of serial correlation or seasonality.  In this chapter, we introduce a 
weighted estimation method to facilitate the practice of discounting the effects of certain atypical data 
in ARIMA and transfer function modeling as well as in periodic time series data. 

12.1 Model Estimation Using the Weighted Method 

When the parameters in a time series model are estimated, the typical approach is to obtain the final 
parameter estimates that maximize the log likelihood function, or roughly speaking, minimize the sum 
of squared errors.  For time series models, the sum of squared errors can be generally expressed as 
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1

n 2
t

t t
ˆSSE a

=
= ∑  (12.1) 

where tâ  is the residual (also referred to as estimated error) for the t-th observation, n is the total 
number of observations, and 1t  is the first residual in the model that can be computed.  The above 
expression is not only appropriate for conditional least squares estimation, but also appropriate for 
exact maximum likelihood estimation because the entire log likelihood function can be cast in a form 
as that in (12.1). 

In the weighted estimation method, instead of minimizing the sum of squared errors expressed in 
(12.1), we obtain the parameter estimates that minimize the following weighted sum of squared errors 

1

n 2
t t

t t
ˆSSE w a

=
= ∑  (12.2) 

where tw 1= if the residual tâ  is to be included in the computation of SSE, and tw 0=  if the residual tâ  
is to be excluded in the computation of SSE.  Even though an tâ  is excluded in the computation of 
SSE, it is still used in computing the subsequent tâ 's  due to the serially correlated nature of time 
series.  Obviously if tw 1=  for all t, the weighted estimation method will produce the same estimates 
as the traditional method.  By setting 1 or 0 for the values in the weight variable in (12.2), we can 
define the relevant segment of time series data to be studied, and obtain the parameter estimates that 
are optimal for this segment of time series data.  We may view the weight variable tw  as an instrument 
for the convenient segmentation of a time series into certain homogenous groupings. 

The weighted estimation method has many applications.  For example, certain time series may 
possess a strong month-of-year effect, or day-of-week effect as shown in the previous chapter.  By 
grouping those data that possess similar characteristics (e.g., weekdays and weekends), separate 
models can be entertained for those data groups which may help in better model estimates and in turn 
better forecasting performance.  In the next section, we will discuss this more by revisiting the 
DSALES series used to illustrate the TVPEXPLORE command for time-varying parameters.  Another 
use of the weighted estimation method may be to discount a portion of a time series in model 
estimation that exhibits a radically different pattern from the general series.  We can do this by creating 
a weight variable consisting of zeros that correspond to observations whose effects on parameter 
estimation are to be discounted, and ones corresponding to observations that otherwise are to receive 
full weight during estimation. 

The weight variable may also assume a more general structure rather than simply 0 and 1 values.  
A weight value may be varied between 0 and 1 to represent its relative importance.  In addition, a 
weight variable may follow a step function or even a geometric sequence.  By varying the structure of 
the weight variable, we can address a number of applications in time series modeling and forecasting.  
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12.2 Example of Time-varying Day-of-Week Effects in Daily Sales 

In this section, we once again consider the daily sales series (DSALES).  In Chapter 11, the 
TVPEXPLORE command was used to gain insight into the time-varying properties of the day-of-week 
effects of the DSALES series.  It was found that weekend periods (Friday through Sunday) possessed 
different time-varying properties than weekday periods (Monday through Thursday).  This leads us to 
consider whether the ARIMA model for the weekend periods is different from the ARIMA model for 
the weekday periods.  Since sales during the weekend periods are very different from the weekday 
periods, a segmented model may result in improved forecasting accuracy for both weekdays and 
weekends.  This example illustrates time-segmented models using the WESTIM command to obtain 
parameter estimates for weekday and weekend periods.  The WFORECAST command is then used to 
combine the forecasts of these two models together. 

We begin this illustration of the WESTIM command by creating binary weight variables to 
indicate weekday and weekend time periods for DSALES.  The VDOW variable is a day-of-week 
indicator variable that was created earlier using the command DOWEEK (see Chapter 11).  The 
following RECODE commands are used to generate the WEEKDAYS and WEEKENDS binary 
indicator variables. 

 RECODE VDOW.  VALUES (1, 4, 1), (5, 7, 0).  NEW WEEKDAYS. 
 RECODE VDOW.  VALUES (1, 4, 0), (5, 7, 1).  NEW WEEKENDS. 

To better understand the binary variables created, the first twenty-one observations of the 
WEEKDAYS and WEEKENDS indicator variables are printed along with DATE, DSALES, and 
VDOW.  

 PRINT DATE, DSALES, VDOW, WEEKDAYS, WEEKENDS.  SPAN 1, 21. @  
    FORMAT '2F10.0, 3F9.0' 

 VARIABLE       DATE    DSALES     VDOW WEEKDAYS WEEKENDS                                                  
   ROW     
     1      20040101      3632        4        1        0 
     2      20040102      4261        5        0        1 
     3      20040103      4314        6        0        1 
     4      20040104      3257        7        0        1 
     5      20040105      2203        1        1        0 
     6      20040106      2093        2        1        0 
     7      20040107      2220        3        1        0 
     8      20040108      2555        4        1        0 
     9      20040109      4690        5        0        1 
    10      20040110      4413        6        0        1 
    11      20040111      3070        7        0        1 
    12      20040112      1922        1        1        0 
    13      20040113      1981        2        1        0 
    14      20040114      2236        3        1        0 
    15      20040115      2712        4        1        0 
    16      20040116      4869        5        0        1 
    17      20040117      4740        6        0        1 
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    18      20040118      3591        7        0        1 
    19      20040119      2379        1        1        0 
    20      20040120      2338        2        1        0 
    21      20040121      2450        3        1        0  
 

Following appropriate model identification procedures, a seasonal model of the form  

( ) ( ) ( )
( )

7
1 17

t t
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1 B 1
1 B DSALES a

1 B

−θ −Θ
− =

−φ  (12.3) 

is found to be appropriate for the DSALES series.  For comparison purposes, the above model is first 
estimated using all available data in a traditional manner without discerning between weekday and 
weekend periods.  The model is specified in the SCA System using the TSMODEL command and is 
then estimated using the ESTIM command below.   

 TSMODEL SALESMDL.  MODEL DSALES(7)=(1)(7)/(1)NOISE. 
 ESTIM SALESMDL.  HOLD RESID(RES). 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  SALESMDL  
 ---------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         7 
  DSALES    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1           DSALES    MA       1      1     NONE     -.4283     .0357 -11.99  
   2           DSALES    MA       2      7     NONE      .5039     .0264  19.09  
   3           DSALES   D-AR      1      1     NONE      .5025     .0319  15.77  
 
 EFFECTIVE NUMBER OF OBSERVATIONS . .          1088 
 R-SQUARE . . . . . . . . . . . . . .         0.984 
 RESIDUAL STANDARD ERROR. . . . . . .  0.120961E+03 

  
The WESTIM command is now employed to estimate the parameters for the weekday model 

(Monday through Thursday).  In order to maintain separate parameter estimates for the weekday and 
weekend models, the model in (12.3) is re-specified using the model name WKDAYMDL.  The 
WEEKDAYS indicator variable is specified in the WEIGHT subcommand to obtain weighted 
parameter estimates for the weekday periods.   

 WESTIM WKDAYMDL.  WEIGHT WEEKDAYS. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  WKDAYMDL  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         7 
  DSALES    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
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  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1           DSALES    MA       1      1     NONE     -.3639     .0424  -8.58  
   2           DSALES    MA       2      7     NONE      .7090     .0308  23.03  
   3           DSALES   D-AR      1      1     NONE      .6256     .0368  16.99  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .          1096 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .          1088 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.127417E+03 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.995442E+02 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .           620 

  
The WKENDMDL is now specified in similar manner.  However, the WEEKENDS indicator 

variable is specified in the WEIGHT subcommand to obtain parameter estimates for the weekend 
periods.   

 TSMODEL WKENDMDL.  MODEL DSALES(7)=(1)(7)/(1)NOISE. 
 WESTIM WKENDMDL.  WEIGHT WEEKENDS. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  WKENDMDL  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         7 
  DSALES    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1           DSALES    MA       1      1     NONE     -.5145     .0568  -9.06  
   2           DSALES    MA       2      7     NONE      .4366     .0425  10.26  
   3           DSALES   D-AR      1      1     NONE      .3974     .0520   7.65  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .          1096 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .          1088 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.121978E+03 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.140483E+03 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .           468 

  
The model information from the three ARIMA model estimations are summarized below in the 

following table. 

Model 1φ̂  1θ̂  1Θ̂  RSE 

All Days .5025 -.4283 .5039  120.961 

Weekdays .6256 -.3639 .7090  99.544 

Weekends .3974 -.5145 .4366  140.483 
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As shown in the above summary table, the parameter estimates are quite different between the 
weekday and weekend models.  In particular, the seasonal moving-average parameter estimate, 1Θ̂ , for 
the weekday model is much larger than the seasonal parameter estimate for the weekend model.  The t-
value of 1Θ̂  for the weekday model is also much larger.  This information reveals that the week-to-
week changes in sales are much more stable for the weekday periods than the weekend periods.  Also, 
the residual standard error (RSE) of the weekday model is clearly smaller than the RSE of the weekend 
model.  Such information is otherwise masked by the averaging effect of the traditional (All Days) 
model.  In operations planning or inventory management applications, the forecasting interval is often 
as important as the point forecast in determining customer service level and safety stock.  The 
traditional model would result in a larger forecasting interval for weekday periods and a smaller 
forecasting interval for weekend periods than necessary.   

Based on the above results, we may be inclined to leverage models based on weighted estimation 
to improve forecasting accuracy.  The SCA System provides the WFORECAST command to combine 
forecasts from more than one model using a weighting method.  In the WFORECAST command 
provided below, the WKDAYMDL and WKENDMDL models are forecasted.  Prior to executing the 
WFORECAST command, the forecast dates are generated using the DATEBUILD command and the 
corresponding day of week information is stored in the variable DAYCODE.  The RECODE command 
can then be used to generate the binary indicator variables for the weekday and weekend models. 

 DATEBUILD FCSTDATE.  BEGIN 2007, 1, 1.  NOBS 14.   HOLD DOWEEK(DAYCODE). 
 RECODE DAYCODE.  VALUES (1,4,1),(5,7,0).   NEW FIWKDAY. 
 RECODE DAYCODE.  VALUES (1,4,0),(5,7,1).   NEW FIWKEND. 

The weight variables (FIWKDAY and FIWKEND) specified in the WEIGHTS subcommand in 
the WFORECAST command below must correspond with the order of the regime models entered.  
Upon executing the WFORECAST command, interim forecasts are generated for the weekday model 
and the weekend model.  Lastly, the interim forecasts are combined into the final forecasts based on 
the weight variables.  Since the weight variables are of binary form with no overlap between weekday 
and weekend periods, the final forecasts are a direct copy of the appropriate interim forecasts.   

 WFORECAST WKDAYMDL, WKENDMDL.  @  
 WEIGHTS FIWKDAY, FIWKEND.  NOFS 14. 

 --------------------------------------------------- 
 MODEL WKDAYMDL:    14 FORECASTS, BEGINNING AT 1096 
 --------------------------------------------------- 
  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
  1097   2374.6762     99.5442 
  1098   2436.5593    140.0418 
  1099   2662.9423    153.0013 
  1100   2965.9725    157.7841 
  1101   4738.8807    159.6171 
  1102   4461.5719    160.3289 
  1103   3467.6502    160.6066 
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  1104   2281.2279    164.3494 
  1105   2378.0958    167.5050 
  1106   2626.3660    168.7240 
  1107   2943.0894    169.1988 
  1108   4724.5645    169.3842 
  1109   4452.6154    169.4567 
  1110   3462.0468    169.4851 
 --------------------------------------------------- 
 MODEL WKENDMDL:    14 FORECASTS, BEGINNING AT 1096 
 --------------------------------------------------- 
  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
  1097   2435.2684    140.4826 
  1098   2429.8538    190.1211 
  1099   2685.5587    196.8193 
  1100   3011.6903    197.8564 
  1101   4689.1343    198.0197 
  1102   4387.7981    198.0455 
  1103   3466.3836    198.0496 
  1104   2360.6012    213.4665 
  1105   2400.1805    225.4014 
  1106   2673.7663    227.2291 
  1107   3007.0039    227.5164 
  1108   4687.2719    227.5617 
  1109   4387.0580    227.5689 
  1110   3466.0894    227.5700 
 --------------------------------------------------- 
 COMBINED FORECASTS:   14 FORECASTS, BEGINNING AT 1096 
 --------------------------------------------------- 
  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
  1097   2374.6763     99.5442 
  1098   2436.5593    140.0418 
  1099   2662.9424    153.0013 
  1100   2965.9724    157.7841 
  1101   4689.1343    198.0197 
  1102   4387.7983    198.0455 
  1103   3466.3835    198.0496 
  1104   2281.2280    164.3494 
  1105   2378.0957    167.5050 
  1106   2626.3660    168.7240 
  1107   2943.0894    169.1988 
  1108   4687.2720    227.5617 
  1109   4387.0581    227.5689 
  1110   3466.0894    227.5700 
 

It is also possible to construct binary indicator variables with non-zero weights that overlap one or 
more particular forecast periods.  By doing so, the final forecast for those particular periods would be 
computed from the proportional contribution of the weights using the WFORECAST command.  For 
example, it is possible to smooth the transition of forecasts from Thursday to Friday by averaging the 
Thursday interim forecasts of both the weekday and weekend models.  To accomplish this, a new 
weight variable (FIWKEND) is generated that sets FIWKEND=1 for Thursday through Sunday 
periods, 0 otherwise. With the FIWKDAY and FIWKEND weight variables overlapping on Thursday, 
the proportional contribution of forecasts for Thursday periods is 1/(1+1) or 50%.  Therefore, the final 
forecast would be the average of interim forecasts for the weekday and weekend regime models for all 
Thursday forecasts.  Below, the new FIWKEND weight variable is used in the WFORECAST 
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command.  Note, that we are still using the regime models that were estimated based on the original 
WEEKDAYS and WEEKENDS binary indicator variables. 

 WFORECAST WKDAYMDL,WKENDMDL.  WEIGHTS FIWKDAY, FIWKEND. NOFS 14. 

 --------------------------------------------------- 
 MODEL WKDAYMDL:    14 FORECASTS, BEGINNING AT 1096 
 --------------------------------------------------- 
  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
  1097   2374.6762     99.5442 
  1098   2436.5593    140.0418 
  1099   2662.9423    153.0013 
  1100   2965.9725    157.7841 
  1101   4738.8807    159.6171 
  1102   4461.5719    160.3289 
  1103   3467.6502    160.6066 
  1104   2281.2279    164.3494 
  1105   2378.0958    167.5050 
  1106   2626.3660    168.7240 
  1107   2943.0894    169.1988 
  1108   4724.5645    169.3842 
  1109   4452.6154    169.4567 
  1110   3462.0468    169.4851 
 --------------------------------------------------- 
 MODEL WKENDMDL:    14 FORECASTS, BEGINNING AT 1096 
 --------------------------------------------------- 
  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
  1097   2435.2684    140.4826 
  1098   2429.8538    190.1211 
  1099   2685.5587    196.8193 
  1100   3011.6903    197.8564 
  1101   4689.1343    198.0197 
  1102   4387.7981    198.0455 
  1103   3466.3836    198.0496 
  1104   2360.6012    213.4665 
  1105   2400.1805    225.4014 
  1106   2673.7663    227.2291 
  1107   3007.0039    227.5164 
  1108   4687.2719    227.5617 
  1109   4387.0580    227.5689 
  1110   3466.0894    227.5700 
 --------------------------------------------------- 
 COMBINED FORECASTS:   14 FORECASTS, BEGINNING AT 1096 
 --------------------------------------------------- 
  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
  1097   2374.6763     99.5442 
  1098   2436.5593    140.0418 
  1099   2662.9424    153.0013 
  1100   2988.8313    178.9455 
  1101   4689.1343    198.0197 
  1102   4387.7983    198.0455 
  1103   3466.3835    198.0496 
  1104   2281.2280    164.3494 
  1105   2378.0957    167.5050 
  1106   2626.3660    168.7240 
  1107   2975.0466    200.4893 
  1108   4687.2720    227.5617 

Forecast 2988.8313  = (2965.9725*0.50)+(3011.6903*0.50)

Forecast 2975.0466 = (2943.0894*0.50)+(3007.0039*0.50)
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  1109   4387.0581    227.5689 
  1110   3466.0894    227.5700 

 
It may also be useful to combine the Monday forecasts from the weekday model and weekend 

model to smooth this forecast between regimes.  This can be achieved by simple modification of the 
weight indicator variables for the forecasts similar to above. 

So far we used the same model form for both weekday and weekend models.  However, the user is 
not limited to the same model for each regime.  In this case, an alternative weekend model could be 
entertained for the DSALES series to improve forecasting further.  The following alternative model 
(WKENDMDL) for the weekend periods could be specified and used in weighted estimation and 
forecasting, for instance.  

 TSMODEL WKENDMDL.  MODEL DSALES(7)=1/(1,2,3)(7)NOISE. 
 WESTIM WKENDMDL.  WEIGHT WEEKENDS. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- WEEKEND  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         7 
  DSALES    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
  
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1           DSALES   D-AR      1      1     NONE      .9679     .0485  19.94  
   2           DSALES   D-AR      1      2     NONE     -.3390     .0700  -4.84  
   3           DSALES   D-AR      1      3     NONE      .1127     .0557   2.02  
   4           DSALES   D-AR      2      7     NONE     -.4767     .0414 -11.53  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .          1096 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .          1079 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.116178E+03 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.128847E+03 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .           463 

 
The residual standard errors (RSE) from the above model estimations are summarized below to 

provide an indication of the improvement gained in modeling the DSALES series using weighted 
estimation. 

Model RSE Cases Cases% WRSE 

 All Days 120.961  1088  100% 120.961 

 Weekdays 99.544  620  57%  56.74 

 Weekends(1) 140.483  466  43%  60.41 

 Weekends(2) 128.847  466  43%  55.40 
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From the above summary table, weighted residual standard errors (WRSE) can be computed based on 
the effective number of cases in each regime.  Since the effective number of cases is slightly different 
between the two weekend models, the average number of cases (466) is used for comparison purposes.  
By adding the WRSE values of the weekday model and weekend model, we can compare the relative 
improvement between the “All Days” model and the segmented models.  Depending on the model used 
for the weekend periods, the weighted estimation provides a relative improvement of 3.2% 
((56.74+60.41)/120.961) to 9.3% ((56.74+55.40)/120.961) in residual standard error over the 
traditional “All Days” model.  Further improvements are also possible by refining the weekday model 
as we have done for the weekend model. 

If each day of the week follows its own distinct pattern, an individual model can be employed for 
each day (Monday, Tuesday,…,Sunday).  Such models are known as periodic time series models and 
have been discussed extensively by Cleveland and Tiao (1979), Tiao and Grupe (1980), and others.  In 
this example, the weekday and weekend periods were grouped because of their similar properties as 
seen in the day-of-week effects plot presented in the previous chapter. 

12.3 Example of Weighted Estimation with Outlier Adjustment Using Stock Market 
 Data 

In this section we illustrate the use of weighted estimation in conjunction with joint outlier adjustment.  
The data used in this example consist of monthly stock market series from January 1976 up to and 
including December 1991 (a total of 192 observations for each series).  The three time series are: 

(1) The monthly average of the Standard and Poor's 500 stock index,  

(2) The monthly average of long-term government security interest rates (from the Federal 
Reserve Bulletin), and  

(3) The monthly composite index of leading indicators (from Business Conditions Digest). 
 

In this data set, we are interested in understanding how monthly stock prices (reflected by S&P500 
index) are influenced by long-term interest rates and general economic conditions (reflected by the 
monthly composite index of leading indicators). 

The data are displayed below and stored in the SCA workspace under the labels SP500, IRLONG 
and LINDCTR, respectively.  From the time plots, we see that SP500 increases steadily until 
observation 142, at which time it plummets for three consecutive periods.  This period corresponds to 
the stock market crash in October-December 1987. Since these observations behave abruptly, special 
consideration must be rendered to such data points during model estimation.  In the previous example, 
we were concerned to best accommodate weekday and weekend patterns in the data by developing two 
regime models.  In this example, we are interested in discounting a section of the data because it 
disrupts the otherwise stable relationship in the data.   
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We will analyze the natural logarithms of all time series.  In this way, we can assess the percent 
change in the response for a 1% change in an explanatory variable.  The log transformed series of 
SP500, IRLONG and LINDCTR are stored in the SCA workspace under the labels LNSP500, 
LNIRLONG and LNLINDTR respectively.  

Time Series Plots of Stock Market Data 
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Using the LTF method (Liu et. al. 1992) and the data during the first 141 months, we identify the 
following transfer function model to be appropriate in representing the relationship between S&P500, 
long-term interest rates and composite leading indicators. 

t 1 t 2 t t(1 B)LNSP500 C (1 B)LNIRLONG (1 B)LNINDTR (1 B)a− = +β − +β − + −θ  (12.4) 

The estimation results for the above model indicate that both long-term interest rates and leading 
indicators influence stock prices significantly.  However in reviewing the time series plots for SP500, 
IRLONG, and LINDTR, we find that during the period 1980 to 1982 the long-term interest rates are 
quite high which coincides with the low leading indicator periods.  It would be interesting to evaluate 
the estimation results if this part of the data is disregarded from the analysis.  Furthermore we may also 
wish to lessen the impact of some data points related to the 1987 stock market crash in order to 
minimize any atypical effects of such a major event.  The following GENERATE command is used to 
create a weight variable (WEIGHT1) that consists of 1's, except for those time periods between t=49 
and t=85 (stagnated economy period of 1980-1982), and t=142 and t=147 (stock market crash of 
1987).  The weights for these time periods are 0's.  This weight variable allows us to estimate the 
parameters with zero weights assigned to those atypical observations. 

 GENERATE  VARIABLE IS WEIGHT1.   NROW IS 192.  @  
       VALUES ARE 1 FOR 48, 0 FOR 37, 1 FOR 56, 0 FOR 6, 1 FOR 45. 

The model in (12.4) can be specified and estimated using the following TSMODEL and WESTIM 
commands.  In the WESTIM command, the WEIGHT subcommand is used to specify the weight 
variable (WEIGHT1) that will be employed during model estimation.  The OADJUST subcommand is 
specified with the keyword “JOINT” to employ the joint estimation method of outlier effects.  The user 
also has the option to specify the keyword “SEQUENTIAL” to employ the sequential estimation 
method of outlier effects, or the keyword “NONE” to not employ outlier detection and estimation. 

 TSMODEL  STOCKMDL.   NO SHOW.  @  
       MODEL LNSP500(1)=C+(0)LNIRLONG(1)+(0)LNLINDTR(1)+(1)NOISE. 

 WESTIM  STOCKMDL.  WEIGHT IS WEIGHT1.  OADJUST JOINT. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- STOCKMDL 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1 
 LNSP500    RANDOM     ORIGINAL     (1-B  )  
                                         1 
  LNLONG    RANDOM     ORIGINAL     (1-B  )  
                                         1 
  LNLEAD    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
   PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1    C               CNST      1      0     NONE      .0069     .0025   2.79  
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   2         LNIRLONG   NUM.      1      0     NONE     -.4752     .0704  -6.75  
   3         LNLINDTR   NUM.      1      0     NONE      .4743     .2538   1.87  
   4          LNSP500    MA       1      1     NONE     -.2353     .0807  -2.92  
 
 SUMMARY OF OUTLIER DETECTION AND ADJUSTMENT 
 ------------------------------------- 
  TIME    ESTIMATE   T-VALUE    TYPE 
 ------------------------------------- 
    50      0.081      5.38      AO   
    69     -0.078     -3.29      LS   
    81      0.079      3.22      IO   
   142     -0.127     -5.19      IO   
   143     -0.136     -5.55      IO   
   182      0.087      3.53      IO   
 ------------------------------------- 
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           192 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           191 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.310057E-01 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.232833E-01 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .           148 

 
If we wish to estimate model (12.4) with outlier adjustment but without omitting any data, then the 

OESTIM command can be used.  In this instance, the following results are obtained. 

 OESTIM   STOCKMDL. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- STOCKMDL 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1 
 LNSP500    RANDOM     ORIGINAL     (1-B  )  
                                         1 
 LNIRLONG   RANDOM     ORIGINAL     (1-B  )  
                                         1 
 LNLINDTR   RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1    C               CNST      1      0     NONE      .0066     .0021   3.13  
   2          LNIRLONG  NUM.      1      0     NONE     -.3705     .0506  -7.32  
   3          LNLINDTR  NUM.      1      0     NONE      .9559     .1660   5.76  
   4          LNSP500    MA       1      1     NONE     -.2437     .0731  -3.33  
   
 SUMMARY OF OUTLIER DETECTION AND ADJUSTMENT 
 ------------------------------------- 
  TIME    ESTIMATE   T-VALUE    TYPE 
    50      0.075      5.30      AO   
    69     -0.047     -3.31      AO   
    73     -0.100     -4.34      IO   
    81      0.079      3.42      IO   
    98     -0.071     -3.16      LS   
   142     -0.124     -5.39      IO   
   143     -0.122     -5.29      IO   
   182      0.084      3.63      IO   
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 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           192 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           191 
 RESIDUAL STANDARD ERROR (WITHOUT OUTLIER ADJUSTMENT). .  0.304104E-01 
 RESIDUAL STANDARD ERROR (WITH OUTLIER ADJUSTMENT) . . .  0.230039E-01 
 

The results from the two commands above reveal several interesting findings.  Both estimation 
results show that long-term interest rates have a strong influence on stock market prices.  The former 
(with weighted estimation) shows that a 1% relative increase in long-term interest rates may decrease 
the stock prices by 0.4752%, and the latter (without a weight variable) shows that the elasticity due to 
long-term interest rates is only 0.3705%.  More importantly, when weighted estimation is considered 
(i.e., certain portions of the data have their effects discounted), the leading indicators do not show a 
significant influence on stock market prices, while the estimation without discounting any data 
indicates a strong positive relationship.  The differences between these results are somewhat 
inconsistent but reveal quite interesting information.  If we examine the time series plots of these three 
variables carefully, we find the data disregarded during 1980-82 happen to correspond to a low or 
downward period of composite leading indicators.  The rest of the composite leading indicators are 
generally in an upward trend.  When data during 1980-1982 (and stock market crash period) are 
discounted, the leading indicators become insignificant.  This implies that stock prices are not affected 
significantly by composite leading indicators in typically good economic conditions, but are sensitive 
to composite leading indicators in severely bad economic conditions (during 1980-82). 

It would also be interesting to investigate the results if the WESTIM command without outlier 
adjustment is used for the model in (12.4) as shown below.   

  WESTIM   STOCKMDL.   WEIGHT IS WEIGHT1. 

The parameter estimates are summarized below.  We find they are rather close to those obtained with 
outlier adjustment using the WESTIM command.  The estimate 2β̂  is only marginally significant.  
Thus weighted estimation alone alleviates some biases caused by outliers in this example. 

( )
( )
( )
( )

1

2

Ĉ 0.0073 t 2.87
ˆ 0.4926 t 6.68
ˆ 0.5775 t 2.17
ˆ 0.2257 t 2.77
ˆ 0.02318

= =

β = − = −

β = =

θ = − = −

σ =

 

 If we wish to estimate model (12.4) without using the weighted method and without outlier 
adjustment, then the following standard ESTIM command can be specified 

 ESTIM   STOCKMDL. 

The parameter estimates are summarized below: 
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( )
( )
( )
( )

1

2

Ĉ 0.0053 t 1.92
ˆ 0.3440 t 5.20
ˆ 0.8656 t 3.91
ˆ 0.2480 t 3.42
ˆ 0.030279

= =

β = − = −

β = =

θ = − = −

σ =

 

The above ESTIM command produces very different estimates of 2β̂ .  By discounting the effect of 
the atypical data using the WESTIM command, the leading indicator has marginal influence on the 
S&P 500 index.  In contrast, by including the atypical periods in model estimation, the leading 
indicator shows rather significant.   

12.4 Example of Value-segmented Analysis Using the HSOLD and BON10Y Series 

In this example, a transfer function model is used in conjunction with weighted estimation to study the 
symmetry of the elasticity estimates between interest rate increases and interest rates decreases.  The 
two original series are presented below.  The first graph is monthly sales of new homes (referred to as 
houses sold hereafter).  The second graph is ten-year bond rates.  These monthly series span from 
January 1963 through December 2003, a total of 512 observations for each series. 
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Houses sold and the 10-year bond rate exhibits a roughly inverse relationship.  We are interested 
in studying whether an interest rate increases or decreases have similar effect (elasticity) on houses 
sold.  The weighted estimation method can be used effectively for investigating such behavior.  Since 
the bond rate varied greatly during the period under study, we will examine the interest rate elasticity 
effect across various time spans.  These time spans are (1) January 1963 through December 1979 
where the bond rate generally increased during the period; (2) January 1980 through December 1985 
where the bond rate was unusually high; (3)  January 1986 through December 2003 where the bond 
rate generally declined during the period; and (4) the entire span of data. 

Using the LTF identification method, we obtain the following transfer function model between log 
transformed houses sold ( tHSOLD ) and log transformed bond rate ( tBONDRATE ): 

t 1 t 1 1 t(HSOLD ) (BONDRATE ) (1 B)a−∇ = ω ∇ + −θ  

Note that the bond rate leads houses sold by one month as shown in the above model.  For comparison 
purposes, the above model is specified using the TSMODEL command and estimated using the 
standard ESTIM command with all data used. 

 TSMODEL HSMDL.  MODEL IS HSOLD(1)=(1)BOND10Y(1)+(1)NOISE. 
 ESTIM HSMDL.  METHOD EXACT. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  HSMDL   
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1 
  HSOLD     RANDOM     ORIGINAL     (1-B  )  
                                         1 
 BOND10Y    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1          BOND10Y   NUM.      1      1     NONE     -.5775     .0731  -7.90  
   2           HSOLD     MA       1      1     NONE      .2705     .0432   6.26  
 
 EFFECTIVE NUMBER OF OBSERVATIONS . .           490 
 R-SQUARE . . . . . . . . . . . . . .         0.925 
 RESIDUAL STANDARD ERROR. . . . . . .  0.680262E-01 

 
In this illustrative example, we now consider two different types of weight variables to explore the 

elasticity of houses sold.  For the first weight variable, the weight is set to 1 if the bond rate in the 
previous month went down and 0 otherwise (labeled as “Rate-down”).  For the second weight variable, 
the weight is set to 1 if the bond rate in the previous month went up and 0 otherwise (labeled as “Rate-
up”).  Thus by using the decrease or increase of bond rates, two value-segmented models are formed.  
Such models are also referred to as threshold models in the literature.   
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To accomplish the analysis, the DIFFERENCE command below is used to obtain the first-order 
difference of the BOND10Y series (DFBOND).  The REGIME command is then employed on the 
DFBOND series to segment the DFBOND series based on its previous month values that are less than 
0 (RATEDOWN) or greater than 0 (RATEUP).   

 DIFFERENCE BOND10Y.  DFORDER 1.  NEW DFBOND. 
 DFBOND(1)=0.0 
 REGIME DFBOND.  THRESH 0.0.  THLAG 1. @  

  INDICATORS RATEDOWN, RATEUP. 

 INDICATOR  VARIABLE NEGCHG   IS CREATED FOR REGIME 1 (  240 CASES SELECTED) 
 INDICATOR  VARIABLE POSCHG   IS CREATED FOR REGIME 2 (  251 CASES SELECTED) 
 

The first twelve observations of the RATEDOWN and RATEUP indicator variables, along with 
BOND10Y and DFBOND, are printed below to illustrate what has been accomplished through the 
REGIME command.   

 PRINT BOND10Y, DFBOND, RATEDOWN, RATEUP. SPAN 1,12. 

VARIABLE   BOND10Y    DFBOND    RATEDOWN    RATEUP                              
     1        1.343      .000      .000      .000 
     2        1.366      .023      .000     1.000 
     3        1.369      .003      .000     1.000 
     4        1.379      .010      .000     1.000 
     5        1.369     -.010      .000     1.000 
     6        1.384      .015     1.000      .000 
     7        1.391      .007      .000     1.000 
     8        1.386     -.005      .000     1.000 
     9        1.406      .020     1.000      .000 
    10        1.413      .007      .000     1.000 
    11        1.416      .002      .000     1.000 
    12        1.418      .002      .000     1.000 
 

The TSMODEL command below is used to specify the models for RATEUP and RATEDOWN 
regimes.  This is followed by the WESTIM commands to estimate the HSMDLUP model for the rate 
increase regime and the HSMDLDOWN for the rate decrease regime.  

 TSMODEL HSMDLUP.  MODEL IS HSOLD(1)=(1)BOND10Y(1)+(1)NOISE. 
 WESTIM HSMDLUP.  METHOD EXACT.  WEIGHT RATEUP. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  HSMDLUP   
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1 
  HSOLD     RANDOM     ORIGINAL     (1-B  )  
                                         1 
 BOND10Y    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
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  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1          BOND10Y   NUM.      1      1     NONE     -.4709     .1122  -4.20  
   2           HSOLD     MA       1      1     NONE      .1798     .0642   2.80  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           492 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           490 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.683972E-01 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.703243E-01 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .           250 
 

 TSMODEL HSMDLDOWN.  MODEL IS HSOLD(1)=(1)BOND10Y(1)+(1)NOISE. 
 WESTIM HSMDLDOWN.  METHOD EXACT.  WEIGHT RATEDOWN. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  HSMDLDOWN   
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                         1 
  HSOLD     RANDOM     ORIGINAL     (1-B  )  
                                         1 
 BOND10Y    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
  
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1          BOND10Y   NUM.      1      1     NONE     -.6750     .0895  -7.54  
   2           HSOLD     MA       1      1     NONE      .3922     .0537   7.30  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           492 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           490 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.686248E-01 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.644704E-01 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .           240 
 

From the above estimation results, we find that the elasticity estimate for rate increases is -.4709; 
the elasticity estimate for rate decreases is -.6750; and the elasticity estimate using standard estimation 
methods is -.5775.  These elasticity estimates are quite different.  To study whether the elasticity 
estimates exhibit such behavior when interest rates are generally increasing (1/1963 – 12/1979), 
unusually high (1/1980 – 12/1985), or generally decreasing (1/1986 – 12/2003), the above analysis is 
repeated for these three time periods.  The elasticity estimates are presented in the following summary 
table. 
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 Elasticity Estimates 
Period All Data Rate-up Rate-down 

Entire series   
(1/1963 – 12/2003) 

-.5775 -.4709 -.6750 

Increasing bond rate period
(1/1963 – 12/1979) 

-.3979 -.2597 -.6237 

Unusually high bond rate period
(1/1980 – 12/1985) 

-1.1627 -1.0286 -1.2609 

Decreasing bond rate period
(1/1986 – 12/2003) 

-.3951 -.3529 -.4525 

 

In the above estimation results, we are particularly interested in the symmetry or asymmetry of the 
elasticity estimates.  We find that the elasticity of houses sold is consistently greater when the interest 
rate change is negative (Rate-down) in the four time spans considered.  We also find that the highest 
elasticity of houses sold, regardless of Rate-up or Rate-down regime, was during the high bond rate 
period. 

In this chapter, general weighted estimation was discussed using the WESTIM command along 
with the WFORECAST command to blend weighted forecasts.  It was shown how the REGIME and 
RECODE commands can be used to generate indicator variables that discern particular regimes for 
both time-segmented and value-segmented models.  In the next chapter, value-segmented models (or 
threshold models) will be further discussed. 
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CHAPTER 13 

THRESHOLD TIME SERIES MODELING AND FORECASTING 

The Professional Edition (B) of the SCA Statistical System includes nonlinear time series modeling 
and forecasting capabilities.  The commands TARTEST, TARXTEST, TARESTIM, 
TARFORECAST, THMTEST, and THMEXPLORE are documented in this chapter.  Related 
commands including WESTIM and WFORECAST were discussed in Chapter 12.  Additional 
information on nonlinear time series analysis can be found in Liu (2006).   

In Chapter 12, a value-segmented approach was used to analyze the relationship between houses 
sold and long-term interest rate.  The month-to-month changes in long-term interest rate were 
segmented into positive and negative cases using zero as the threshold value and one as the threshold 
lag.  The model used was a threshold transfer function model with an MA(1) noise.  The WESTIM 
command was used to estimate the parameters in the threshold transfer function models.   

In this chapter, we first discuss a special case of threshold model for the univariate autoregressive 
case.  This class of model is referred to as the threshold autoregressive (TAR) model.  TAR models 
have been studied extensively by Tong (1978, 1983, 1990), Tong and Lim (1980), Maravell (1983), 
Tsay (1986, 1989), Chen and Tsay (1991, 1993), Tiao and Tsay (1994), and others.   

In the next section, we shall cover the nonlinearity test of a time series, the identification of a TAR 
model for a time series, TAR model estimation, forecasting, and other extensions of such models using 
the SCA System. 

13.1 Threshold Autoregressive Models 

A k-regime TAR model for a time series tY  with t=1, 2, …, n, can be written as  

( )i (i) (i) (i)
t t 1 p t p  i 1 t d  it0 1Y C Y   Y a , r Y r− − − −= + φ + ⋅⋅⋅ + φ + ≤ <  (13.1) 

where i=1,2, …, k, and d is a positive integer often referred to as a threshold lag (or delay parameter). 
The thresholds  i(r )  are non-overlapping intervals on the real line with 0  1  kr r ... r−∞ = < < < = ∞ .  The 

innovations (i)
ta 's  are identically and independently distributed random variables for each regime, and 

are independent across the regimes with potentially different variances. Even though tY  follows a 
linear AR model in each regime, the overall process for (13.1) is nonlinear when there are at least two 
regimes with different linear models.  This class of models was proposed by Tong (1978, 1983) and 
Tong and Lim (1980) as alternative models for describing periodic time series.  It has certain features 
that allow it to model time series with limit cycles, jump phenomena, and amplitude dependant 
frequencies. The TAR model in (13.1) is also referred to as self-exciting threshold autoregressive 



98 Threshold Time Series Modeling and Forecasting 

 

(SETAR) model because the AR model in each regime is determined by its own past value.  Following 
the threshold principle, some other models, such as threshold MA models (Wecker 1981, Jolliffe and 
Kumar 1985), threshold ARMA models (Wang et al., 1984), and adaptive spline threshold 
autoregression (ASTAR) models (Lewis and Stevens, 1991) have also been proposed. 

Using the backshift operator B, the model in (13.1) can be written as  

 
(i) (i) (i) (i)p

p t t1 0(1 B B )Y C a ,       i 1, 2,  ...,  k−φ − ⋅⋅ ⋅ − φ = + =  (13.2) 

or 

( ) (i) (i) (i) (i)(i) (i) p
t pt0 1B Y C a ,   with  (B) 1 B   Bφ = + φ = −φ − ⋅⋅⋅ − φ     . (13.3) 

In the models (13.1), (13.2), and (13.3), the constant term (i)
0C  in each regime does not have a 

straightforward interpretation.  It is more appropriate to write (13.2) and (13.3) in the following form 

(i)(i)
t t(i) (i) p

p1

1Y C a , i 1,2,  ...,  k
1 B B

= + =
− φ − ⋅⋅ ⋅ − φ   (13.4) 

or 

(i)(i)
t t(i)

1Y C a
(B)

= +
φ   (13.5) 

The constant term (i)C  in (13.4) and (13.5) is then the mean for each regime.  In some applications, the 
comparison of the mean values among regimes could be useful and even the focus of a study.  

The models in (13.1) through (13.5) can be extended to multiplicative AR models as below: 

(i) (i)(i) (i) s
t t0(B) (B )Y C a , i=1,2, ..., kφ Φ = +  (13.6) 

or 

(i)(i)
t t(i) (i) s

1Y C a , i 1, 2,  ...,  k
(B) (B )

= + =
φ Φ  (13.7) 

where (i) s(B )Φ  is a stationary seasonal AR polynomial in sB .  

More generally, the models in (13.6) and (13.7) can be extended to multiplicative seasonal 
ARIMA models as  
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(i) (i)(i) (i) s (i) (i) s
t t0(B) (B )Y C (B) (B )a , i=1,2, ..., kφ Φ = + θ Θ  (13.8) 

or  

(i) (i) s (i)(i)
t t(i) (i) s

(B) (B )Y C a , i=1,2, ..., k
(B) (B )

θ Θ
= +

φ Φ  (13.9) 

 

where (i) (B)θ  and (i) s(B )Θ  are MA and seasonal MA polynomials in sB and B .   In most of the 
literature, only TAR models in the forms of (13.1) or (13.2) are discussed.  We shall also focus on this 
class of TAR models in this chapter. 

There are two important issues involved in building a threshold model.  The first is the 
determination of the threshold lag (d) and the corresponding threshold values.  The second is the 
estimation of the model parameters in each regime.  Assuming that the first issue has been resolved, all 
threshold models discussed can be estimated using the weighted estimation method discussed in 
Chapter 12.   

The TARESTIM command in the SCA System is designed to accommodate the estimation of all 
models shown above. Unlike threshold AR models, certain assumptions may need to be imposed in 
order for the estimation of threshold MA or ARIMA models to be valid. 

13.2 Nonlinearity Test 

Before we pursue building a TAR model, it is prudent to check if the time series under study is 
nonlinear and therefore warrants consideration of a TAR model.  The SCA System employs the 
TARTEST command that is based on the work of Tsay (1986, 1989, 1991) and others.   

Tsay (1986) generalizes the procedure of Keenan (1985) and develops an F-statistic to test a very 
general class of nonlinear time series.  Petruccelli and Davies (1986) use normalized predictive 
residuals to derive a CUSUM portmanteau test for TAR processes.  Tsay (1989) combines the 
procedures of Keenan (1985), Tsay (1986), and Petruccelli and Davies (1986) and develops another F-
statistic specifically to test for alternative TAR models.  We shall refer to this particular F-test as TAR-
F test.  Tsay (1991) further extends the TAR-F test and develops a new F-test by including a larger 
class of alternative TAR models. 

As pointed out in Tsay (1991), the power of a nonlinearity test inevitably will suffer when the 
class of models considered is too large.  Since the class of TAR models is most useful in business and 
economic applications, we shall primarily use the TAR-F test for checking for nonlinearity of a time 
series.  In addition to the increase in power of the test, Tsay’s TAR-F test also provides useful 
information for the potential value of the threshold lag (d). 
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13.3 Arranged Autoregression 

The TARTEST is used to obtain the threshold lag and threshold values based on the past values of the 
series itself.  When the threshold variable is an external variable as opposed to past values of the series 
itself, the TARXTEST command can be used instead.  The syntax for these two commands is provided 
in Appendix B. 

The rationale and the procedure for the TAR-F test will be outlined in the following section.  The 
TAR-F test and several other nonlinearity tests use a novel computational procedure called arranged 
Autoregression (AAR).  We shall use a simple example to illustrate this procedure. 

Assume that we have a time series tY  with eight observations as below: 

t 1 2 3 4 5 6 7 8 
tY  1.61 0.32 -1.63 -1.70 -0.71 -2.86 -2.40 1.48 

 

Let us also assume the above time series may follow a linear or nonlinear AR(1) model with zero 
mean which can be written as 

t 1 t 1 tY Y a  , t=1, 2, , 8−= φ + ⋅⋅⋅ . (13.10) 

To obtain the estimate of 1φ  under a linear AR(1) model, traditionally we would regress tY  on t 1Y −  
using the following data sequence. 

 t tY  t 1Y −  
 1 1.61   - - 
 2 0.32 1.61 
 3 -1.63 0.32 
 4 -1.70 -1.63 
 5 -0.71 -1.70 
 6 -2.86 -0.71 
 7 -2.40 -2.86 
 8 1.48 -2.40 

Using the seven complete pairs of data in the above table, the least squares estimate of 1φ  in (13.10) is 
0.4106. 

Now let us assume the above time series follow a TAR(1) model with d=1.  We can arrange the 
data sequence in the above table in ascending order according to the threshold variable t 1Y − .  Thus we 
have the following arranged autoregression data sequence: 
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t tY  t 1Y −  1φ̂  
7 -2.400 -2.860 - - 
8 1.480 -2.400 0.2376 
5 -.710 -1.700 0.2685 
4 -1.700 -1.630 0.3741 
6 -2.860 -.710 0.4663 
3 -1.630 0.320 0.4379 
2 0.320 1.610 0.4106 

 

The above data sequence contains the same information as in the previous table except that the data are 
ordered by t 1Y −  rather than by t.  Using the arranged autoregression data, we can compute sequential 
estimates of 1φ  according to the order of t 1Y − .  These sequential estimates are listed in the last column 
of the above table.  It is important to note that the last sequential estimate of 1φ  (0.4106) is the same as 
the least squares estimate for the linear AR(1) model using the entire data set. 

The sequential estimates of 1φ  (based on the ordered threshold variable) and their related statistics 
are very useful.  They can be used to develop nonlinearity tests as well as to identify threshold values.  
To improve computational efficiency, recursive estimation algorithms are typically used for the 
computation of autoregressive coefficients.  The results under recursive estimation are the same as the 
straightforward least squares estimates using the same data.  In arranged autoregression, the data 
sequence can be arranged either in ascending order of the threshold variable or in descending order of 
the threshold variable.  We refer to the latter as reverse arranged autoregression (RAAR).  This 
method also provides useful information in identification of threshold values. 

13.4 Example of TAR Modeling Using Chickenpox Cases in New York City 

To illustrate TAR modeling capabilities in the SCA System, we analyze the number of Chickenpox 
cases that occurred monthly in New York City from 1949-1972 (Sugilara and May 1990).  The natural 
log transformation is applied to the time series to stabilize the variability.  This time series was 
analyzed using TAR models by Chen and Tsay (1993).  The log transformed time series is first brought 
into the SCA System under the variable named CHICPOX.  A time series plot of the log transformed 
monthly Chickenpox series is shown below.  There are a total of 533 observations. 



102 Threshold Time Series Modeling and Forecasting 

 

Time Series Plot of the Log Transformed Chickenpox Cases in New York City 
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The TARTEST command is used to examine the nonlinearity of this series using a linear AR(12) 
as the null hypothesis model. 

 TARTEST CHICPOX.  ARLAGS 1 TO 12.  THLAGS 1 TO 12.  

    Lag     F-statistic  Degrees of freedom 
 --------   -----------  ------------------ 
     1       3.73837       13     443 
     2       3.92756       13     443 
     3       5.09289       13     443 
     4       7.24443       13     443 
     5       6.36462       13     443 
     6       6.20812       13     443 
     7       3.56343       13     443 
     8       2.80965       13     443 
     9       6.72298       13     443 
    10      13.54124       13     443 
    11      12.06614       13     443 
    12       6.82576       13     443 
 

From the above table, we see that the CHICPOX series shows strong nonlinearity because the F-
statistics for all threshold lags are significant at both 5% and 1% levels.  The F-statistics for the 
threshold lag at lags 10, 11, and 12 are particularly large.  Because this series consists of monthly data, 
Chen and Tsay (1993) choose the threshold lag as 12 in their analysis. 

Identification of threshold values 

After the threshold lag (d) is determined, we can proceed to determine the values of the thresholds for 
the regimes based on the threshold variable t dY − .  Tsay (1989) employs arranged autoregession and 
recursive estimation to obtain the sequential estimates of autoregressive parameters, their t-ratios, and 
corresponding estimated variances.  These statistics can then be plotted against the threshold variable 
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t dY − .  When a major change is spotted in these scatter plots, it suggests that a regime partition is 
needed at that threshold value.  For convenience, we shall refer to this method of threshold value 
identification as the arranged autoregression (AAR) method even though the method incorporates ideas 
more than just arranged autoregression. 

In preliminary analysis of the chickenpox series, the autoregressive coefficients for lags 1 and 24 
are most significant.  Therefore we consider the following linear autoregressive model: 

t 0 1 t 1 24 t 24 tY C Y Y a− −= + φ + φ + . (13.11) 

To identify the threshold values for the CHICPOX series using the AAR method, we once again 
employ the TARTEST command.  The THLAG is set to 12 and the ARLAGS are specified as 1 and 24 
only.  The autoregressive parameter estimates, their t-ratios, and corresponding estimated variances are 
saved in the SCA workspace using the HOLD subcommand. 

 TARTEST CHICPOX.  THLAG 12.  ARLAGS 1, 24. @  
   HOLD THVARIABLE(THVAR,THINDX),PHI(PHIMTX),TPHI(TPHIMTX), @  
   SIGMAHAT(SIGMA). 

The threshold values (in sorted order) are stored under the THVAR variable name.  The PHIMTX and 
TPHIMTX variables store the AR estimates and their corresponding t-values in matrix form.  The 
following SCA matrix operation separates the matrix columns into variables that can be readily used 
for graphing or further analysis. 

 PHI1=PHIMTX(.,1) 
 PHI24=PHIMTX(.,2) 
 TPHI1=TPHIMTX(.,1) 
 TPHI24=TPHIMTX(.,2) 

Alternatively, the PICK command can be used in place of the matrix operations above to obtain 
columns of a matrix to create the PHI1, PHI24, TPHI1, and TPHI24 series. 

Using the AAR method to obtain the estimates of 1φ , 24φ , and their associated statistics, scatter 

plots for the 1φ̂ , 24φ̂ , and their t-ratios versus the threshold variable t 12Y −  are displayed.  Note that the 

range of 1φ̂  and t-ratios of 1φ̂  are different from those of 24φ̂  and the t-ratios of 24ˆ φ .  We usually prefer 
to use the same scale across the estimates of the model parameters (and similarly the t-ratios).  In this 
case however, the ranges for 1φ̂  and 24φ̂  are very different.  Therefore, different scales are used in 
order to display the features of the estimates for each parameter more prominently. 

In the identification of threshold values, it is important to focus only on scatter plots that contain 
significant t-ratios.  Scatter plots of insignificant AR coefficients or their t-ratios are counter-
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productive.  Other important guidelines for the identification of threshold values will be discussed 
later. 

The SCA command to transfer the variables for threshold identification to the SCAGRAF applet is 
provided below.   

 GRAPH THVAR, PHI1, PHI24, TPHI1, TPHI24. 

The scatter plots are then created using the menu and dialog box graphical user interface of 
SCAGRAF.   

   Plots of autoregressive coefficients and their t-ratios versus the threshold variable Yt-12 

(chickenpox series with the AAR method) 

(a) Arranged autoregression estimates of 1φ  (b) Arranged autoregression estimates of 24φ  

(c) t-ratios for the estimates of 1φ  (d) t-ratios for the estimates of 24φ  
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By examining the scatter plots for the 1φ  estimates and the corresponding t-ratios, we find 
potential threshold values near 6.92, 7.0, and 7.15.  On the other hand, by examining the scatter plots 
for the 24φ  estimates and the corresponding t-ratios, we find potential threshold values near 6.92 and 
7.45.  Because the threshold 7.0 is very close to 6.92 and because observations greater than 7.45 in the 
series are limited (particularly in the latter part of the time series), we may conclude the threshold 
values are  1r 6.92=  and  2r 7.15= .  While these values are close, they differ from those identified by 
Chen and Tsay (1993).  This discrepancy is due in part that the features for the thresholds in the scatter 
plots of the chickenpox series are not prominent.  Consequently, it is somewhat difficult to exactly 
identify the threshold values using the AAR method in this example.  We shall consider modifications 
to the AAR method in the next section which may facilitate easier identification of threshold values. 

13.5 Modified Methods for the Identification of Threshold Values 

One obvious problem in using recursive estimation of arranged autoregression (Tsay, 1989) is the 
recursive estimates eventually converge to those of the linear autoregressive estimates.  Thus the AAR 
method employed in the previous section is most effective in identifying the first threshold value from 
the left-hand-side section (lower-end) of the threshold axis.  The AAR method may start to lose 
effectiveness for the coefficients beyond the first threshold.  This is due to the confounding (or 
averaging) effect on the parameter estimates as the estimation range includes more regimes.  In this 
section, we consider two variations of the AAR method. 

(A) Reverse Arranged Autoregression Method 

One possible way to remedy the AAR method is to consider another set of arranged autoregression 
estimates based on the values of the threshold variable in descending order (instead of ascending-
ordered threshold variable in the original AAR method).  Such an approach will allow us to more 
effectively identify the first threshold value from the right-hand-side section (higher-end) of the 
threshold axis.  We shall refer to such an approach as the Reverse AAR method which is specified in 
the TARTEST command using the RAAR keyword in the METHOD subcommand. 

 TARTEST CHICPOX.  METHOD RAAR.  THLAG 12.  ARLAGS 1, 24.    @ 
    HOLD THVARIABLE(THVARR,THINDXR), PHI(PHIMTXR), TPHI(TPHIMTXR), @   
    SIGMAHAT(SIGMAR). 

Using the Reverse AAR method, the scatter plots for 1φ̂ , 24φ̂ , and their t-ratios (versus the 
threshold variables) are displayed below for the chickenpox series.  Based on the scatter plots of 1φ  
estimates and their t-ratios shown in (a) and (c), we can clearly identify threshold values around 7.15 
and 7.0.  Similarly, when we examine the scatter plots of 24φ  estimates and their t-ratios shown in (b) 
and (d), we can identify threshold values around 7.45, 7.15, and 7.0.  The threshold 6.9 is not identified 
using this method since it is a threshold very close to the end of the reverse arranged autoregression 
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sequence.  In this case, the Reverse AAR method reveals more distinct features for the threshold values 
in comparison with the AAR method. 

Plots of autoregressive coefficients and their t-ratios versus the threshold variable Yt-12 

(chickenpox series with the Reverse AAR method) 

(a) Arranged autoregression estimates of 1φ  (b) Arranged autoregression estimates of 24φ  

(c) t-ratios for the estimates of 1φ  (d) t-ratios for the estimates of 24φ  

 

 (B) Local Autoregression Method 

Instead of using recursive estimation which implies all data available up to the potential threshold 
value are used in estimation, we may use a moving window so that only the data close to the potential 
threshold value are used to obtain local estimates of the model parameters and their associated 
statistics (e.g., t-ratios, variances, etc.).  We shall refer to this method as the local autoregression 
(LAR) method.  The LAR method is similar to the ALR method proposed in Chen and Tsay (1993).  
The primary difference is that the LAR method uses linear autoregression estimation for the data 



Threshold Time Series Modeling and Forecasting 107 

 

contained within the data window while the ALR method employs nonparametric regression 
estimation. 

The LAR method is available through the THMEXPLORE command.  The THMEXPLORE 
command is used to provide parameter estimates of a model according to the order of the sorted 
threshold variable.  The threshold variable may be sorted in ascending or descending order. 

A moving-window-regression estimation is used to explore the potential nonlinearity and 
threshold values of the model parameters.  The THMEXPLORE command can be used with an 
autoregressive model or a transfer function model.  For autoregressive models, this command provides 
AAR and RAAR methods in addition to the LAR method for the identification of threshold values.   

In this command, the model parameters to be estimated must be specified with names (labels). For 
example, Y=CNST+(BETA1)X1+NOISE where CNST and BETA1 are the parameter estimate names 
associated with the constant and input variable X1.  Furthermore, the model must be expressed in 
linear regression form using the TSMODEL command with white noise and without any backshift 
operator.  All lagged variables must be created prior to using this command via the LAG command.  

The parameter estimates for each data window are stored in the associated names for the 
parameters as vectors.  The lengths of the resulting vectors for the parameter estimates are the same as 
the length of the output variable.  The t-values for the parameter estimates are also stored for each 
window using the root word of the parameter label preceded by an underscore character (e.g., _CNST 
and _BETA1).  There are estimates at the beginning of the series that are missing due to initial window 
size.  Any parameter estimates that are unavailable (missing) are padded with the missing value code.  

As a precursor to using the THMEXPLORE command, a lag 1 and lag 24 is taken on the 
CHICPOX series and stored as YLAG1 and YLAG24.  This is performed using the LAG command. 

 LAG CHICPOX.  NEW YLAG1, YLAG24.  LAGS 1, 24. 

A model is then specified in linear regression form using the following TSMODEL command.  Here, 
parameter labels (C, PHI1L, and PHI24L) are used in the following model specification command 

 TSMODEL THMODEL.  MODEL IS @  
   CHICPOX=C+(0;PHI1L)YLAG1+(0;PHI24L)YLAG24+NOISE. 

The THMEXPLORE command is employed using the above model with a moving window size of 54 
observations, and threshold lag of 12.  To accommodate for missing values associated with the lagged 
variables, the THMEXPLORE command uses the beginning data span as the first row where all 
variables have non-missing values.  The ending data span is similarly set to the last row where all 
variables have non-missing values. 
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 THMEXPLORE THMODEL.  THLAG 12.  WINDOWSIZE 54. @  
   HOLD THVARIABLE(THVL). 

 VARIABLE     THVL  STORES THE SORTED THRESHOLD VARIABLE (WITH   509 VALUES) 
 VARIABLE        C  STORES PARAMETER ESTIMATES (WITH   509 VALUES) 
 VARIABLE       _C  STORES THE t-VALUES OF THE ABOVE ESTIMATES 
 VARIABLE    PHI1L  STORES PARAMETER ESTIMATES (WITH   509 VALUES) 
 VARIABLE   _PHI1L  STORES THE t-VALUES OF THE ABOVE ESTIMATES 
 VARIABLE   PHI24L  STORES PARAMETER ESTIMATES (WITH   509 VALUES) 
 VARIABLE  _PHI24L  STORES THE t-VALUES OF THE ABOVE ESTIMATES 
 

The scatter plots for the estimates of 1φ , 24φ , and their t-ratios versus the threshold variable t 12Y −  
are displayed next.  By examining the scatter plots for the 1φ  estimates and their t-ratios, we find 
potential threshold values around 6.92, 7.0, and 7.15 as shown in (a) and (c).  On the other hand, by 
examining the scatter plots for the 24φ  estimates and their t-ratios, we find potential threshold values 
around 6.92 and 7.48 as shown in (d).  The results under the LAR method are similar to those of the 
AAR and Reverse AAR methods.  However, the LAR method exhibits the threshold at 6.92 more 
prominently than the other two methods. 
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Plots of autoregressive coefficients and their t-ratios versus the threshold variable Yt-12 

(chickenpox series with the LAR method) 

(a) Arranged autoregression estimates of 1φ  (b) Arranged autoregression estimates of 24φ  

(c) t-ratios for the estimates of 1φ  (d) t-ratios for the estimates of 24φ  

 

(C)  Combined Use of the Methods 

Following the examples discussed above, we see that all three methods for threshold value 
identification have their own strengths and weaknesses.  The strength of the AAR and the Reverse 
AAR method is that both methods are effective in the identification of the first threshold value (the 
lower-end one for the AAR method and the higher-end one for the Reverse AAR method).  In addition, 
we do not need to specify a data window for arranged autoregression estimation which, at times, can 
be complicated.  When a process has only two or three regimes, the combined use of the AAR and 
Reverse AAR methods will fully identify the threshold values for the TAR model.  In practice, a three-
regime TAR model is probably more than adequate for most applications.  If a process has more than 
three regimes, an additional application of this combined method may find two additional threshold 
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values, resulting in a five-regime model.  One weakness of these two methods is that these methods 
may be less effective in identifying subsequent threshold values after the first one. 

The LAR method allows us to identify multiple threshold values in one pass.  However, the choice 
of data window size may be complicated depending on the length of the series and the underlying 
model used for threshold value identification.  In addition, the estimates of model parameters and t-
ratios are more volatile than the AAR method, particularly if the window size is small.  Typically, we 
need more data when this method is used. 

In practice, it is probably prudent to use all three methods in the identification of threshold values.  
Ideally, we would like to see all three methods confirm one another by identifying the same or similar 
threshold values. 

13.6 Guidelines for the Identification of Threshold Values 

(1) It is advisable that extremely large outliers are pre-adjusted before embarking on threshold 
value identification (or nonlinearity testing).  This would avoid volatile changes in the statistics 
to be examined.  Moderate outliers need not be adjusted. 

(2) When examining the scatter plots for the AAR method (where the threshold variable is sorted 
in ascending order), the parameter estimates at the beginning section of the scatter plot (i.e., 
smallest values in the threshold variable) may not be reliable due to the limited numbers of 
observations used in parameter estimation.  This is often depicted by erratic movements in the 
scatter plots of parameter estimates and their t-ratios.  Consequently, information shown in the 
beginning section of the scatter plot should be properly discounted in determining possible 
threshold values.  A similar issue is associated with the Reverse AAR method (where the 
threshold variable is sorted in descending order).  Here, the parameter estimates near the right-
side of the scatter plot (i.e., largest values in the threshold variable) may not be reliable. 

(3) The AAR scatter plots are examined for thresholds from left to right (smallest to largest value 
in the threshold axis).  The first threshold encountered is the most reliable one.  Additional 
thresholds detected after the initial one could still be reliable, but are often confounded by the 
use of the data in the earlier regime(s) in parameter estimation.  Therefore, it is important to 
examine the Reverse AAR scatter plots for the thresholds on the higher-end of the threshold 
axis as well.  For longer time series, the LAR method should also be considered since the 
presence of additional thresholds would be masked by thresholds that occur for smaller 
threshold values (AAR method) or larger threshold values (Reverse AAR method). 

(4) Threshold candidates typically are flagged by a persistent increase (or decrease) and then 
leveling off in the parameter estimates or their t-ratios versus the threshold variable.  The 
vertical range between the beginning of the threshold regime and its eventual stabilization to a 
new level plays a key role in determining the importance of a particular threshold candidate.  It 
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is imperative to confirm that the parameter estimates have meaningful differences between the 
levels of two adjacent regimes. 

(5) If there is more than one possible threshold candidate in close proximity to each other, select 
the threshold value that has more prominent features.  It is also important to make sure that 
each threshold regime contains an adequate number of data points to ensure proper parameter 
estimation. 

13.7 TAR Model Estimation 

In this section, we consider three types of TAR models for the log transformed time series CHICPOX.  
The first model type is a conventional TAR model, replicating the work of Chen and Tsay (1993).  The 
second model type is a multiplicative AR model, and the third model type is a “threshold ARIMA” 
model. 

In the paper by Chen and Tsay (1993), the regimes t 12Y 6.85− < , t 126.85 Y 7.21−≤ < , and t 12Y 7.21− >  
are identified with the underlying model (13.11) using the Functional-Coefficient Autoregression 
(FAR) approach.  In the previous section, we have identified regimes (and hence threshold values) that 
are very close to the above values.  For comparison purpose, the threshold values identified by Chen 
and Tsay (1993) will be used to illustrate TAR model estimation and forecasting. 

Model Type 1 

In Chen and Tsay (1993), the following TAR model with threshold lag (delay parameter) of 12 is 
considered.   

( )
( )
( )

(1) (1) (1) (1) (1) (1)3 9 24
t t-12t1 3 9 24 0

(2) (2) (2) (2) (2) (2)2 9 24
t t-12t1 2 9 24 0

(3) (3) (3) (3) (3) (3)2 8 9
t t-12t1 2 8 9 0

1 B B B B Y a if  Y 6.85,

1 B B B B Y a if  6.85 Y 7.21,

1 B B B B Y a if  Y 7.21,

− φ −φ − φ − φ = φ + <

− φ − φ − φ − φ = φ + ≤ <

− φ −φ − φ − φ = φ + ≥

 

The SCA System provides the REGIME command to generate the threshold indicator variables.  
The threshold indicator variables consist of 0’s and 1’s, where 1 indicates that an observation is in a 
specific regime and 0 otherwise.  The threshold lag is specified in the REGIME command using the 
THLAG subcommand. In this example, the threshold lag is specified as 12.  Two values, 6.85 and 
7.21, are specified in the THRESHOLD subcommand, which define the three regimes.  The 
INDICATORS subcommand is used to specify the variables that will store the regime information.  
Here, REGIME1 represents the regime where t 12Y 6.85− < , REGIME2 represents the regime where 

t 126.85 Y 7.21−≤ < , and REGIME3 represents the regime where t 12Y 7.21− ≥ .   
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The FINDICATOR subcommand is used to hold the extended part of the threshold indicator.  The 
FINDICATOR subcommand should be specified if we intend to perform TAR model forecasting (to be 
described later).  The REGIME command is specified below. 

  REGIME CHICPOX.  THRESHOLD  6.85, 7.21.   THLAG 12.      @  
   INDICATORS REGIME1, REGIME2, REGIME3.  FINDICATOR   FI1, FI2, FI3. 

 INDICATOR  VARIABLE REGIME1  IS CREATED FOR REGIME  1 
 FINDICATOR VARIABLE FI1      IS CREATED FOR REGIME  1 FOR FORECASTING 
 INDICATOR  VARIABLE REGIME2  IS CREATED FOR REGIME  2 
 FINDICATOR VARIABLE FI2      IS CREATED FOR REGIME  2 FOR FORECASTING 
 INDICATOR  VARIABLE REGIME3  IS CREATED FOR REGIME  3 
 FINDICATOR VARIABLE FI3      IS CREATED FOR REGIME  3 FOR FORECASTING 
 

Once the threshold indicators are constructed, we can now specify the TAR models for the three 
regimes considered in this example.  The TAR models are specified using the TSMODEL command 
and are estimated using the TARESTIM command.  An individual model is specified for each regime.  
The model information is stored in the SCA System as MODEL1, MODEL2 and MODEL3 (see the 
TSMODEL command). The SCA commands and output are presented below 

Regime 1:  Yt-12 < 6.85 

 TSMODEL MODEL1.  MODEL IS (1,3,9,24)CHICPOX=C1+NOISE. 
 TARESTIM MODEL1.  REGIME REGIME1. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODEL1  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
 
 CHICPOX    RANDOM     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1 C1                 CNST      1      0     NONE     2.6329     .4391   6.00  
   2          CHICPOX    AR       1      1     NONE      .2848     .0364   7.83  
   3          CHICPOX    AR       1      3     NONE     -.0984     .0173  -5.68  
   4          CHICPOX    AR       1      9     NONE      .0730     .0182   4.01  
   5          CHICPOX    AR       1     24     NONE      .3517     .0630   5.58  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           533 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           509 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.250641E+00 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.426755E-01 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .           135 
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Regime 2:  6.85 ≤ Yt-12 < 7.21 

 TSMODEL MODEL2.  MODEL IS (1,2,9,24)CHICPOX=C2+NOISE. 
 TARESTIM MODEL2.  REGIME REGIME2. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODEL2  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
 
 CHICPOX    RANDOM     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1 C2                 CNST      1      0     NONE      .7203     .6746   1.07  
   2          CHICPOX    AR       1      1     NONE      .8700     .1221   7.12  
   3          CHICPOX    AR       1      2     NONE     -.5126     .0989  -5.18  
   4          CHICPOX    AR       1      9     NONE      .1175     .0438   2.68  
   5          CHICPOX    AR       1     24     NONE      .4157     .0708   5.87  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           533 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           509 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.141528E+00 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.981392E-01 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .           117 

 

Regime 3:  Yt-12 ≥  7.21 

 TSMODEL MODEL3.  MODEL IS (1,2,8,9,24)CHICPOX=C3+NOISE. 
 TARESTIM MODEL3.  REGIME REGIME3. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODEL3  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
 
 CHICPOX    RANDOM     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1 C3                 CNST      1      0     NONE      .2300     .3551    .65  
   2          CHICPOX    AR       1      1     NONE      .8511     .0574  14.83  
   3          CHICPOX    AR       1      2     NONE     -.1454     .0519  -2.80  
   4          CHICPOX    AR       1      8     NONE     -.1309     .0377  -3.48  
   5          CHICPOX    AR       1      9     NONE      .2559     .0350   7.32  
   6          CHICPOX    AR       1     24     NONE      .1444     .0362   3.99  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           533 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           509 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.137159E+00 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.994496E-01 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .           25 
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Conditional least squares estimation is used to estimate the TAR models in the SCA System.  The 
results produced by the SCA System are the same as those presented in Chen and Tsay (1993). SCA 
estimation results shown after each TARESTIM command are summarized in the table below.   

(1) (1) (1) (1) (1) (1)
0 1 3 9 24 1
(2) (2) (2) (2) (2) (2)
0 1 2 9 24 1
(3) (3) (3) (3) (3)
0 1 2 8 9

ˆ ˆ ˆ ˆ ˆ ˆ2.63 0.28 0.10 0.07 0.35 0.04268

ˆ ˆ ˆ ˆ ˆ ˆ0.72 0.87 0.51 0.12 0.42 0.09814

ˆ ˆ ˆ ˆ ˆ ˆ0.23 0.85 0.15 .13 0.26

φ = φ = φ = − φ = φ = σ =

φ = φ = φ = − φ = φ = σ =

φ = φ = φ = − φ = − φ = φ(3) (3)
24 1ˆ0.14 0.09945= σ =

 

13.8 Forecasting 

After the regime models (MODEL1 - MODEL3) are estimated, forecasts can be generated for each 
model up to the threshold lag (d) using the TARFORECAST command.  The threshold lag (delay 
parameter) is 12 in this example and we will use the thresholds (6.85 and 7.21) reported by Chen and 
Tsay (1993) in this illustration.     

We first input the threshold information into a variable THRSHINFO.  The first number is the 
threshold lag followed by the threshold values.  The threshold information is then provided to the 
TARFORECAST command.   

 INPUT THRSHINFO. 
   12   6.85   7.21 
 END OF DATA 

Below, the TARFORECAST command is specified.  The NOFS subcommand is used to control the 
number of forecasts to generate.  It is important to note that the number of forecasts cannot exceed the 
threshold lag value; in this case 12.   

 TARFORECAST MODEL1,MODEL2,MODEL3.  THRESHOLD THRSHINFO.  NOFS 12. 

 --------------------------------------------------- 
 MODEL MODEL1  :    12 FORECASTS, BEGINNING AT  533 
 --------------------------------------------------- 
  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
   534      6.9954      0.0427 
   535      6.7595      0.0444 
   536      6.6678      0.0445 
   537      6.7357      0.0446 
   538      6.7613      0.0447 
   539      6.8195      0.0447 
   540      6.8635      0.0447 
   541      6.9267      0.0447 
   542      6.9792      0.0447 
   543      6.9993      0.0448 
   544      6.9633      0.0448 
   545      6.9790      0.0448 
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 --------------------------------------------------- 
  MODEL MODEL2  :    12 FORECASTS, BEGINNING AT  533 
 --------------------------------------------------- 
  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
   534      7.0784      0.0981 
   535      6.6475      0.1301 
   536      6.4522      0.1323 
   537      6.5626      0.1342 
   538      6.7425      0.1381 
   539      6.8976      0.1390 
   540      6.9836      0.1390 
   541      7.0470      0.1394 
   542      7.1042      0.1396 
   543      7.1270      0.1402 
   544      7.0452      0.1413 
   545      6.9842      0.1418 
 
 --------------------------------------------------- 
 MODEL MODEL3  :    12 FORECASTS, BEGINNING AT  533 
 --------------------------------------------------- 
  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
   534      7.3549      0.0994 
   535      7.2106      0.1306 
   536      7.0863      0.1427 
   537      7.0452      0.1474 
   538      7.0272      0.1491 
   539      7.0605      0.1498 
   540      7.1081      0.1500 
   541      7.2067      0.1501 
   542      7.3090      0.1505 
   543      7.3846      0.1505 
   544      7.4059      0.1519 
   545      7.4022      0.1541 
 
 --------------------------------------------------- 
 COMBINED FORECASTS:   12 FORECASTS, BEGINNING AT  533 
 --------------------------------------------------- 
  TIME    FORECAST   STD. ERROR   ACTUAL IF KNOWN 
   534      7.0784      0.0981 
   535      6.7595      0.0444 
   536      6.6678      0.0445 
   537      6.7357      0.0446 
   538      6.7613      0.0447 
   539      6.8195      0.0447 
   540      6.9836      0.1390 
   541      7.0470      0.1394 
   542      7.3090      0.1505 
   543      7.3846      0.1505 
   544      7.4059      0.1519 
   545      7.4022      0.1541 
 

In the above TARFORECAST specification, the regime indicator variables for the forecasts are 
constructed internally based on the threshold information provided.  In some situations, it may be 
desirable to provide the regime indicator variables for the forecasts directly.  The TARFORECAST 
command allows an alternative specification using the WEIGHT subcommand.  When the WEIGHT 
subcommand is used, more flexibility is possible (e.g., smoothing forecasts for regime transition 



116 Threshold Time Series Modeling and Forecasting 

 

periods).  The FI1, FI2, and FI3 variables that were generated using the earlier REGIME command can 
now be used.   

 TARFORECAST  MODEL1,MODEL2,MODEL3. WEIGHT FI1,FI2,FI3.  NOFS 12. 

The output from this command is not shown since it is the same as the as the TARFORECAST 
command using the THRESHOLD subcommand above. 

Model Type 2 

Having replicated the TAR estimation results of Chen and Tsay (1993), we now deviate from the 
conventional TAR modeling approach and consider a multiplicative autoregressive model.  The same 
threshold lag and regime specifications from the first approach are continued to be used here.  

The IARIMA command which provides automatic ARIMA model identification is used to 
examine the overall behavior of the CHICPOX series without consideration of different regimes.  The 
command and output are shown below. 

    IARIMA CHICPOX.  SEASON 12. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- UTSMODEL 
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                        12 
 CHICPOX    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1          CHICPOX    MA       1     12     NONE      .7300     .0306  23.83  
   2          CHICPOX   D-AR      1      1     NONE      .7902     .0272  29.03  
 
 TOTAL NUMBER OF OBSERVATIONS . . . .           533 
 EFFECTIVE NUMBER OF OBSERVATIONS . .           520 
 RESIDUAL STANDARD ERROR. . . . . . .  0.904489E-01 
 

Upon reviewing the model identified by the IARIMA command, it shows that the seasonal behavior of 
the time series is represented by the model 

( ) ( )12 12
t 1 t1 B Y 1 B a− = −Θ  (13.12) 

 

which can be approximated by a seasonal AR(2) model.  Therefore, the ARIMA model identified by 
the IARIMA command can be written as 
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( )( )t t12 24
1 12 24

1Y C a
1 B 1 B B

= +
−φ − φ − φ  (13.13) 

We shall use the model in (13.13) for the three regimes considered in this example.  The 
multiplicative TAR model and regimes are 

( )( )

( )( )

( ) ( )

(1)(1)
t t-12t(1) (1) (1)12 24

1 12 24

(2)(2)
t t-12t(2) (2) (2)12 24

1 12 24

(3)(3)
t t-12t(3) (3) (3)12 24

1 12 24

1Y C a if  Y 6.85,
1 B 1 B B

1Y C a if  6.85 Y 7.21,
1 B 1 B B

1Y C a if  Y 7.21,
1 B 1 B B

= + <
− φ −φ − φ

= + ≤ <
−φ − φ − φ

= + ≥
−φ −φ − φ

 (13.14) 

In the above multiplicative TAR model, all autoregressive polynomials are specified on the right-hand 
side of the model.  By doing so, the constant terms in the model (i)C  is the mean of the associated 
regime, thus bringing more intuitive meaning to the parameter estimates.  This is different from the 
conventional TAR models, where the constant term (i)

0φ  in each regime has no particular meaning. 

The models are specified and estimated in the SCA System using the TSMODEL and TARESTIM 
commands.  Following the same steps taken in Approach 1, the SCA commands and output are 
presented below. 

Regime 1:  Yt-12 < 6.85 

 TSMODEL MODEL1.     MODEL IS  CHICPOX=C1+1/(1)(12,24)NOISE. 
 TARESTIM   MODEL1.  REGIME REGIME1. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODEL1  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
 
 CHICPOX    RANDOM     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1 C1                 CNST      1      0     NONE     6.7285     .0329 204.67  
   2          CHICPOX   D-AR      1      1     NONE      .2932     .0528   5.55  
   3          CHICPOX   D-AR      2     12     NONE      .2712     .1003   2.71  
   4          CHICPOX   D-AR      2     24     NONE      .5492     .0698   7.87  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           533 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           508 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.132016E+00 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.454842E-01 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .           135 
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Regime 2:  6.85 ≤ Yt-12 < 7.21 

 TSMODEL MODEL2.    MODEL IS  CHICPOX=C2+1/(1)(12,24)NOISE. 
 TARESTIM  MODEL2.  REGIME REGIME2. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODEL2  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
 
 CHICPOX    RANDOM     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1 C2                 CNST      1      0     NONE     7.0727     .3415  20.71  
   2          CHICPOX   D-AR      1      1     NONE      .5792     .0874   6.63  
   3          CHICPOX   D-AR      2     12     NONE      .3794     .0995   3.81  
   4          CHICPOX   D-AR      2     24     NONE      .5536     .0881   6.29  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           533 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           508 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.972547E-01 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.104459E+00 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .           117 
 

Regime 3:  Yt-12 ≥ 7.21 

 TSMODEL  MODEL3.   MODEL IS CHICPOX=C3+1/(1)(12,24)NOISE. 
 TARESTIM MODEL3.   REGIME REGIME3. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODEL3  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
 
 CHICPOX    RANDOM     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1 C3                 CNST      1      0     NONE     7.7169     .1232  62.64  
   2          CHICPOX   D-AR      1      1     NONE      .7926     .0355  22.34  
   3          CHICPOX   D-AR      2     12     NONE      .2802     .0530   5.28  
   4          CHICPOX   D-AR      2     24     NONE      .4525     .0521   8.69  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           533 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           508 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.105704E+00 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.100817E+00 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .           256 
 

The SCA estimation results shown after each TARESTIM command are summarized in the table 
below for convenience. 
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(1) (1) (1) (1)(1)
1 12 24 2
(2) (2) (2) (2)(2)
1 12 24 2
(3) (3) (3) (3)(3)
1 12 24 2

ˆ ˆ ˆ ˆ ˆC 6.73 .29 .27 .55 .04548

ˆ ˆ ˆ ˆ ˆC 7.07 .58 .38 .55 .10446

ˆ ˆ ˆ ˆ ˆC 7.72 .79 .28 .45 .10082

= φ = φ = φ = σ =

= φ = φ = φ = σ =

= φ = φ = φ = σ =
 

The (i)Ĉ  value represents the mean of the i-th regime.  Comparing the results between Approach 1 and 

2, we find that the residual standard errors (i)ˆ 'sσ  associated with Approach 2 are somewhat larger than 
the conventional TAR models in Approach 1.  However, the results are still quite comparable. This is 
true especially when considering that Approach 2 uses fewer parameters, resulting in a more 
parsimonious model.  Also in Approach 1, several AR parameter estimates are quite small even though 
they are statistically significant. 

Model Type 3 

Finally, we consider a model that deviates even further from the conventional TAR modeling 
approach.  Here we shall use the model which was identified with the IARIMA command.  This model 
includes a seasonal differencing operator as well as a seasonal MA parameter and a non-seasonal AR 
parameter.   

The same model specification and estimation steps that were conducted for the two prior 
approaches are carried out below.  Afterward, we examine the residual standard errors of all three 
approaches presented in this section. 

Regime 1:  Yt-12 < 6.85 

 TSMODEL MODEL1.   MODEL IS CHICPOX(12)=(12)/(1)NOISE. 
 TARESTIM MODEL1.  REGIME REGIME1. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODEL1  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                        12 
 CHICPOX    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1          CHICPOX    MA       1     12     NONE      .6666     .0472  14.11  
   2          CHICPOX   D-AR      1      1     NONE      .3296     .0533   6.19  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           533 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           520 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.112355E+00 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.436301E-01 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .           137 
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Regime 2:  6.85 ≤ Yt-12 < 7.21 

 TSMODEL MODEL2.   MODEL IS CHICPOX(12)=(12)/(1)NOISE. 
 TARESTIM MODEL2.  REGIME REGIME2. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODEL2  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                        12 
 CHICPOX    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1          CHICPOX    MA       1     12     NONE      .7477     .0583  12.83  
   2          CHICPOX   D-AR      1      1     NONE      .7081     .0749   9.45  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           533 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           520 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.913542E-01 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.953122E-01 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .           120 
 

Regime 3:  Yt-12 ≥ 7.21 

 TSMODEL MODEL3.   MODEL IS CHICPOX(12)=(12)/(1)NOISE. 
 TARESTIM MODEL3.  REGIME REGIME3. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODEL3  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
                                        12 
 CHICPOX    RANDOM     ORIGINAL     (1-B  )  
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1          CHICPOX    MA       1     12     NONE      .7410     .0434  17.06  
   2          CHICPOX   D-AR      1      1     NONE      .8443     .0343  24.63  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           533 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           520 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.907950E-01 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.101654E+00 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .           263 
 

The SCA estimation results shown after each TARESTIM command are summarized in the table 
below for convenience. 
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(1) (1) (1)
1 12 3
(2) (2) (2)
1 12 3
(3) (3) (3)
1 12 3

ˆ ˆ ˆ.33 .67 .04363

ˆ ˆ ˆ.71 .75 .09531

ˆ ˆ ˆ.84 .74 .10165

φ = Θ = σ =

φ = Θ = σ =

φ = Θ = σ =
 

Upon examining the residual standard errors of the three regimes, we find that the residual standard 
errors under Model Type 3 are smaller or comparable to the TAR model used by Chen and Tsay 
(1993) while the number of parameters was reduced by more than half.  

In summary, three types of threshold models are presented in this section to address nonlinearity 
in a time series caused by the presence of multiple regimes in the time series data.  The first model 
type considered was a conventional TAR model that was presented by Chen and Tsay (1993) in their 
analysis of logged monthly Chickenpox cases in New York City.  Their estimation results were 
replicated using the SCA System in Model Type 1.  A second model type was then considered using a 
multiplicative AR model.  In Model Type 2, we specified the autoregressive operators on the right-
hand side of the model, giving more meaning to the constant term in the models.  The final model type 
considered was a general threshold ARIMA model.  The residual standard errors and the number of 
parameters in each model (p) for the three threshold model types are presented in the table below. 

Model 
Type 

Regime 1 Regime 2 Regime 3 

p RSE p RSE p RSE 

#1 5 0.04268 5 0.09814 6 0.09945 

#2 4 0.04548 4 0.10446 4 0.10082 

#3 2 0.04363 2 0.09531 2 0.10165 

 

13.9 Example of TAR Modeling Using the U.S. Real GNP  

In this section, a TAR model is used to analyze the quarterly U.S. real GNP series (in 1982 dollars) 
between the first quarter of 1947 and the first quarter of 1991.  Tiao and Tsay (1994) study the growth 
rate of the U.S. real GNP series (denoted as tDGNP  below) with 

t t t 1 tDGNP (GNP ) (GNP ) (1 B) (GNP )−= − = −A A An n n  (13.15) 

where tGNP  is the quarterly real GNP in the t-th quarter and tDGNP  is the growth rate between the 
successive quarters.  Due to differencing, the series tDGNP  has 176 observations and is displayed 
below. 
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Growth rate of U.S. quarterly real GNP (2/1947 – 1/1991) 

 

Using the entire time series, we find that the GNP growth rate ( tDGNP ) can be represented by a 
MA(2) or an AR(1) model.  For purpose of TAR modeling, we consider the following slightly over-
parameterized AR(2) model: 

t 0 1 t 1 2 t 2 tDGNP C DGNP DGNP a− −= + φ + φ + . (13.16) 

The estimates for the parameters of the above model are  

0 1 2 aˆ ˆ ˆ ˆC =0.0041 (t=4.13),   0.3304 (t=4.39),   0.1344 (t=1.78),   and  0.00986φ = φ = σ =  (13.17) 

Using this linear AR(2) as the null hypothesis model, the statistics for the TAR-F test for possible 
nonlinear threshold lags (d) are computed using the TARTEST command.  Here, we consider threshold 
lags from 1 to 6. 

    TARTEST DGNP.  ARLAGS 1, 2.  THLAGS 1 TO 6. 

    Lag     F-statistic  Degrees of freedom 
 --------   -----------  ------------------ 
     1       0.36586        3     152 
     2       3.16414        3     152 
     3       2.55177        3     151 
     4       2.65051        3     150 
     5       1.70234        3     149 
     6       1.79730        3     148 
 

The above table shows that the linear AR(2) model should be rejected because the F-statistic at d=2 
(the largest) is significant at 5% level.  Thus a TAR model with d=2 should be considered.  If multiple 
d values are significant, we usually choose the d that has the largest corresponding F-value.  In some 
applications we may select a threshold lag based on additional rationale.  For example, if a few 
significant F statistics are clustered around a seasonal lag, the seasonal lag may be selected instead of a 
more significant threshold lag due to the seasonality of the particular series. 
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To identify the threshold values for the DGNP series using the AAR method, the TARTEST 
command is employed.  The THLAG is set to 2 and the ARLAGS are specified as 1 and 2.  The 
autoregressive parameter estimates, their t-ratios, and corresponding estimated variances are saved in 
the SCA workspace using the HOLD subcommand. 

   TARTEST DGNP.  THLAG 2.  ARLAGS 1 TO 2.     @ 
    HOLD THVARIABLE(THV,THINDX), PHI(PHIMTX), TPHI(TPHIMTX),  @ 
    SIGMAHAT(SIGMA). 

The threshold values (in sorted order) are stored under the THV variable name.  The PHIMTX and 
TPHIMTX variables store the AR estimates and their corresponding t-values in matrix form.  The 
following SCA matrix operation separates the matrix columns into variables that can be readily used 
for graphing or further analysis. 

 PHI1=PHIMTX(.,1) 
 PHI2=PHIMTX(.,2) 
 TPHI1=TPHIMTX(.,1) 
 TPHI2=TPHIMTX(.,2) 

Alternatively, the PICK command can be used in place of the matrix operations above to copy columns 
of a matrix to create the PHI1, PHI2, TPHI1, and TPHI2 series. 

The scatter plots for the estimates (PHI1 and PHI2), and their t-ratios (TPHI1 and TPHI2) versus 
the threshold variable THV (i.e., t 2DGNP − ) are created using the GRAPH command.  The data is 
transferred to SCAGRAF using the command 

   GRAPH THV, PHI1, PHI2, TPHI1, TPHI2. 

By examining the scatter plots we find that the estimates of 1φ  have little variation.  On the 
contrary, the estimates of 2φ  vary greatly (between -1.019 and 0.134).  Therefore, we shall use the 
estimates of 2φ  and the corresponding t-ratios for identification of threshold values.  From (b) and (d), 
we find the 2φ  estimates and their t-ratios change their direction from descending to ascending around 

t 2Y 0− = .  This suggests that data can be partitioned into two regimes with a threshold at t 2Y 0.0− = .  
However, if we also use 1φ  estimates and their t-ratios to identify threshold values, we find an 
additional threshold around t 2Y 0.007− = , as shown in (a) and (b).  We should keep in mind that this 
threshold may not be meaningful because the 1φ  estimates have little variation between regimes 
separated by this threshold, as shown in (a). 
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Plots of autoregressive coefficients and their t-ratios versus the threshold variable Yt-2 

(GNP series with the AAR method) 

(a) Arranged autoregression estimates of 1φ  

 

(b) Arranged autoregression estimates of 2φ  

 
(c) t-ratios for the estimates of 1φ  

 

(d) t-ratios for the estimates of 2φ  

 
 

The Reverse AAR method is also applied on the GNP series.  Instead of searching for threshold 
values from left-to-right on the threshold axis, we search for threshold values from right-to-left on the 
threshold axis when the Reverse AAR method is used.  The following TARTEST command is 
specified using the RAAR method. 

 TARTEST DGNP.  THLAGS 2.   ARLAGS 1, 2.  HOLD      @
 THVARIABLE(THVR,THINDXR), PHI(PHIMTXR),TPHI(TPHIMTXR), @    
 SIGMAHAT(SIGMAR). 

The scatter plots for 1φ̂ , 2φ̂ , and their t-ratios versus the threshold variable are displayed below.   
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Plots of autoregressive coefficients and their t-ratios versus the threshold variable Yt-2 

(GNP series with the Reverse AAR method) 

(a) Arranged autoregression estimates of 1φ  (b) Arranged autoregression estimates of 2φ  

(c) t-ratios for the estimates of 1φ  (d) t-ratios for the estimates of 2φ  

 

By examining the dominant coefficient 2φ̂ , we find that 2φ̂  and its t-ratios have a major change of 

direction around t 2Y 0.0− =  as shown in (b) and (d).  Similarly, by examining the coefficient 1φ̂ , we 
find its t-ratios have a major change of direction around t 2Y 0.007− = .  These findings confirm the 

previous results.  Again, the threshold identified based on 2φ̂  is more important than the one based on 

1φ̂ . 

The THMEXPLORE command can also be used to explore potential thresholds using the local 
arranged regression (LAR) method.  To use the LAR method in the THMEXPLORE, a linear 
regression model must be specified.  The model may be in the form of a lagged regression or in the 
form of a linear regression model that includes explanatory variables. 
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For comparison purposes, the LAR method will be used to explore the thresholds of the DGNP series.  
The THMEXPLORE command with a window size of 60 and threshold lag 2 is used.  A lagged 
regression model will be employed using lags one and two of the DGNP series as input variables. The 
SCA LAG command is used to create lagged variables of the DGNP series stored as YLAG1 and 
YLAG2.  The command is shown below. 

 LAG DGNP.  NEW YLAG1,YLAG2.  LAGS 1, 2. 

A model is specified in linear regression form using the following TSMODEL command.  Here, 
parameter labels (C, PHI1L, and PHI2L) are specified in the model command. 

 TSMODEL THMODEL.  MODEL IS @  
   DGNP=C+(0;PHI1L)YLAG1+(0;PHI2L)YLAG2+NOISE. 

The THMEXPLORE command is employed using the above model with a moving window size of 
60 observations, and threshold lag of 2. 

 THMEXPLORE THMODEL.  THLAG 2.  WINDOWSIZE 60. @  
   HOLD THVARIABLE(THVL). 

 VARIABLE     THVL  STORES THE SORTED THRESHOLD VARIABLE (WITH   174 VALUES) 
 VARIABLE        C  STORES PARAMETER ESTIMATES (WITH   174 VALUES) 
 VARIABLE       _C  STORES THE t-VALUES OF THE ABOVE ESTIMATES 
 VARIABLE    PHI1L  STORES PARAMETER ESTIMATES (WITH   174 VALUES) 
 VARIABLE   _PHI1L  STORES THE t-VALUES OF THE ABOVE ESTIMATES 
 VARIABLE    PHI2L  STORES PARAMETER ESTIMATES (WITH   174 VALUES) 
 VARIABLE   _PHI2L  STORES THE t-VALUES OF THE ABOVE ESTIMATES 
 

Plots of autoregressive coefficients and their t-ratios versus the threshold variable Yt-2 are displayed 
below. 
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Plots of autoregressive coefficients and their t-ratios versus the threshold variable Yt-2 

 (GNP series with the LAR method) 

(a) Arranged autoregression estimates of 1φ  

 

(b) Arranged autoregression estimates of 2φ  

 
(c) t-ratios for the estimates of 1φ  

 

(d) t-ratios for the estimates of 2φ  

 
 

By examining the dominant coefficient 2φ̂ , we find that the estimates of 2φ  and their t-ratios have 
major changes of directions around t 2Y 0.0− =  and t 2Y 0.017− = , as shown in (b) and (d).  The latter 
threshold ( t 2Y 0.017− = ) should be ignored since the t-ratios before and after this threshold are all 

insignificant.  By examining the coefficient 1φ̂ , we find the estimates of 1φ  and their t-ratios have a 
major change of direction around t 2Y 0.007− = .  The findings here are also consistent with the previous 
results. 

Now that the appropriate threshold lag and suitable threshold values have been identified, the 
REGIME command is used to construct the threshold indicator variables.  Here, the threshold lag 2 is 
specified using the THLAG subcommand and the threshold value 0 is specified using the 
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THRESHOLD subcommand.  The threshold indicator variables are stored as REGIME1 and 
REGIME2. 

 REGIME DGNP.  THLAG 2.  THRESHOLD 0.  INDICATORS REGIME1, REGIME2. 

Using the regime indicators generated above, the following two-regime TAR(2) is specified using the 
TSMODEL command and estimated using the TARESTIM command as shown below. 

Regime 1:  Yt-12 <= 0.0 

   TSMODEL MODEL1.   MODEL IS (1,2)DGNP=CNST1+NOISE. 
   TARESTIM MODEL1.  REGIME REGIME1. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODEL1  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
 
   DGNP     RANDOM     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
   1  CNST1             CNST      1      0     NONE     -.0039     .0033  -1.18  
   2            DGNP     AR       1      1     NONE      .4362     .1754   2.49  
   3            DGNP     AR       1      2     NONE     -.7873     .3335  -2.36  
 
 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           176 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           174 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.199273E-01 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.120398E-01 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .            37 
 

Regime 2:  Yt-12 > 0.0 

   TSMODEL MODEL2.   MODEL IS (1,2)DGNP=CNST2+NOISE. 
   TARESTIM MODEL2.  REGIME REGIME2. 

 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --  MODEL2  
 ----------------------------------------------------------------------- 
 VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING  
           VARIABLE   OR CENTERED           
 
   DGNP     RANDOM     ORIGINAL     NONE 
 ----------------------------------------------------------------------- 
  PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-     VALUE      STD     T  
    LABEL       NAME    DENOM.                TRAINT               ERROR  VALUE 
 
   1  CNST2             CNST      1      0     NONE      .0038     .0014   2.71  
   2            DGNP     AR       1      1     NONE      .3111     .0792   3.93  
   3            DGNP     AR       1      2     NONE      .2014     .1061   1.90  
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 TOTAL NUMBER OF OBSERVATIONS. . . . . . . . . . . . . .           176 
 EFFECTIVE NUMBER OF OBSERVATIONS. . . . . . . . . . . .           174 
 RESIDUAL STANDARD ERROR (WITHOUT ANY ADJUSTMENT). . . .  0.988576E-02 
 RESIDUAL STANDARD ERROR (WITH WEIGHT INFORMATION) . . .  0.869640E-02 
 NUMBER OF OBS. USED IN COMPUTING THE ABOVE RSE. . . . .           137 
 

The above TAR model can be further refined.  Tiao and Tsay (1994) employ t 1Y −  as an additional 
threshold variable and develop a four-regime TAR model.  To simplify our discussion on the issues 
related to threshold value identification, we focused on the two regime TAR model developed above. 

In the above example using the DGNP series, the TARTEST command was employed to test the 
nonlinearity of DGNP based on lags of the series itself (i.e., traditional TAR model).  However, if the 
underlying model is of general linear regression form, the THMTEST command can be used instead of 
TARTEST.  Once the threshold lag is determined, the THMEXPLORE command can then be used to 
find the potential thresholds. 
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APPENDIX A 

SCA COMMAND LIST GROUPED BY FOCUS AND EDITION 

This Appendix provides information on the capabilities available in Release 8 of the SCA 
Statistical System for personal computers. Capabilities are provided in chart form, blocked into the 
following categories: 

• Univariate time series analysis and forecasting 
• Automatic univariate time series modeling and outlier analysis 
• Multivariate time series modeling and forecasting 
• Seasonal adjustment 
• Transformation and forecasting 
• Nonlinear time series modeling and forecasting 
• General statistical analysis 
• Descriptive statistics 
• Date handling 
• Data editing 
• Input and output 
• Macro procedures 
• Utilities 
• Applets 
• Graphics 
 
Capabilities are listed in alphabetical order by SCA command names within each category. 

Specific information regarding a capability (command) presented in this appendix include: 

• The command name or system function 
• A short description for the command 
• The SCA Edition(s) that include the command 
• The document reference for the command 

 

For convenience, the user guides that document the SCA commands are designated by letter 
abbreviations listed below: 

(A)  SCA Reference Manual for Fundamental Capabilities 
(B)  SCA Reference Manual for General Statistical Analysis 
(C)  Forecasting and Time Series Analysis Using the SCA Statistical System, Volume 1 
(D)  Forecasting and Time Series Analysis Using the SCA Statistical System, Volume 2 
(E)  GARCH Modeling using SCAB34S-GARCH and SCA WorkBench 
(F)  New and Enhanced Capabilities in Release 8 of the SCA Statistical System (this document) 
(G)  On-line Syntax Help (Accessible through SCA WorkBench) 
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Univariate Time Series Analysis and Forecasting 

Command  U
se
r 
G
ui
de

 

Ed
uc
at
io
na

l 

Pr
ac
ti
ti
on

er
 

Pr
of
es
si
on

al
  A

 

Pr
of
es
si
on

al
  B

 

Description 

ACF  C  x  x  x  x  Autocorrelation Function 

AGGREGATE  C  x  x  x  x  Simple Temporal Aggregation 

CCF  C  x  x  x  x  Cross Correlation Function 

CCM  C,D  x  x  x  x  Cross Correlation Matrix 

CORNER  C  x  x  x  x  Corner Table 

CSPECTRA  G  x  x  x  x  Spectral Analysis 

EACF  C  x  x  x  x  Extended Autocorrelation Function 

ESTIM  C  x  x  x  x  Estimate a time series model 

FFILTER  G  x  x  x  x  Band‐pass / Band‐fail Filter 

FILTER  C  x  x  x  x  Filter a time series based on model 

FORECAST  C  x  x  x  x  Forecast a time series 

GFORECST  C  x  x  x  x  General Exponential Smoothing 

IACF  G  x  x  x  x  Inverse Autocorrelation Function 

IDENTIFY  C  x  x  x  x  ACF & PACF 

OUTLIER  C  x  x  x  x  Outlier detection and identification 

PACF  C  x  x  x  x  Partial Autocorrelation Function 

PSPECTRA  G  x  x  x  x  Spectral Analysis 

SIMULATION  C  x  x  x  x  Simulate a time series based on model 

RSFILTER  F  x  x  x  x  Seasonal time series model identification 

TSMODEL  C  x  x  x  x  Time series model specification 

UROOT  F  x  x  x  x  Unit Root tests 

WEIGHT  C  x  x  x  x  Pi‐weights and Psi‐weights 
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Automatic Univariate Time Series Analysis and Forecasting 

Command    U
se
r 
G
ui
de

 

  E
du

ca
ti
on

al
 

  P
ra
ct
it
io
ne

r 

  P
ro
fe
ss
io
na

l A
 

  P
ro
fe
ss
io
na

l B
 

Description 

IARIMA  D  ‐‐  x  x  x  Automatic ARIMA Modeling 

IESTIM  D  ‐‐  x  x  x  Automatic ARIMA & Transfer Function 

OESTIM  C  ‐‐  x  x  x  Joint Outlier Estimation and Adjustment 

OFILTER  C  ‐‐  x  x  x  Outlier Filtering of a Time Series 

OFORECST  C  ‐‐  x  x  x  Outlier Adjusted Forecasting 

OUTLIER  C  ‐‐  x  x  x  Outlier detection and identification 

RSFILTER  F  x  x  x  x  Seasonal time series model identification 

 
Multivariate Time Series Analysis and Forecasting 

Command 

U
se
r 
G
ui
de

 

Ed
uc
at
io
na

l 

Pr
ac
ti
ti
on

er
 

Pr
of
es
si
on

al
 A
 

Pr
of
es
si
on

al
 B
 

Description 

CAUSALTEST  F  ‐‐  ‐‐  x  ‐‐  Causality tests 

CANONICAL  G  ‐‐  ‐‐  x  ‐‐  Canonical Analysis 

CCM  D  x  x  x  x  Cross Correlaton Matrix 

ECCM  D  ‐‐  ‐‐  x  ‐‐  Extended Cross Correlation Matrix 

MESTIM  D  ‐‐  ‐‐  x  ‐‐  Vector ARMA Model Estimation 

IMESTIM  D  ‐‐  ‐‐  x  ‐‐  Automatic Vector ARMA Estimation 

MFORECAST  D  ‐‐  ‐‐  x  ‐‐  Vector ARMA Forecasting 

MIDEN  D  ‐‐  ‐‐  x  ‐‐  Vector ARMA Model Identification 

MSIMULATE  D  ‐‐  ‐‐  x  ‐‐  Vector ARMA Model Simulation 

MTSMODEL  D  ‐‐  ‐‐  x  ‐‐  Vector ARMA Model Specification 

SCAN  G  ‐‐  ‐‐  x  ‐‐  Vector ARMA Model Identification 

SESTIM  D  ‐‐  ‐‐  x  ‐‐  STF Model Estimation 

SFORECAST  D  ‐‐  ‐‐  x  ‐‐  STF Model Forecasting 

SSIMULATE  D  ‐‐  ‐‐  x  ‐‐  STF Model Simulation 

STEPAR  D  ‐‐  ‐‐  x  ‐‐  Step‐wise Autoregressive Fit 

STFMODEL  D  ‐‐  ‐‐  x  ‐‐  STF Model Specification 
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Seasonal Adjustment 

Command 

U
se
r 
G
ui
de

 

Ed
uc
at
io
na

l 

Pr
ac
ti
ti
on

er
 

Pr
of
es
si
on

al
 A
 

Pr
of
es
si
on

al
 B
 

Description 

XCD  D  ‐‐  ‐‐  x  ‐‐  Model‐based seasonal adjustment 

 
Transformation and Forecasting 

Command 

U
se
r 
G
ui
de

 

Ed
uc
at
io
na

l 

Pr
ac
ti
ti
on

er
 

Pr
of
es
si
on

al
 A
 

Pr
of
es
si
on

al
 B
 

Description 

RETRANSFORM  F  ‐‐  x  x  x  Retransform forecasts (unbias) 

TSEARCH  F  ‐‐  ‐‐  ‐‐  x  Lambda value search for transformation 

 
Nonlinear Time Series Modeling and Forecasting 

Command 

U
se
r 
G
ui
de

 

Ed
uc
at
io
na

l 

Pr
ac
ti
ti
on

er
 

Pr
of
es
si
on

al
 A
 

Pr
of
es
si
on

al
 B
 

Description 

GARCH  E  ‐‐  ‐‐  ‐‐  x  GARCH modeling and analysis environment 

NLTEST  F  ‐‐  ‐‐  ‐‐  x  Nonlinearity testing using LM ARCH test 

REGIME  F  ‐‐  ‐‐  ‐‐  x  Generate binary regime indicator variables 

SPLINES  G  *  *  *  *  MARSplines, GAM, ACE, other 

TARESTIM  F  ‐‐  ‐‐  ‐‐  x  Threshold AR estimation 

TARFORECAST  F  ‐‐  ‐‐  ‐‐  x  Threshold AR forecast 

TARTEST  F  ‐‐  ‐‐  ‐‐  x  Threshold AR F‐Test and threshold lag search 

TARXTEST  F  ‐‐  ‐‐  ‐‐  x  Threshold search using external variable 

THMEXPLORE  F  ‐‐  ‐‐  ‐‐  x  Threshold search using arranged regression 

THMTEST  F  ‐‐  ‐‐  ‐‐  x  Threshold AR F‐Test and threshold lag search 

TSEARCH  F  ‐‐  ‐‐  ‐‐  x  Lambda value search for transformation 

TVPEXPLORE  F  ‐‐  ‐‐  ‐‐  x  Time‐varying parameter analysis 

WESTIM  F  ‐‐  ‐‐  ‐‐  x  Weighted time series model estimation 

WFORECAST  F  ‐‐  ‐‐  ‐‐  x  Weighted forecasting  

 
(*) The SPLINES capability requires the SCAB34S SPLINESproduct.  
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General Statistical Analysis 

Command 
U
se
r 
G
ui
de

 

Ed
uc
at
io
na

l 

Pr
ac
ti
ti
on

er
 

Pr
of
es
si
on

al
 A
 

Pr
of
es
si
on

al
 B
 

Description 

CORRELATION  B  x  x  x  x  Display correlation between two variables 

CROSSTAB  B  x  x  x  x  Cross tabulation 

NONPARAMETRIC  B  x  x  x  x  Non‐parametric statistics 

NWAY  B  x  x  x  x  N‐way analysis of variance 

OWAY  B  x  x  x  x  One‐way analysis of variance 

PTRAN  B  x  x  x  x  Parameter estimation with Box‐Cox transform

RANK  B  x  x  x  x  Convert data into a ranked variable 

REGRESS  B  x  x  x  x  Estimate a regression model 

TABLE  B  x  x  x  x  Display sample mean and STD of data groups 

TTEST  B  x  x  x  x  Two‐sample t‐test 

TWAY  B  x  x  x  x  Two‐way analysis of variance 

 
Date Handling 

Command 

U
se
r 
G
ui
de

 

Ed
uc
at
io
na

l 

Pr
ac
ti
ti
on

er
 

Pr
of
es
si
on

al
 A
 

Pr
of
es
si
on

al
 B
 

Description 

DAGGREGATE  F  ‐‐  x  x  x  Temporal aggregation using date indices 

DATEBUILD  F  ‐‐  x  x  x  Generate date variable 

DAYS  C  ‐‐  x  x  x  Compute number of mondays, etc. in month 

DMATRIX  G  x  x  x  x  Generate a design matrix from factor variable

DOWEEK  F  ‐‐  x  x  x  Day of week associated with date 

DVECTOR  F  ‐‐  x  x  x  Generate dummy variables from factors  

EASTER  C  ‐‐  x  x  x  Generate monthly weights related to Easter 
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Data Editing 

Command 
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Description 

AGGREGATE  A,C  x  x  x  x  Temporal aggregation using observation index

AUGMENT  A  x  x  x  x  Join variables into a matrix 

CHANGE  A  x  x  x  x  Change the values of a variable 

DIFFERENCE  A,C  x  x  x  x  Difference a time series 

DMATRIX  G  x  x  x  x  Generate a design matrix from factor variable

GENERATE  A  x  x  x  x  Generate a variable using specified sequence 

JOIN  A  x  x  x  x  Join variables together as a new variable 

LAG  A,C  x  x  x  x  Lag a time series 

OMIT  A  x  x  x  x  Omit values or time span in a variables 

PATCH  A,C  x  x  x  x  Patch or recode missing values 

PERCENT  A,C  x  x  x  x  Generate a percent change variable 

PICK  A  x  x  x  x  Pick off columns from a matrix 

RANK  A  x  x  x  x  Convert data into a ranked variable 

RECODE  A  x  x  x  x  Recode values in a variables to a new value 

SELECT  A  x  x  x  x  Select obs. of a variable by value or span 

SIMULATE  A  x  x  x  x  Simulate a data with a specified distribution 

SORT  A  x  x  x  x  Sort the values of a variable 

 

Descriptive Statistics 

Command 
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Description 

DESCRIBE  B  x  x  x  x  Display descriptive statistics of a variable 

DPLOT  G  x  x  x  x  Dispersion plot (character plot) 

GRAPH  G  x  x  x  x  Create graph in SCAGRAF  Applet (graphic plot)

HGRAPH  G  ‐‐  ‐‐  ‐‐  ‐‐  Create graph in SCAB34S Applet (graphic plot) 

HISTOGRAM  B  x  x  x  x  Histogram plot (character plot) 

LABEL  A  x  x  x  x  Assign one character label to variable name 

MPLOT  A  x  x  x  x  Multiple scatter plot (character plot) 
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MTPLOT  A  x  x  x  x  Multiple time series plot (character plot) 

MTSPLOT  A  x  x  x  x  Multiple time series plot (character plot) 

PARETO  A  x  x  x  x  Pareto plot (character plot) 

PLOT  A  x  x  x  x  Scatter plot (character plot) 

PPLOT  A  x  x  x  x  Probability plot (character plot) 

SHEWHART  A  x  x  x  x  Shewhart plot (character plot) 

TPLOT  A  x  x  x  x  Time series plot (character plot) 

TSPLOT  A  x  x  x  x  Time series plot (character plot) 

 
Input and Output 
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Description 

ASSIGN  A  x  x  x  x  Associate a file with a unit number 

BINPUT  A  x  x  x  x  Input dataset using SCA binary format 

BSAVE  A  x  x  x  x  Save dataset using SCA binary format 

DISPLAY  A  x  x  x  x  Display descriptive text in SCA macro 

FINPUT  A  x  x  x  x  Input dataset using SCA meta data format 

FREE  A  x  x  x  x  Release a unit number associated with a file 

FSAVE  A  x  x  x  x  Save dataset using SCA meta data format 

INPUT  A  x  x  x  x  Input data from a flat text file 

PRINT  A  x  x  x  x  Print variables 

REWIND  A  x  x  x  x  Rewind a unit number associated with a file 

SAVE  A  x  x  x  x  Save data in a flat text file format 

 
Macro Procedures 

Command 
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Description 

CALL  A  x  x  x  x  Call a SCA macro procedure script 

PARAMETERS  A  x  x  x  x  Specify symbolic parameters  

RETURN  A  x  x  x  x  Return from macro procedure  
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Utilities 

Command 
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Description 

NEWPAGE  A  x  x  x  x  Force start of new page in SCA output 

PROFILE  A  x  x  x  x  Control key settings of SCA System session 

RESTART  A  x  x  x  x  Clears the SCA workspace 

STOP  A  x  x  x  x  Exit the SCA System session 

TIME  A  x  x  x  x  Print date and time 

WORKSPACE  A  x  x  x  x  Provides various SCA Workspace utilities 

 
Applets 

Command 
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Description 

RUN  G  x  x  x  x  Execute an external program 

RUNW  G  x  x  x  x  Execute an external program and wait for finish

BUILD  G  x  x  x  x  Write text to a file in free format (control file) 

ENDBUILD  G  x  x  x  x  End writing text to a file 

COPY  G  x  x  x  x  Copy text from external file into the SCA output 

XLSREAD  G  x  x  x  x  Build SCA data macro from Excel file 

XLSWRITE  G  x  x  x  x  Write data from a file into Excel 

 
Graphics 

Command 
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Description 

HGRAPH  G  *  *  *  *  Create graph in SCAB34S Applet (graphic plot) 

SCAGRAF  G  x  x  x  x  Create graph in SCAGRAF Applet (graphic plot) 

 
(*) The HGRAPH command requires the SCAB34S product.  



 

 

APPENDIX B 

SCA COMMAND SYNTAX LISTING 

This appendix B provides a listing of the syntax for new SCA commands included in Release 8 of the 
SCA Statistical System.  The commands are presented in alphabetical order. 

CAUSALTEST 

The CAUSALTEST command is used to examine the causal relationships between two time series. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +----------------------------------------------------------------+ 
    |                                                                | 
    |  CAUSALTEST MODEL model-name.                                  | 
    |             PROCEDURE IS w.                                 @  | 
    |             ALPHA IS r.                                        | 
    |                                                                | 
    |  ** Complete list of available subcommands:                    | 
    |                                                                | 
    |  CAUSALTEST MODEL model-name.                               @  | 
    |             PROCEDURE IS w.                                 @  | 
    |             ALPHA IS r.                                     @  | 
    |             STOP-CRITERIA ARE MAXIT(i), LIKELIHOOD(r).      @  | 
    |             SPAN IS i1, i2.                                 @  | 
    |             OUTPUT IS LEVEL(w), PRINT(w1,w2,---),           @  | 
    |                       NOPRINT(w1,w2,---).                   @  | 
    |                                                                | 
    |     Required subcommand:  MODEL                                | 
    |                                                                | 
    |     Legend:  v -- variable namel   i -- integer value;         | 
    |              w -- keyword          r -- real value             | 
    +----------------------------------------------------------------+ 

 
Subcommand descriptions 

MODEL subcommand 
The MODEL subcommand is used to specify the name (label) of the vector ARMA model used for 
causality testing. The name must be a vector ARMA model specified in a previous TSMODEL 
command. 

PROCEDURE subcommand 
The PROCEDURE subcommand is used to specify the approach employed in causality testing. The 
keyword, w, may be BACKWARD for the backward procedure, FORWARD for the forward 
procedure, or BOTH for both backward and forward procedures. The default is BOTH. 
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ALPHA subcommand  
The ALPHA subcommand is used to specify the significant level employed in conducting all pair-
wise tests.  The default is 0.05 (i.e., 5%). 

 
STOP subcommand 

The STOP subcommand is used to specify the stopping criterion for nonlinear estimation.   The 
argument, i, for the keyword MAXIT specifies the maximum number of iterations (default is i=10), 
and the argument, r, for the keyword LIKELIHOOD specifies the value of the relative convergence 
criterion on the likelihood function (default is r=0.001).   Estimation iterations will be terminated 
when the relative change in the value of likelihood function between two successive iterations is 
less than or equal to the convergence criterion, or if the maximum number of iterations is exceeded. 

SPAN subcommand 
The SPAN subcommand is used to specify the span of time indices, i1 to i2, for which the data will 
be analyzed.  The default is the maximum span available for the series which is the span of the 
shortest series if all series are not of equal length. 

 
OUTPUT subcommand 

The OUTPUT subcommand is used to control the amount of output printed for computed statistics.  
Control is achieved in a two stage procedure.  First a basic LEVEL of output (default NORMAL) is 
specified. Output may then be increased from this level by use of PRINT (NOPRINT). 
 
The keywords for LEVEL and output printed are: 
 
BRIEF:  likelihood values and their related statistics only 
NORMAL:  same as BRIEF 
DETAILED:  CORR 
 
where the reserved words (and keywords for PRINT, NOPRINT) on the right denote: 

 
CORR:  the correlation matrix for the parameter estimates.  It also activates the display of 

detailed information in causality testing. 
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DAGGREGATE 

The DAGGREGATE command is used to generate a new time series through the temporal 
aggregation of a specified time series given a companion date index variable.  The generated series 
will be aggregated into user specified time intervals such as year, quarter, month, week, or day. 
Aggregation method may be specified as the sum, mean, first, last, high or low of the data values in 
each date period. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +--------------------------------------------------------------+ 
    |                                                              | 
    |   DAGGREGATE OLD v1,v2,--- .                              @  | 
    |              NEW v1,v2,--- .                              @  | 
    |              DATE IS v.                                   @  | 
    |              METHOD IS w1(w2).                               | 
    |                                                              | 
    |   ** Complete list of available subcommands:                 | 
    |                                                              | 
    |   DAGGREGATE OLD v1,v2,--- .                              @  | 
    |              NEW v1,v2,--- .                              @  | 
    |              DATE IS v.                                   @  | 
    |              METHOD IS w1(w2).                            @  | 
    |              WBEGIN IS i.                                 @  | 
    |              COMPRESS/NO COMPRESS.                        @  | 
    |              HOLD DATE(v),NOBS(v1,v2,---),MEAN(v1,v2,---),@  | 
    |                   STDERR(v1,v2,---).                         | 
    |                                                              | 
    |      Required subcommands: OLD, NEW, DATE, METHOD            | 
    |                                                              | 
    |      Legend:  v -- variable name;    i -- integer value;     | 
    |               w -- keyword                                   | 
    +--------------------------------------------------------------+ 

Subcommand descriptions 

OLD subcommand 
The OLD subcommand is used to specify the name(s) of time series variable(s) from which the 
aggregated time series will be derived.  It is a required subcommand. 

NEW subcommand 
The NEW subcommand is used to specify the name(s) of variable(s) to store the aggregated time 
series. The default are the names specified in the OLD subcommand. It is a required subcommand. 

DATE subcommand 
The DATE subcommand is used to specify the name of the date index variable associated with the 
original series to be aggregated. The date must be a 8-digit number representing YYYYMMDD 
where YYYY is year, MM is month, and DD is day. It is a required subcommand. 
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METHOD subcommand 
The METHOD subcommand is used to specify the aggregation grouping and the summarization or 
aggregation method. The aggregation grouping keyword (w1) can be specified as YEAR, 
QUARTER, MONTH, WEEK, or DAY. The aggregation method keyword (w2) can be specified 
as SUM, MEAN, FIRST, LAST, HIGH, or LOW. It is a required subcommand.  

WBEGIN subcommand 
The WBEGIN subcommand is used to specify the first day of the week which is only applicable to 
weekly aggregation. For example, the weekly data aggregation will begin on Tuesday if 2 is 
specified.  

COMPRESS subcommand 
The COMPRESS subcommand is used to specify that the aggregated series shall be stored in 
compressed form, i.e., aggregated values are not repeated so that the total number of observations 
are less than that of the original series. This is the typical case. If NO COMPRESS is specified, 
then the aggregated series will have the same length as the original series. The default is 
COMPRESS.  

HOLD subcommand 
The HOLD subcommand is used to specify those values computed for particular functions to be 
retained in the workspace until the end of the session.  Only those information desired to be 
retained need be named.  Values are placed in the variable named in parentheses. The default is that 
none of the values of the above information will be retained after the command is used.  The values 
that may be retained are: 

DATE:    the new dates associated with the aggregated series. For aggregation in WEEK, the 
values stored in the DATE variable are 10 digit values where the first 8 digits 
represent the date for each aggregated value, and the last 2 digits represent the week 
for the aggregated value. 

NOBS:   the number of observations in the each aggregated period. This information is useful 
to evaluate and adjust partially aggregated periods 

MEAN:    the mean of the observations in the aggregated period. 

STDERR:   the sample standard deviation of the observations in the aggregated period 
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DATEBUILD 

The DATEBUILD command is used to generate a sequence of dates given a beginning period and 
an ending period.  If the ending period is not well defined, the number of dates to create may be 
specified directly using the NOBS subcommand. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +--------------------------------------------------------------+ 
    |                                                              | 
    |      DATEBUILD VARIABLE IS v.                           @    | 
    |                BEGIN i1,i2,i3.                          @    | 
    |                END i1,i2,i3.                            @    | 
    |                NOBS IS i.                                    | 
    |                                                              | 
    |   ** Complete list of available subcommands:                 | 
    |                                                              | 
    |      DATEBUILD VARIABLES IS v.                          @    | 
    |                QUARTERLY.                               @    | 
    |                BEGIN i1,i2,i3.                          @    | 
    |                END i1,i2,i3.                            @    | 
    |                NOBS IS i.                               @    | 
    |                OMIT DOWEEK(---),DAY(---),MONTH(---),    @    | 
    |                     QUARTER(---),YEAR(---).             @    | 
    |                HOLD YEAR(v),QUARTER(v),MONTH(v),DAY(v), @    | 
    |                        DOWEEK(v).                            | 
    |                                                              | 
    |      Required subcommands:  VARIABLES, BEGIN, END (or NOBS)  | 
    |                                                              | 
    |      Legend:  v -- variable name                             | 
    |                                                              | 
    +--------------------------------------------------------------+ 

Subcommand descriptions 

VARIABLE subcommand 
The VARIABLE subcommand is used to specify the name of the variable that will hold the newly 
generated date values. 

QUARTERLY subcommand 
The QUARTERLY subcommand is used to specify that the date variable shall be organized as 
quarterly dates. 

BEGIN subcommand 
The BEGIN subcommand is used to specify the beginning period for the generated date variable.  
The first parameter value i1 specifies the beginning year as a 4-digit integer, the second parameter 
value i2 specifies the beginning month or quarter (if the QUARTERLY subcommand is specified), 
and the third parameter value i3 specifies the beginning day.  If only the year is needed, it is not 
necessary to provide values for i2 and i3. Similarly, if only year and month is needed, it is not 
necessary to provide a value for i3. 
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END subcommand 
The END subcommand is used to specify the ending period for the new date variable.  The first 
parameter value i1 specifies the beginning year as a 4-digit integer, the second parameter value i2 
specifies the beginning month or quarter (if the QUARTERLY subcommand is specified), and the 
third parameter value i3 specifies the beginning day.  If only the year is needed, it is not necessary 
to provide values for i2 and i3.  Similarly, if only year and month is needed, it is not necessary to 
provide a value for i3.  The NOBS subcommand can be used instead of the END subcommand if 
the ending date is not well defined. 

NOBS subcommand 
The NOBS subcommand is used to specify the number of dates that are to be generated starting 
from the specified beginning date period. 

OMIT subcommand 
The OMIT subcommand is used to specify if certain date periods are to be skipped when building 
the date variable.  For example, weekend dates can be omitted in daily date creation by specifying 
OMIT DOWEEK(6,7). 

HOLD subcommand 
The HOLD subcommand is used to store the components of the generate date variable into separate 
variables. The component values that may be retained are: 

YEAR: the years associated with the dates generated 
QUARTER:    the quarters associated with the dates generated 
MONTH:  the months associated with the dates generated 
DAY:         the days associated with the dates generated 
DOWEEK:      the day of week associated with the dates generated where 
  Monday=1, Tuesday=2, ...., Sunday=7. 
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DOWEEK 

The DOWEEK command is used to evaluate a double-precision date variable and determine the 
day of week associated with that date.  The date variable must be a double precision variable of the 
form YYYYMMDD where YYYY represents the 4-digit year, MM represents the two-digit month, 
and DD represents the two-digit day.  The command returns 1 for Monday, 2 for Tuesday, 3 for 
Wednesday, 4 for Thursday, 5 for Friday, 6 for Saturday, and 7 for Sunday. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +--------------------------------------------------------------+ 
    |                                                              | 
    |      DOWEEK  VARIABLE IS v.                           @      | 
    |              DAYOFWEEK IS v.                                 | 
    |                                                              | 
    |   ** Complete list of available subcommands:                 | 
    |                                                              | 
    |      DOWEEK  VARIABLE IS v.                           @      | 
    |              DAYOFWEEK IS v.                          @      | 
    |              DATEPARTS IN v1,v2,v3.                          | 
    |                                                              | 
    |      Required subcommands:  VARIABLES and DAYOFWEEK          | 
    |                                                              | 
    |      Legend:  v -- variable name                             | 
    |                                                              | 
    +--------------------------------------------------------------+ 

Subcommand descriptions 

VARIABLE subcommand 
The VARIABLE subcommand is used to specify the name of the variable whose values represent 
dates in the form YYYYMMDD.  It is a required subcommand. 

DAYOFWEEK subcommand 
The DAYOFWEEK subcommand is used to specify the variable (label) used to hold the associated 
day of week values.  It is a required subcommand. 

DATEPARTS subcommand 
The DATEPARTS subcommand stores the date information into separate variables where years 
will be saved to first variable name specified, months will be saved to the second variable name, 
and days will be saved to the third variable name specified. 
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DVECTOR 

The DVECTOR command is used to construct a set of dummy variables (design matrix) from the 
values of factor variables and stores the dummy variables as vector variables.  The resultant 
dummy variables can then be used in subsequent time series modeling and forecasting.  Its 
functionality is similar to that of the DMATRIX command, but the resultant dummy variables are 
in vector form (as opposed to matrix form) and are more convenient to use in time series modeling 
and forecasting. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +--------------------------------------------------------------+ 
    |                                                              | 
    |      DVECTOR  VARIABLES ARE v1, v2, ---.              @      | 
    |               MAIN-EFFECTS ARE v1, v2, ---.                  | 
    |                                                              | 
    |   ** Complete list of available subcommands:                 | 
    |                                                              | 
    |      DVECTOR  VARIABLES ARE v1, v2, ---.              @      | 
    |               MAIN-EFFECTS ARE v1, v2, ---.           @      | 
    |               TYPE IS DEVIATION/T11/T10/T01.          @      | 
    |               INTERACTIONS ARE v1(...), v2(...), ---.        | 
    |                                                              | 
    |      Required subcommands:  VARIABLES and MAIN-EFFECTS       | 
    |                                                              | 
    |      Legend:  v -- variable name                             | 
    |                                                              | 
    +--------------------------------------------------------------+ 

Subcommand descriptions 

VARIABLES subcommand 
The VARIABLES subcommand is used to specify the names of the variables whose values are 
used to define the resultant design matrices.  The variables must be categorical and specified as 
numerical values. 

MAIN-EFFECTS subcommand  
The MAIN-EFFECTS subcommand is used to specify the variables (labels) for holding the 
resultant dummy variables.  One set of dummy variables is constructed for each of the variables 
specified in the VARIABLES subcommand.  Each dummy variable will have as many rows as the 
original variable.  The number of dummy variables generated for each variable may be equal to or 
one less than the number of categories for the associated variable depending on the choice of the 
TYPE of design matrix formulation.  The number of labels specified in the MAIN-EFFECTS 
subcommand must be the same as the number of variables specified in the VARIABLES 
subcommand.  The labels specified here are used as the root word in storing the individual dummy 
variable vectors for the associated main effect.  Since SCA has a limit of 8 characters for variable 
labels, it is important to use short labels of 6 characters or less.  For example, if there are 4 
categories in a variable and a root word label is specified as QA, the dummy variable vector labels 
associated with that variable will be assigned as QA1, QA2, and QA3 (and QA4 if TYPE is T11, 
see below). 
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TYPE subcommand 
The TYPE subcommand is used to specify the formulation of the design matrix.  The keyword 
DEVIATION will produce a set of dummy variables such that its use in a regression or time series 
model will provide the estimates of the main-effects as deviations from the overall mean.  In this 
case, there will be (m-1) dummy variables created for the variable where m is the number of 
categories.  The keyword T11 will generate a dummy variable for each category in the variable.  In 
this case, there will be m dummy variables created for the variable.  The keyword T10 is similar to 
T11 except the dummy variable for the last category will not be created.  The keyword T01 is also 
similar to T11 except the dummy variable for the first category will not be created.  Both T10 and 
T01 create (m-1) dummy variables for each associated variable.  The default is DEVIATION. 

INTERACTION subcommand    
The INTERACTION subcommand is used to specify the construction of design matrices for 
interactions.  The specification of each interaction is given by v (v1, v2, ---) where 'v' is the 
variable name (label) used to store the resultant design matrix for an interaction; and "v1, v2, ---" 
specifies the terms whose cross-products form the interaction, and have been specified previously 
in the MAIN-EFFECTS subcommand.  Note that not all variables specified in the VARIABLES 
subcommand need be used in this subcommand and more than one interaction matrix can be 
constructed. 

 



150 Appendix B 

 

IARIMA 

The IARIMA command is used to automatically identify an appropriate ARIMA model for a 
seasonal or non-seasonal time series.  It also estimates the parameters of the identified model. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +--------------------------------------------------------------+ 
    |                                                              | 
    |     IARIMA  VARIABLE IS v.                         @         | 
    |             SEASONALITY is i.                      @         | 
    |             SPAN IS i1, i2.                        @         | 
    |             DFORDERS ARE  i1, i2, --- .            @         | 
    |             NODFORDERS i1, i2, --- .                         |  
    |                                                              | 
    |   ** Complete list of available subcommands:                 | 
    |                                                              | 
    |     IARIMA  VARIABLE IS v.                         @         | 
    |             NAME IS model-name                     @         | 
    |             SEASONALITY is i. (PERIOD IS i.)       @         | 
    |             SPAN IS i1, i2.                        @         | 
    |             DFORDERS ARE  i1, i2, --- .            @         | 
    |             NODFORDERS i1, i2, --- .               @         | 
    |             CRITERIA r.                            @         |  
    |             DELETE-CONSTANT/NO DELETE.             @         | 
    |             REPLACE IN model-name.                 @         | 
    |             COMPONENT-SERIES ARE v1,v2,v3.         @         | 
    |             HOLD RESIDUALS(v),FITTED(v),VARIANCE(v).         | 
    |                                                              | 
    |      Required subcommand:  VARIABLE                          | 
    |                                                              | 
    |      Legend:  v -- variable name;    i -- integer value;     | 
    |               w -- keyword                                   | 
    +--------------------------------------------------------------+ 

Subcommand descriptions 

VARIABLE subcommand 
The VARIABLE subcommand is used to specify the name of the series for which an ARIMA 
model will be identified and estimated. It is a required subcommand. 

NAME subcommand 
The NAME subcommand is used to specify a name (label) for the model identified by the IARIMA 
command.  When it is not specified, the default name UTSMODEL is used internally. 

SEASONALITY subcommand 
The SEASONALITY subcommand is used to specify the potential seasonality the series may 
possess.  The seasonality is 4 for quarterly data, 12 for monthly data, and so on.  If seasonality is 
specified but in fact the series is non-seasonal, an appropriate non-seasonal model will still be 
obtained (assuming that the series is medium to long in length).  If a series is seasonal but no 
seasonality is specified, the identified model will not be appropriate (it is signified by the display of 
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significant sample autocorrelations of residuals).  Hence the SEASONALITY is required if the 
series is seasonal, and optional if the series is non-seasonal.  It is safe to specify the potential 
seasonality if the series is medium to long in length. 

PERIOD subcommand 
The PERIOD subcommand serves the same purpose as the SEASONALITY subcommand.  Either 
PERIOD or SEASONALITY may be used to specify the periodicity or seasonality of a time series, 
but not both. 

SPAN subcommand 
The SPAN subcommand is used to specify the span of time indices, i1 to i2, for which the data are 
used to identify and estimate an ARIMA model.  The default is the maximum span available for the 
series. 

DFORDER subcommand 
The DFORDER subcommand is used to specify the differencing order(s) that must be included in 
the final ARIMA model.  In addition to the specified differencing(s), other differencing orders may 
be included by the IARIMA command in the final ARIMA model if they are found to be necessary.  
By default, the differencing orders for the ARIMA model of a time series are automatically 
determined by the IARIMA command.  User imposed specification of differencing order(s) may be 
particularly useful when a time series is short. 

NODFORDERS subcommand 
The NODFORDERS subcommand is used to exclude specific differencing order(s) from being 
used in the final ARIMA model.  By default, the differencing orders for the ARIMA model of a 
time series are automatically determined by the IARIMA command.   

CRITERIA subcommand 
The CRITERIA subcommand is used to specify the critical value for determining the statistical 
significance of parameters retained in the model.  The default is 1.96 for determining the statistical 
significance of model parameters.  

DELETE-CONSTANT subcommand 
The DELETE-CONSTANT subcommand is used to specify the manner in which the deletion of 
the constant term in an ARIMA model is handled.  By default (which is DELETE-CONSTANT), 
the constant term is deleted from the model if it is insignificant, and retained in the model if it is 
significant.  However, if NO DELETE is specified, the constant term will be retained in the model 
no matter if it is significant or not.  The default is DELETE-CONSTANT. 

REPLACE subcommand  
The REPLACE subcommand is used to specify the name of a transfer function model or 
intervention model for which its ARMA component is to be replaced by the ARIMA model 
identified by the IARIMA command.  The REPLACE subcommand provides a link for the 
combined use of the IARIMA and IESTIM commands. 
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COMPONENT subcommand 
The COMPONENT subcommand is used to specify the names of variables to store the residual 
series, R series (nonseasonal), and S series (seasonal).  See SCA manual for the definition of R and 
S series.  The S series will not be generated if the SEASONALITY (or PERIOD) subcommand is 
not specified. 

HOLD subcommand 
The HOLD subcommand is used to specify those values computed for particular functions to be 
retained in the workspace until the end of the session.  Only those statistics desired to be retained 
need be named.  Values are placed in the variable named in parentheses. The default is that none of 
the values of the above statistics will be retained after the command is used.  The values that may 
be retained are: 

RESIDUALS: the residual series 
FITTED:  the one-step-ahead forecasts (fitted values) of the series 
VARIANCE:   the variance of the noise 
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NLTEST 

The NLTEST command performs a non-linear testing of a series using a LaGrange multiplier 
approach proposed in Engle (1982) to test the null hypothesis that errors do not follow an ARCH 
process. The test performs a regression of the squared residuals on a constant and q lagged values 
of the squared residuals. From the regression, the LM test statistic is calculated as (N-q)-R**2.  An 
ARCH process is determined to exist if the LM test exceeds the critical value from a chi-square 
distribution with q degrees of freedom. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +---------------------------------------------------------------+ 
    |                                                               | 
    |   ** Complete list of available subcommands:                  | 
    |                                                               | 
    |      NLTEST  VARIABLE IS v1.                             @    | 
    |              METHOD IS w.                                @    | 
    |              ORDERS ARE i1,i2 ---.                       @    | 
    |              SPAN IS i1,i2.                                   |  
    |                                                               | 
    |      Required subcommand:                                     | 
    |                                                               | 
    |      Legend:  v -- variable name;  i -- integer value;        | 
    |               w -- keyword;        r -- real value            | 
    +---------------------------------------------------------------+ 

Subcommand descriptions 

VARIABLE subcommand 
The VARIABLE subcommand is used to specify the series on which a nonlinear test is conducted. 

METHOD subcommand 
The METHOD subcommand is used to specify the type of nonlinear test to be employed.  The 
valid keywords are LM (LaGrange Multiplier). 

ORDERS subcommand 
The ORDERS subcommand is used to specify the lag order(s) to be tested. 

SPAN subcommand 
The SPAN subcommand is used to specify the span of the series to be considered.  The default is 
all available data. 
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REGIME 

The REGIME command is used to generate binary indicator variables based on the thresholds 
specified for a given time series.  

SYNTAX in terms of subcommands and associated argument type(s) 

    +---------------------------------------------------------------+ 
    |                                                               | 
    |      REGIME  VARIABLE IS v.                              @    | 
    |              THLAG IS i.                                 @    | 
    |              THRESHOLDS ARE r1, r2, ---.                 @    | 
    |              INDICATORS ARE v1, v2, v3, ---.                  | 
    |                                                               | 
    |   ** Complete list of available subcommands:                  | 
    |                                                               | 
    |      REGIME  VARIABLE IS v1.                             @    | 
    |              THLAG IS i.                                 @    | 
    |              THRESHOLDS ARE r1, r2, ---.                 @    | 
    |              INDICATORS ARE v1, v2, v3, ---.             @    | 
    |              FINDICATORS ARE v1, v2, v3,---.             @    |  
    |              EXTEND. / NO EXTEND.                             |  
    |                                                               | 
    |      Required subcommand:   VARIABLE, THRESHOLDS, INDICATORS  | 
    |                                                               | 
    |      Legend:  v -- variable name;  i -- integer value;        | 
    |               w -- keyword;        r -- real value            | 
    +---------------------------------------------------------------+ 

Subcommand descriptions 

VARIABLE subcommand 
The VARIABLE subcommand is used to specify the time series whose values will be evaluated in 
generating the regime indicator variables (i.e., the regime variables). 

THLAG subcommand 
The THLAG subcommand is used to specify the threshold lag that is used to generate the regime 
variables.  The default is 1. 

THRESHOLDS subcommand 
The THRESHOLDS subcommand is used to specify the cut-off values that define the threshold 
intervals.  More than one threshold value may be specified but must be specified in ascending 
order. 

INDICATORS subcommand 
The INDICATORS subcommand is used to specify the names of the variables that will hold the 
regime indicator variables. The number of regime indicator variables generated is always one 
greater than the number of threshold values specified. 
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If two threshold values are specified, three regime indicator variables will be generated.  The first 
regime variable will mark all observations that are less than the first threshold value.  The second 
regime indicator will mark all observations that are greater than or equal to the first threshold value 
but less than the second threshold value.  The third regime indicator will mark all observations that 
are greater than the second threshold value. 

FINDICATORS subcommand 
The FINDICATORS subcommand is used to specify the names of the regime indicator variables 
that hold the indicator information that is extended past the length of the time series.   These 
regime indicator variables can then be used for forecasting a TAR model up to threshold lag value 
specified. The threshold lag must be greater than 0 when using the FINDICATOR subcommand. 

EXTEND subcommand 
The EXTEND subcommand is used to extend the regime indicator variables by the value specified 
in the THLAG subcommand.  The default is NO EXTEND. 
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RETRANSFORM 

The RETRANSFORM command is used to retransform forecasts back into original scale when a 
time series received a power transformation. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +---------------------------------------------------------------+ 
    |                                                               | 
    |     RETRANSFORM OLD-VARIABLES ARE v1, v2, v3.  @              | 
    |                 FORM IS v1, v2, v3, v4.        @              | 
    |                 NEW-VARIABLES ARE v1, v2, v3.  @              | 
    |                 CRITICAL-VALUE r.              @              | 
    |                 METHOD IS w.                                  | 
    |                                                               | 
    |   ** Complete list of available subcommands:                  | 
    |                                                               | 
    |     RETRANSFORM OLD-VARIABLES ARE v1, v2.      @              | 
    |                 FORM IS v1, v2, v3, v4.        @              | 
    |                 NEW-VARIABLES ARE v1, v2, v3.  @              | 
    |                 CRITICAL-VALUE r.              @              | 
    |                 METHOD IS w.                   @              | 
    |                 OUTPUT LEVEL(W),PRINT(...),NOPRINT(...)       |  
    |                                                               | 
    |      Required subcommand:   OLD-VARIABLES, FORM               | 
    |                                                               | 
    |      Legend:  v -- variable name;  i -- integer value;        | 
    |               w -- keyword;        r -- real value            | 
    +---------------------------------------------------------------+ 

Subcommand descriptions 

OLD-VARIABLES subcommand 
The OLD-VARIABLES subcommand is used to specify the forecasts and the forecast standard 
errors which are based on a transformed time series.  The argument, v1, specifies the forecast 
series.  The argument, v2, specifies the standard errors of the forecasts.  The argument, v3, 
specifies a vector containing the actual values for the forecast periods, if known.  The actual values 
should be in original scale (i.e., prior to being transformed).  The v3 argument must be the same 
length as v1.  If specified, the result table will be expanded to show the forecast errors, as well as 
the RMSE and MAPE statistics of the forecasts based on the original scale of the series.   

FORM subcommand 
The FORM subcommand is used to specify the form of retransformation method applied.   

The argument, v1, specifies the power (lambda) value associated with the forecasts to be 
retransformed.  This is a required argument. 

The argument, v2, is used to specify the type of transformation applied to the transformed 
forecasts. The v2 argument must pass the value 1 or 2.  An explanation of Type 1 and Type 2 
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transformation is provided in the body of the text.  If the argument, v2, is not specified, Type 1 
transformation form is assumed. 

The optional argument, v3, specifies if a constant was added to the original series before it received 
a power transformation.  

The optional argument, v4, specifies if the transformed forecasts were scaled by the geometric 
mean of the original series, or by any other arbitrary value.  

NEW-VARIABLES subcommand 
The NEW-VARIABLES subcommand is used to specify the Retransformed forecasts and 
upper/lower confidence limits of the Retransformed forecasts. The argument, v1, specifies the 
Retransformed forecast series.  The arguments, v2 and v3, specify the upper limit and lower limit 
of the retransformed forecasts, respectively. 

CRITICAL-VALUE 
The CRITICAL-VALUE subcommand is used to specify the critical value for computing the 
confidence intervals of the Retransformed forecasts.  The default is 1.96 (i.e., 95% confidence 
intervals). 

METHOD subcommand 
The METHOD subcommand is used to specify the method for transforming the forecasts back into 
original scale.  The method may be specified as STRAIGHT or UNBIASED.  The default is 
UNBIASED. 

OUTPUT subcommand 
The OUTPUT subcommand is used to control the amount of output printed for the Retransformed 
series.  Control is achieved in a two stage procedure.   First a basic LEVEL of output is specified.  
Output may then be increased from this level by use of PRINT, or    decreased from this level by 
use of NOPRINT. 

The keywords for LEVEL and output printed are: 

BRIEF:  no output displayed 
NORMAL:  FORECASTS 
DETAILED:  FORECASTS  

where the reserved words on the right denote: 

FORECAST: the Retransformed forecast 

These reserved words are also keywords for PRINT and NOPRINT.  The default for LEVEL is 
NORMAL, or the level specified in the PROFILE command. 
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RSFILTER 

The RSFILTER command is used to identify the differencing orders and generate the R and S 
series for a seasonal time series after differencing.  This command provides more detailed 
information for the identification of seasonal ARIMA models.  The R series contains information 
to represent the behavior for the nonseasonal part of the ARMA process, and the S series contains 
information to represent the behavior for the seasonal part of the ARMA process. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +--------------------------------------------------------------+ 
    |                                                              | 
    |    RSFILTER VARIABLE IS v.                         @         | 
    |             NEW-SERIES ARE v1,v2.                  @         | 
    |             SEASONALITY is i. (PERIOD IS i.)                 | 
    |                                                              | 
    |   ** Complete list of available subcommands:                 | 
    |                                                              | 
    |    RSFILTER VARIABLE IS v.                         @         | 
    |             NEW-SERIES ARE v1,v2.                  @         | 
    |             SEASONALITY is i. (PERIOD IS i.)       @         | 
    |             DFORDERS ARE  i1, i2, --- .            @         | 
    |             NODFORDERS i1, i2, --- .               @         |  
    |             SPAN IS i1, i2.                                  | 
    |                                                              | 
    |      Required subcommand:  VARIABLE and NEW-SERIES           | 
    |                                                              | 
    |      Legend:  v -- variable name;    i -- integer value;     | 
    |               w -- keyword                                   | 
    +--------------------------------------------------------------+ 

Subcommand descriptions 

VARIABLE subcommand 
The VARIABLE subcommand is used to specify the name of the time series that will be used for 
model identification. It is a required subcommand. 

NEW-SERIES subcommand 
The NEW-SERIES subcommand is used to specify the names of variables to store the R 
(nonseasonal) series and S (seasonal) series.  The S series will not be generated if the 
SEASONALITY (or PERIOD) subcommand is not specified.  It is a required subcommand. 

SEASONALITY subcommand 
The SEASONALITY subcommand is used to specify the potential seasonality that the series may 
possess.  The seasonality is 4 for quarterly data, 12 for monthly data, and so on.   If a seasonality is 
specified but in fact the series is nonseasonal, an appropriate nonseasonal model can still be 
identified from the R series (assuming that the series has a reasonable number of observations).  It 
is safe to specify the potential seasonality if the series is medium to long in length. 
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PERIOD subcommand 
The PERIOD subcommand serves the same purpose as the SEASONALITY subcommand.  Either 
PERIOD or SEASONALITY may be used to specify the periodicity or seasonality of a time series, 
but not both. 

DFORDER subcommand 
The DFORDER subcommand is used to specify the differencing order(s) that must be included in 
the final ARIMA model.  In addition to the specified differencing(s), other differencing orders may 
be included if they are found to be necessary.  By default, the differencing orders of a time series 
are automatically determined by the RSFILTER command.  This imposed specification of 
differencing order(s) may be particularly useful when a time series is short. 

NODFORDERS subcommand 
The NODFORDERS subcommand is used to exclude specific differencing order(s) from being 
used in the RSFILTER command.  By default, the differencing orders for a time series are 
automatically determined by the RSFILTER command.   

SPAN subcommand 
The SPAN subcommand is used to specify the span of time indices, i1 to i2, for which the data are 
used to generate the R and S series.  The default is the maximum span available for the series. 
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TARESTIM 

The TARESTIM command is used to estimate the model parameters of a threshold autoregressive 
(TAR) model. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +---------------------------------------------------------------+ 
    |                                                               | 
    |      TARESTIM  MODEL model-name.                         @    | 
    |                REGIME IS v1.                             @    | 
    |                HOLD RESIDUALS(v).                             | 
    |                                                               | 
    |   ** Complete list of available subcommands:                  | 
    |                                                               | 
    |      TARESTIM  MODEL model-name.                         @    | 
    |                REGIME IS v1.                             @    | 
    |                SPAN IS i1, i2.                           @    | 
    |                METHOD IS w.                              @    | 
    |                STOP ARE MAXIT(i), LIKELIHOOD(r1),        @    | 
    |                       ESTIMATE(r2), STDEV(r3).           @    | 
    |                OUTPUT IS LEVEL(w), PRINT(w1, w2, - - -), @    | 
    |                        NOPRINT(w1, w2, - - -).           @    | 
    |                HOLD RESIDUALS(v), FITTED(v), VARIANCE(v).     | 
    |                                                               | 
    |      Required subcommand:   MODEL                             | 
    |                                                               | 
    |      Legend:  v -- variable name;  i -- integer value;        | 
    |               w -- keyword;        r -- real value            | 
    +---------------------------------------------------------------+ 

Subcommand descriptions 

MODEL subcommand 
The MODEL subcommand is used to specify the label (name) of the model to be estimated.  The 
label must be one specified in a previous TSMODEL command.  It is a required subcommand. 

REGIME subcommand 
The REGIME subcommand is used to specify the binary indicator variable that marks the 
observations associated with a regime. 

SPAN subcommand 
The SPAN subcommand is used to specify the span of time indices, i1 to i2, for which data are 
analyzed.  The default is the maximum span available for the series. 

METHOD subcommand 
The  METHOD  subcommand  is  used to  specify  the  method  for  the computation  of the 
likelihood function used in model  estimation. The keyword may be CONDITIONAL for the 
"conditional" likelihood or EXACT for the "exact" likelihood function.  The default is 
CONDITIONAL. 
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STOP subcommand 
The STOP subcommand is used to specify the stopping criterion for the nonlinear estimation  of  
parameters.  

Estimation is terminated when the relative change in the value of the likelihood  function  of  
parameter estimates  between  two successive  iterations is less than or equal to the  convergence 
criterion, or if the maximum number of iterations is reached. 

The argument, i, for the keyword MAXIT specifies the maximum number of iterations.  The 
default is i=10. 

The argument, r1, for the keyword LIKELIHOOD specifies the value of the relative convergence 
criterion on the likelihood function. The default is r1 = 0.0001. 

The argument, r2, for the keyword ESTIMATE specifies the value of the relative convergence 
criterion on the parameter estimates.  The default is r2 = 0.001. 

The argument, r3, for the keyword STDEV specifies the value of the relative convergence criterion 
on the estimate of the standard deviation in the iteration.  This criterion is employed by the SCA 
System if a constant term is present in the model.  The default is r3=0.001 when a constant term is 
present and the criterion is disabled otherwise.  The criterion can be disabled by the user by 
specifying a negative value for r3.  The criterion is enabled if a positive value is specified for r3, 
even if no constant term is present. 

OUTPUT subcommand 
The OUTPUT subcommand is used to control the amount of output printed for computed statistics.  
Control is achieved in a two stage procedure.   First a basic LEVEV of output is specified. Output 
may then be increased from this level by use of PRINT, or decreased from this level by use of 
NOPRINT. 

The keywords for LEVEL and output printed are: 

BRIEF: estimates and their related statistics only 
NORMAL:  RCORR 
DETAILED:  RCORR, ITERATION, and CORR 

where the reserved words on the right denote: 

RCORR:  the  reduced  correlation  matrix  for  the  parameter estimates 
ITERATION:  the parameter  and  covariance   estimates  for   each iteration 
CORR:  the correlation matrix for the parameter estimates 

These reserved words are also keywords for PRINT and NOPRINT.  The default for LEVEL is 
NORMAL, or the level specified in the PROFILE command. 
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Note:  Reduced correlation matrix refers to the display of the correlation matrix of parameter 
estimates in which all values have no more than two decimal places with those  estimates  within 
two standard errors of zero displayed  as dots, "." . 

HOLD subcommand 
The HOLD subcommand is used to specify those values computed for particular functions to be 
retained in the workspace until the end of the session.  Only those statistics desired to be retained 
need be named.  Values are placed in the variable named in parentheses. The default is that none of 
the values of the statistics below will be retained after the command is used.  The values that may 
be retained are: 

RESIDUALS:  the residual series without outlier adjustment 
FITTED:  the one step-ahead forecasts (fitted values) of the series 
VARIANCE:  the variance of the noise 
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TARFORECAST 

The TARFORECAST command is used to compute the forecasts for a threshold autoregressive 
(TAR) model possessing one or more regimes.  Note that there are two alternative syntax 
specifications.  If the WEIGHT subcommand is used, the TARFORECAST command syntax and 
functionalities are identical to the WFORECAST command. 

(1)  SYNTAX in terms of subcommands and associated argument type(s) 

    +---------------------------------------------------------------+ 
    |                                                               |  
    |   TARFORECAST  MODELS ARE model-name1, model-name2, ---.  @   | 
    |                THRESHOLD IN v.                                | 
    |                                                               | 
    |  ** Complete list of available subcommands:                   | 
    |                                                               | 
    |   TARFORECAST  MODELS ARE model-name1, model-name2, ---.  @   | 
    |                THVARIABLE IS v.                           @   | 
    |                THRESHOLD IN v.                            @   | 
    |                ORIGIN IS i.                               @   | 
    |                NOFS IS i.                                 @   | 
    |                OUTPUT IS PRINT(w1,w2,---),                @   | 
    |                          NOPRINT(w1,w2,---),              @   | 
    |                HOLD FORECASTS(v), STD_ERRS(v).                | 
    |                                                               | 
    |     Required subcommand:  MODEL and THRESHOLD                 | 
    |                                                               | 
    |     Legend:  v -- variable name;    i -- integer value;       | 
    |              w -- keyword                                     | 
    +---------------------------------------------------------------+ 
 

(2)  SYNTAX in terms of subcommands and associated argument type(s) 

    +---------------------------------------------------------------+ 
    |                                                               |  
    |   TARFORECAST  MODELS ARE model-name1, model-name2, ---.  @   | 
    |                WEIGHTS IN v1, v2, ---.                        | 
    |                                                               | 
    |  ** Complete list of available subcommands:                   | 
    |                                                               | 
    |   TARFORECAST  MODELS ARE model-name1, model-name2, ---.  @   | 
    |                THVARIABLE IS v.                           @   | 
    |                WEIGHTS IN v1, v2, ---.                        | 
    |                ORIGIN IS i.                               @   | 
    |                NOFS IS i.                                 @   | 
    |                OUTPUT IS PRINT(w1,w2,---),                @   | 
    |                          NOPRINT(w1,w2,---),              @   | 
    |                HOLD FORECASTS(v), STD_ERRS(v).                | 
    |                                                               | 
    |     Required subcommand:  MODEL and WEIGHTS                   | 
    |                                                               | 
    |     Legend:  v -- variable name;    i -- integer value;       | 
    |              w -- keyword                                     | 
    +---------------------------------------------------------------+ 
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Subcommand descriptions 

MODEL subcommand 
The MODEL subcommand is used to specify the names (labels) of the AR models for the regimes 
of a TAR model.  The order of the models must correspond to the regimes in ascending order as 
defined in the THRESHOLD subcommand.  It is a required subcommand. 

THVARIABLE subcommand 
The THVARIABLE subcommand is used to specify the name (label) of the threshold variable.  
The default is the dependant variable in the regime models. The threshold variable can also be 
specified as any other variable that may or may not be part of the model. 

THRESHOLD subcommand 
The THRESHOLD subcommand is used to specify a vector that contains the threshold lag (delay) 
and the cut-off values (threshold values) that define the regimes of a TAR model.  The first element 
of the vector specifies the threshold lag.  The remaining elements specify the threshold values 
pertaining to the model regimes.  More than one threshold value may be specified, and they must 
be specified in ascending order.  The WEIGHTS subcommand must not be specified if the 
THRESHOLDS subcommand is used. 

WEIGHTS subcommand 
The WEIGHTS subcommand is used for the alternative syntax specification for the WFORECAST 
command.  The THRESHOLD subcommand must not be specified if the WEIGHTS subcommand 
is used.  By specifying the WEIGHTS subcommand, the TARFORECAST command is the same 
as the WFORECAST command. The WEIGHTS subcommand is used to specify the weight 
variables for the models used for forecasting. The minimum length of the weight variables must be 
equal to the number of forecasts specified in the NOFS subcommand.  The values for the forecast 
weights are typically between 0 and 1, where 0 receives no weight. The weighted forecasts are 
computed as the proportional contribution of each forecast based on the given weights.  For 
example, if two forecasting models are used in weighted forecasting and the weights for both 
models are set to 1 at a particular forecast period, the proportional contribution of forecasts for that 
period is 1/(1+1) or 50%.  This can be more generally stated as weight(i) divided by the sum of all 
weights for a particular period. 

ORIGIN subcommand 
The ORIGIN subcommand is used to specify the time origin for forecasting.  The default is the last 
observation of the series. 

NOFS subcommand 
The NOFS subcommand is used to specify the number of forecasts to be generated.  The default is 
24 forecasts. 
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OUTPUT subcommand 
The OUTPUT subcommand is used to control the amount of output printed or plotted for computed 
statistics.  Control is achieved by increasing or decreasing the basic level of output by use of 
PRINT or NOPRINT, respectively.  The keyword for PRINT and NOPRINT is: 

FORECAST:   forecast values for each time origin 

The default condition is PRINT(FORECAST). 

HOLD subcommand 
The HOLD subcommand is used to specify those values computed for particular functions to be 
retained in the workspace until the end of the session.  Only those statistics desired to be retained 
need be named.  Values are placed in the variable named in parenthesis.  Default is that none of the 
values of the above statistics will be retained after the command is executed.  The values that may 
be retained are: 

FORECASTS:  forecasts at the last time origin 
STD_ERRS:  standard errors of the forecasts at the last time origin 
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TARTEST 

The TARTEST command serves two purposes, (1) testing a time series for nonlinearity based on 
the TAR-F test and other types of tests; and (2) to determine threshold values for a TAR model 
based on the parameter estimates of the arranged autoregression (AAR) or reverse arranged 
autoregression (RAAR) method.  The latter function can also be performed using the 
THMEXPLORE command.   

If the TARTEST command is being used to determine the threshold values for a TAR model, only 
a single value in the THLAG subcommand should be specified.  In this case, the HOLD 
subcommand can be used to save the AR estimates, their t-values, and residual standard errors to 
explore potential threshold values.  If a set of THLAGS is specified, it is assumed that the user is 
searching for the best threshold lag (delay) based on the statistics of nonlinearity tests. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +---------------------------------------------------------------+ 
    |                                                               | 
    |  (1) Nonlinearity tests                                       | 
    |                                                               | 
    |      TARTEST   VARIABLE IS v.                            @    | 
    |                ARLAGS ARE i1,i2, --- .                   @    | 
    |                THLAGS ARE i1,i2, --- .                   @    | 
    |                METHOD IS w.                              @    | 
    |                STANDARDIZED./NO STANDARDIZED.            @    | 
    |                PSTART r.                                 @    | 
    |                SPAN IS i1, i2.                                | 
    |                                                               | 
    |  (2) Obtaining parameter estimates for examination of         | 
    |      potential threhold values                                | 
    |                                                               | 
    |      TARTEST   VARIABLE IS v.                            @    | 
    |                ARLAGS ARE i1,i2, --- .                   @    | 
    |                THLAG IS i1.                              @    | 
    |                METHOD IS w.                              @    | 
    |                STANDARDIZED./NO STANDARDIZED.            @    | 
    |                PSTART r.                                 @    | 
    |                SPAN IS i1, i2.                           @    | 
    |                HOLD THVARIABLE(v1,v2),PHI(v),TPHI(v),    @    | 
    |                     SIGMAHAT(v).                              |      
    |                                                               | 
    |      Required subcommand:   VARIABLE, THLAG, and ARLAGS       | 
    |                                                               | 
    |      Legend:  v -- variable name;  i -- integer value;        | 
    |               w -- keyword;        r -- real value            | 
    +---------------------------------------------------------------+ 

Subcommand descriptions 

VARIABLE subcommand 
The VARIABLE subcommand is used to specify the name of the series for which the nonlinearity 
tests will be conducted, or the threshold values will be explored.  It is a required subcommand. 
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ARLAGS subcommand 
The ARLAGS subcommand is used to specify the lag orders of the underlying AR model used for 
nonlinearity tests.  The lags must be consecutive and start with 1 if ALLTESTS is specified in the 
METHOD subcommand.  Otherwise the highest AR order model is used for the ALLTESTS 
option.  Skipping lags are allowed if the AAR or RAAR method is specified.  It is a required 
subcommand. 

THLAGS subcommand 
The THLAGS subcommand is used to specify the threshold lags (delays) considered for the 
threshold nonlinearity test.  If a single threshold lag is specified, then it assumed that the 
TARTEST command is being used to explore potential threshold values for a TAR model. This is a 
required subcommand. 

METHOD subcommand  
The METHOD subcommand is used to specify the method for the nonlinearity test.  The keywords 
are AAR (arranged autoregression), RAAR (reverse arranged autoregression), and ALLTESTS.  If 
the TARTEST is used for computation of parameter estimates for determination of threshold 
values, then only AAR or RAAR can be specified.  The default is the AAR method.  

SPAN subcommand 
The SPAN subcommand is used to specify the span of time indices, i1 to i2, for which data are 
analyzed.  The default is the maximum span available for the series. 

STANDARDIZED subcommand 
The STANDARDIZED subcommand is used to specify if the predictive residuals are standardized 
in the computation of the F-statistics or not.  The default is STANDARDIZED.   

PSTART subcommand 
The PSTART subcommand is used to specify the portion of the data used for initial estimates of 
the model parameters.  The default is 0.10 (i.e., 10% of the data). 

HOLD subcommand 
The HOLD subcommand is used to specify those values computed for particular functions to be 
retained in the workspace until the end of the session.  Only those statistics desired to be retained 
need be named.  Values are placed in the variable named in parentheses.  The default is that none 
of the values of the above statistics will be retained after the command is used.  The values that 
may be retained are: 

THVARIABLE: arranged threshold variable (v1), and the time index of the sorted variable. 

PHI:  a matrix that holds the parameter estimates for the autoregressive parameters (in 
ascending lag order) and the constant term (the last column of the matrix) in the 
model.  The parameter estimates in each column of the matrix can be easily 
obtained by a simple analytic statement.  For example, the statement 
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PHI1=PHIMTX(.,1) will assign the first column of PHIMTX to the vector 
variable PHI1.  

TPHI:  a matrix that holds the t-values for the autoregressive and constant terms of the 
model.  Its use is similar to the keyword PHI. 

SIGMAHAT: a vector variable that holds the incremental residual standard deviations from the 
model estimations. 
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TARXTEST 

The TARXTEST command is used to test the nonlinearity of a time series and obtain the best 
threshold lag (delay) when the threshold variable is an exogenous variable, rather than a lag of the 
dependent variable. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +---------------------------------------------------------------+ 
    |                                                               | 
    |      TARXTEST  VARIABLE IS v.                            @    | 
    |                ARLAGS ARE i1,i2, --- .                   @    | 
    |                THVARIABLE IS v.                          @    | 
    |                THLAGS ARE i1,i2, ... .                   @    | 
    |                METHOD IS w.                              @    | 
    |                STANDARDIZED./NO STANDARDIZED.            @    | 
    |                PSTART r.                                 @    | 
    |                SPAN IS i1, i2.                                | 
    |                                                               | 
    |     Required subcommand: VARIABLE, THLAG, THVARIABLE, and     | 
    |                          ARLAGS                               |  
    |                                                               | 
    |      Legend:  v -- variable name;  i -- integer value;        | 
    |               w -- keyword;        r -- real value            | 
    +---------------------------------------------------------------+ 

Subcommand descriptions 

VARIABLE subcommand 
The VARIABLE subcommand is used to specify the name of the series for which the nonlinearity 
test will be conducted.  It is a required subcommand. 

ARLAGS subcommand 
The ARLAGS subcommand is used to specify the lag orders of the underlying AR model used for 
nonlinearity tests.  Skipping lags are allowed.  This is a required subcommand. 

THVARIABLE subcommand 
The THVARIABLE subcommand is used to specify the time series served as the threshold 
variable.  The threshold variable is an exogenous variable in this command.  This is a required 
subcommand. 

THLAGS subcommand 
The THLAGS subcommand is used to specify the threshold lags (delays) considered for the 
threshold nonlinearity test.  Lag 0 is allowed in this case.  This is a required subcommand. 

METHOD subcommand  
The METHOD subcommand is used to specify the method for the nonlinearity test.  The keywords 
supported are AAR (arranged autoregression) and RAAR (reverse arranged autoregression).  The 
default is the AAR method.  
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STANDARDIZED 
The STANDARDIZED subcommand is used to specify if the predictive residuals are standardized 
in the computation of the F-statistics or not.  The default is STANDARDIZED.   

PSTART subcommand 
The PSTART subcommand is used to specify the portion of the data used for initial estimates of 
the model parameters.  The default is 0.10 (i.e., 10% of the data). 

SPAN subcommand 
The SPAN subcommand is used to specify the span of time indices, i1 to i2, for which data are 
analyzed.  The default is the maximum span available for the series.   
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THMTEST 

The THMTEST command is used to test nonlinearity relationships between time series and obtain the 
best threshold lag (delay). It is assumed that the specified model has a white noise process. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +---------------------------------------------------------------+ 
    |                                                               | 
    |      THMTEST   VARIABLE IS v.                            @    | 
    |                XVARIABLES ARE v1, v2, ... .              @    | 
    |                THVARIABLE IS v.                          @    | 
    |                THLAGS ARE i1,i2, ... .                   @    | 
    |                METHOD IS w.                              @    | 
    |                STANDARDIZED./NO STANDARDIZED.            @    | 
    |                PSTART r.                                 @    | 
    |                SPAN IS i1, i2.                                | 
    |                                                               | 
    |     Required subcommand: VARIABLE, THLAG, and THVARIABLE      |  
    |                                                               | 
    |      Legend:  v -- variable name;  i -- integer value;        | 
    |               w -- keyword;        r -- real value            | 
    +---------------------------------------------------------------+ 

Subcommand descriptions 

VARIABLE subcommand 
The VARIABLE subcommand is used to specify the name of the dependent series for which the 
nonlinearity relationships will be examined.  It is a required subcommand. 

XVARIABLES subcommand 
The XVARIABLES subcommand is used to specify the names of the exogenous series in the 
model for nonlinearity test.  This is a required subcommand. 

THVARIABLE subcommand 
The THVARIABLE subcommand is used to specify the time series served as the threshold 
variable.  The threshold variable can be the dependent or any exogenous series.  This is a required 
subcommand. 

THLAGS subcommand 
The THLAGS subcommand is used to specify the threshold lags (delays) considered for the 
threshold nonlinearity test. Lag 0 is allowed in this case.  This is a required subcommand. 

METHOD subcommand  
The METHOD subcommand is used to specify the method for the nonlinearity test.  The keywords 
supported are AAR (arranged autoregression) and RAAR (reverse arranged autoregression).  The 
default is the AAR method.  
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STANDARDIZED 
The STANDARDIZED subcommand is used to specify if the predictive residuals are standardized 
in the computation of the F-statistics or not.  The default is STANDARDIZED.   

PSTART subcommand 
The PSTART subcommand is used to specify the portion of the data used for initial estimates of 
the model parameters.  The default is 0.10 (i.e., 10% of the data). 

SPAN subcommand 
The SPAN subcommand is used to specify the span of time indices, i1 to i2, for which data are 
analyzed.  The default is the maximum span available for the series. 
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THMEXPLORE 

The THMEXPLORE command is used to provide parameter estimates of a model according to the 
order of the sorted threshold variable.  The threshold variable may be sorted in ascending or 
descending order.  A moving-window regression estimation is used to explore the potential 
nonlinearity and threshold values of the model parameters.   The THMEXPLORE command can be 
used with an autoregressive model or a transfer function model. For autoregressive models, this 
command provides AAR (arranged autoregression), RAAR (reverse arranged autoregression), and 
LAR (local arranged autoregression) methods for the identification of threshold values.   

In this command, the model parameters to be estimated must be specified with names (labels). For 
example, Y=CNST+(BETA1)X1+NOISE where CNST and BETA1 are the parameter estimate 
names associated with the constant and input variable X1. Furthermore, the model must be 
expressed in linear regression form using the TSMODEL command with white noise and without 
any backshift operator. All lagged variables must be created prior to using this command via the 
LAG command.  

The parameter estimates for each data window are stored in the associated names for the 
parameters as vectors.  The lengths of the resulting vectors for the parameter estimates are the same 
as the length of the output variable. The t-values for the parameter estimates are also stored for 
each window-estimation using the root word of the parameter label preceded by an underscore 
character (e.g., _CNST and _BETA1).  There are estimates at the beginning of the series that are 
missing due to initial window size.  Any parameter estimates that are unavailable (missing) are 
padded with the missing value code. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +--------------------------------------------------------------+ 
    |                                                              | 
    |  THMEXPLORE MODEL model-name.                             @  | 
    |             THVARIABLE IS v.                              @  | 
    |             THLAG IS i.                                   @  | 
    |             WINDOWSIZE i1,i2.                             @  | 
    |             BEGIN i1,i2.                                  @  | 
    |             DESCENDING./NO DESCENDING.                    @  | 
    |             HOLD THVARIABLE(v),SEQUENCE(v),VARIANCE(v).      | 
    |                                                              | 
    |   ** Complete list of available subcommands:                 | 
    |                                                              | 
    |  THMEXPLORE MODEL model-name.                             @  | 
    |             THVARIABLE IS v.                              @  | 
    |             THLAG IS i.                                   @  | 
    |             WINDOWSIZE i1,i2.                             @  | 
    |             BEGIN i1,i2.                                  @  | 
    |             DESCENDING./NO DESCENDING.                    @  | 
    |             SPAN IS i1, i2.                               @  | 
    |             OUTPUT IS LEVEL(w),PRINT(w1,w2,---),          @  | 
    |                              NOPRINT(w1,w2,---).          @  | 
    |             HOLD THVARIABLE(v),SEQUENCE(v),VARIANCE(v).      | 
    |                                                              | 
    |      Required subcommand:  MODEL and THLAG                   | 
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    |                                                              | 
    |      Legend:  v -- variable name;    i -- integer value;     | 
    |               w -- keyword                                   | 
    +--------------------------------------------------------------+ 

Subcommand descriptions 

MODEL subcommand 
The MODEL subcommand is used to specify the name (label) of the potential threshold model to 
be explored.  The name must be one specified in a previous TSMODEL or IARIMA command.  It 
is a required subcommand. 

THVARIABLE subcommand 
The THVARIABLE subcommand is used to specify the time series serving as the threshold 
variable.  The threshold variable can be an external variable that is not explicitly specified in the 
model.  The default is the dependent variable in the model. 

THLAG subcommand 
The THLAG subcommand is used to specify the threshold lag (delay) for the threshold variable.  
The user may obtain this value using the TARTEST or TARXTEST command. Lag 0 is allowed if 
the threshold variable is not the dependent variable in the model.  It is a required subcommand. 

WINDOWSIZE subcommand 
The WINDOWSIZE subcommand is used to specify the size of the data window employed in the 
sorted regression estimation.  If i2 is specified, it indicates the increment for the data span of the 
next data window in sorted regression estimation.  It is required to specify the value of i1.  The 
value of i2 is set to the default of 1 if it is not specified. 

For autoregressive models, if the window size is set to the maximum data length and the threshold 
variable is sorted in ascending order, this command produces estimates using the AAR method.  
Conversely, this command produces estimates using the RAAR method if the threshold variable is 
in descending order.  The LAR method is implied if the window size is not the maximum of the 
data length.  

BEGIN subcommand 
The BEGIN subcommand is used to specify the data index (i1) where the first moving-window 
estimation begins.  The default sets i1 equal to the value of specified WINDOWSIZE. The code 0 
can also be used to indicate that the default value for i1 is the WINDOWSIZE.  The value i2 is 
used to indicate where the moving-window estimation ends.  The default is the maximum data 
length. The code 0 may also be specified to set the default of i2 equal to the maximum data length.   

This subcommand must be specified if the WINDOWSIZE is set to the maximum data length.  

DESCENDING subcommand 
The DESCENDING subcommand is used to specify if the sorted regression estimation will be 
performed according the ascending or descending order of the threshold variable.  The default is 
ascending order (i.e., NO DESCENDING). 
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SPAN subcommand 
The SPAN subcommand is used to specify the span of time indices, i1 to i2, for which data are 
analyzed.  The default is the maximum span available for the series.  The SPAN subcommand will 
reduce the data prior to applying the settings in the BEGIN subcommand. 

OUTPUT subcommand 
The OUTPUT subcommand is used to control the amount of output displayed for selected 
statistics.  Control is achieved in a two stage procedure.  First, a basic LEVEL of output (default 
NORMAL) is designated.  Output may then be increased (decreased) from this level by use of 
PRINT (NOPRINT). 

The keywords for LEVEL and output displayed are: 

BRIEF:     display information for the estimates and their t-statistics 
NORMAL:    same as BRIEF 
DETAILED:  same as BRIEF 
 

where the keywords on the right denote: 

CORR:       the correlation matrix for the parameter estimates. It also activates the display of 
detailed estimation information. 

HOLD subcommand 
The HOLD subcommand is used to specify those values computed for particular functions to be 
retained in the workspace until the end of the session.  Only those statistics desired to be retained 
need be named.  Values are placed in the variable named in parentheses.  The default is that none 
of the values of the above statistics will be retained after the command is used.  The values that 
may be retained are: 

THVARIABLE: the sorted threshold variable 
SEQUENCE:  the time index (sequence) of the sorted threshold variable 
VARIANCE:  the estimated variance in each data window 
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TSEARCH 

The TSEARCH command is used to search for the power value (lambda) in a time series power 
transformation given a specified univariate time series model. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +---------------------------------------------------------------+ 
    |                                                               | 
    |     TSEARCH  MODEL model-name.                           @    | 
    |              POWERS r1, r2, r3.                          @    | 
    |              FORM v1, v2.                                @    | 
    |              SPAN i1, i2, i3.                            @    | 
    |              WITHIN-RMSE v1, v2, v3, v4.                 @    | 
    |              POST-RMSE v1, v2, v3.                            | 
    |                                                               | 
    |                                                               | 
    |   ** Complete list of available subcommands:                  | 
    |                                                               | 
    |     TSEARCH  MODEL model-name.                           @    | 
    |              POWERS r1, r2, r3.                          @    | 
    |              FORM v1, v2.                                @    | 
    |              RETRANSFORMATION-METHOD w.                  @    | 
    |              WEIGHTS IN v.                               @    | 
    |              RMSE-WEIGHTS IN v.                          @    | 
    |              SPAN i1, i2, i3.                            @    | 
    |              WITHIN-RMSE v1, v2, v3, v3.                 @    | 
    |              POST-RMSE v1, v2, v3.                       @    | 
    |              METHOD IS w.                                @    | 
    |              STOP ARE MAXIT(i), LIKELIHOOD(r1),          @    | 
    |                       ESTIMATE(r2), STDEV(r3).           @    | 
    |              OUTPUT IS LEVEL(w), PRINT(w1, w2, - - -),   @    | 
    |                        NOPRINT(w1, w2, - - -).           @    | 
    |              HOLD RESIDUALS(v), FITTED(v), VARIANCE(v).       | 
    |                                                               | 
    |      Required subcommand:   MODEL                             | 
    |                                                               | 
    |      Legend:  v -- variable name;  i -- integer value;        | 
    |               w -- keyword;        r -- real value            | 
    +---------------------------------------------------------------+ 

Subcommand descriptions 

MODEL subcommand 
The MODEL subcommand is used to specify the label (name) of the model to be estimated.  The 
label must be one specified in a previous TSMODEL command.  It is a required subcommand. 

POWERS subcommand 
The POWERS subcommand is used to specify the range of power (lambda) values to include in the 
power transformation analysis. The value r1 is the increment of the power value, r2 the beginning 
value, and r3 the ending value. The default values are 0.5, -1.0 and 1.0   respectively.  The number 
of arguments in this subcommand may be 1, 2 or 3. 
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FORM subcommand 
The FORM subcommand is used to specify the type of transformation to be applied and whether 
the geometric mean is to be used to scale the data. The argument, v1, must be a pre-defined value, 
and v2 should be a new variable (if an existing variable is used, its value will be over-written). 

The argument, v1, must pass the value 1 or 2 to control the type of transformation to be applied.  
The default type is Type 1.  An explanation of transformation Type 1 and Type 2 is provided in the 
body of the text.   

The second argument, v2, if specified, indicates the power transformation analysis is to be based on 
data scaled by its geometric mean.  After the command is executed, the v2 argument will store the 
computed geometric mean of the series.  The geometric mean is computed based on all available 
data in the within-sample span.  If the second argument, v2, is not specified then the transformation 
analysis will be conducted on the original series without scaling. 

RETRANSFORM-METHOD subcommand 
The RETRANSFORM-METHOD subcommand is used to specify the method for computing the 
one-step-ahead forecasts.  The method may be specified as STRAIGHT or UNBIASED.  The 
default is STRAIGHT. 

WEIGHTS subcommand 
The WEIGHT subcommand is used to specify a variable containing the weight for each 
observation in the time series to be used in estimating the model. The weights variable must be a 
vector of length greater than or equal to the number of observations in the time series.  A weight 
typically is specified in the range of 0 to 1, where 0 indicates that an observation is to be 
completely discounted during estimation, and 1 indicates that the observation is not discounted 
during estimation. 

RMSE-WEIGHTS subcommand 
The RMSE-WEIGHTS subcommand is used to specify a variable containing the weight for each 
observation in the time series to be used in computing the within-sample RMSE statistics based on 
the one-step-ahead forecasts. The RMSE-WEIGHTS variable must be a vector of length greater 
than or equal to the number of observations in the time series.  A weight typically is specified in 
the range of 0 to 1, where 0 indicates that an observation is to be completely discounted when 
computing the RMSE statistic, and 1 indicates that the observation receives no discounting when 
computing the RMSE statistic. 

SPAN subcommand 
The SPAN subcommand is used to specify the span of time indices for model estimation and to 
compute the within-sample RMSE and post-sample RMSE of the one-step-ahead forecasts.   

The arguments, i1 and i2, specify the time indices to be used for model estimation and computing 
the within-sample RMSE. The argument, i3, specifies the ending period used to compute the post-
sample RMSE.  The beginning period used to compute the post-sample RMSE is implicitly set as 
the value of i2+1.  
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WITHIN-RMSE subcommand 
The WITHIN-RMSE subcommand is used to specify the variables to hold information regarding 
the within-sample RMSE statistics computed over the range of power (lambda) values being 
analyzed. 

The argument, v1, specifies the variable to hold the power (lambda) values searched in the power 
transformation analysis.   

The argument, v2, specifies the variable to hold the RMSE statistics of the one-step-ahead forecasts 
which are re-transformed into the original scale of the time series.  If the RMSE-WEIGHTS 
subcommand is specified, these RMSE statistics are based on the weights provided.  It is 
recommended that the power value (lambda) be determined based on the within-sample RMSE 
statistics. 

The argument, v3, specifies the variable to hold the RMSE statistics of the one-step-ahead forecasts 
based on the transformed time series. If the RMSE-WEIGHTS subcommand is specified, these 
RMSE statistics are based on the weights provided. 

The argument, v4, specifies the variable to hold the RMSE statistics of the one-step-ahead forecasts 
based on the transformed time series.  The RMSE statistics are based on all available data 
associated with the within-sample period where all observations are included (i.e., the RMSE-
WEIGHT variable is ignored).  If the RMSE-WEIGHTS subcommand is not specified, the RMSE 
statistics saved in v4 will be the same as the RMSE statistics saved in v3.   

POST-RMSE subcommand 
The POST-RMSE subcommand is used to specify the variables to hold information regarding the 
post-sample RMSE statistics computed over the range of power (lambda) values being analyzed. 

The argument, v1, specifies the variable to hold the power (lambda) values searched in the power 
transformation analysis.   

The argument, v2, specifies the variable to hold the RMSE statistics of the one-step-ahead forecasts 
which are re-transformed into the original scale of the time series.  If the RMSE-WEIGHTS 
subcommand is specified, these RMSE statistics are based on the weights provided.   

The argument, v3, specifies the variable to hold the RMSE statistics of the one-step-ahead forecasts 
based on the transformed time series. If the RMSE-WEIGHTS subcommand is specified, these 
RMSE statistics are based on the weights provided. 

METHOD subcommand 
The METHOD subcommand is used to specify the method for the computation of the likelihood 
function used in model estimation. The keyword may be CONDITIONAL for the “conditional” 
likelihood or EXACT for the “exact” likelihood function.  The default is    CONDITIONAL. 
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STOP subcommand 
The STOP subcommand is used to specify the stopping criterion for the nonlinear estimation of 
parameters.  This estimation is conditional on the most recent outlier adjustment. 

Estimation is terminated when the relative change in the value  of the  likelihood  function  of  
parameter estimates between two successive iterations is less than or equal to the  convergence 
criterion, or if the maximum number of iterations is reached. 

The argument, i, for the keyword MAXIT specifies the maximum number of iterations.  The 
default is i=10. 

The argument, r1, for the keyword LIKELIHOOD specifies the value of the relative convergence 
criterion on the likelihood function. The default is r1 = 0.0001. 

The argument, r2, for the keyword ESTIMATE specifies this value of the relative convergence 
criterion on the parameter estimates. The default is r2 = 0.001. 

The argument, r3, for the keyword STDEV specifies the value of the relative convergence criterion 
on the estimate of the standard deviation in the iteration.  This criterion is employed by the SCA 
System if a constant term is present in the model.  The default is r3=0.001 when a constant term is 
present and the criterion is disabled otherwise.  The criterion can be disabled by the user by 
specifying a negative value for r3.  The criterion is enabled if a    positive value is specified for r3, 
even if no constant term is present. 

OUTPUT subcommand 
The OUTPUT subcommand is used to control the amount of output printed for computed statistics. 
Control is achieved in a two stage procedure.   First a basic LEVEL of output is specified. Output 
may then be increased from this level by use of PRINT, or decreased from this level by use of 
NOPRINT. 

The keywords for LEVEL and output printed are: 

BRIEF:   SUMMARY 
NORMAL:  SUMMARY and MODEL 
DETAILED:  SUMMARY, MODEL and FORECAST 
 
where the reserved words on the right denote: 

SUMMARY:  the lambda values and their associate RMSE’s and statistics 
MODEL:   estimated model under each lambda 
FORECAST:  post-sample forecasts 
 
These reserved words are also keywords for PRINT and NOPRINT. The default for LEVEL is 
NORMAL, or the level specified in the PROFILE command. 
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Note: Reduced correlation matrix refers to the display of the correlation matrix of parameter 
estimates in which all values have no more than two decimal places with  those estimates  within 
two standard errors of zero displayed  as dots, "." . 

HOLD subcommand 
The HOLD subcommand is used to specify those values computed for particular functions to be 
retained in the workspace until the end of the session.  Only those statistics desired to be retained 
need be named.  Values are placed in the variable named in parentheses. The default is that none of 
the values of the statistics below will be retained after the command is used. The values that may 
be retained are: 

RESIDUALS:  the residual series without outlier adjustment 
FITTED:  the one step-ahead forecasts (fitted values) of the series 
VARIANCE:  the variance of the noise 
VPOWER:  the lambda values 
IPOWER:  the index position of the smallest lambda value in VPOWER 
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TVPEXPLORE 

The TVPEXPLORE command is used to provide information for time series models that may 
possess time-varying parameters.  A moving-window estimation method is used to explore the 
behavior of such models over time.  The TVPEXPLORE command can be used with an ARIMA or 
a transfer function model. In this command, the model parameters to be estimated must be 
specified with names (labels). For example, 

Y=CNST+(0;BETA1)X1+1/(1;PHI)NOISE  

where CNST, BETA1 and PHI are the names associated with the model parameters. 

The parameter estimates for each data window used are stored in the associated names for the 
parameters as vectors.  The lengths of the resulting vectors for the parameter estimates are the same 
as the length of the output variable. The t-values for the parameter estimates are also stored for 
each window estimation using the root word of the parameter label preceded by an underscore 
character (e.g., _CNST, _BETA1 and _PHI).  There are estimates at the beginning of the series that 
are missing due to initial window size.  Any parameter estimates that are unavailable (missing) are 
padded with the SCA missing value code. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +--------------------------------------------------------------+ 
    |                                                              | 
    |  TVPEXPLORE MODEL model-name.                             @  | 
    |             WINDOWSIZE i1,i2.                             @  | 
    |             BEGIN i1,i2.                                  @  | 
    |             HOLD VARIANCE(v).                                | 
    |                                                              | 
    |   ** Complete list of available subcommands:                 | 
    |                                                              | 
    |  TVPEXPLORE MODEL model-name.                             @  | 
    |             WINDOWSIZE i1,i2.                             @  | 
    |             BEGIN i1,i2.                                  @  | 
    |             SPAN IS i1, i2.                               @  | 
    |             INITIALIZED / NO INITALIZED.                  @  | 
    |             METHOD IS w.                                  @  | 
    |             STOP ARE MAXIT(i),LIKELIHOOD(r1),ESTIMATE(r2).@  | 
    |             OUTPUT IS LEVEL(w),PRINT(w1,w2,---),          @  | 
    |                              NOPRINT(w1,w2,---).          @  | 
    |             HOLD VARIANCE(v).                                | 
    |                                                              | 
    |      Required subcommand:  MODEL                             | 
    |                                                              | 
    |      Legend:  v -- variable name;    i -- integer value;     | 
    |               w -- keyword                                   | 
    +--------------------------------------------------------------+ 
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Subcommand descriptions 

MODEL subcommand 
The MODEL subcommand is used to specify the name (label) of the model to be explored.  The 
name must be one specified in a previous TSMODEL or IARIMA command.  It is a required 
subcommand. 

WINDOWSIZE subcommand 
The WINDOWSIZE subcommand is used to specify the size of data window (i1) in each 
estimation.  If i2 is specified, it indicates the increment for the time span of the next data window 
in time-varying parameter estimation.  It is required to specify the value of i1.  The value of i2 is 
set to the default of 1 if it is not specified. 

BEGIN subcommand 
The BEGIN subcommand is used to specify the time index (i1) where the first moving-window 
estimation begins.  The default sets i1 equal to the value of specified WINDOWSIZE. The code 0 
can also be used to indicate that the default value for i1 is the WINDOWSIZE.  The value i2 is 
used to indicate where the moving-window estimation ends.  The default is the maximum ending 
time period. The code 0 may also be specified to set the default of i2 equal to the maximum ending 
time period. 

SPAN subcommand 
The SPAN subcommand is used to specify the span of time indices, i1 to i2, for which data are 
analyzed.  The default is the maximum span available for the series.  The SPAN subcommand will 
reduce the data prior to applying the settings in the BEGIN subcommand. 

INITIALIZED subcommand 
The INITIALIZED subcommand is used to indicate that each parameter in the model will be 
initialized (i.e., all set to 0.1 except for the constant term) or not initialized (i.e., parameter values 
from previous estimation used as starting values for next estimation) for the nonlinear estimation in 
each data window.  The default is INITIALIZED.  

METHOD subcommand 
The METHOD subcommand is used to specify the method for the computation of the likelihood 
function used in model estimation.  The keyword may be CONDITIONAL for the conditional" 
likelihood or EXACT for the "exact" likelihood function.  The default is     CONDITIONAL. 

STOP subcommand 
The STOP subcommand is used to specify the stopping criterion for the nonlinear estimation of 
parameters.  Estimation is terminated when the relative change in the value of the likelihood 
function or parameter estimates between two successive iterations is less than or equal to the 
convergence criterion, or if the maximum number of iterations is reached. 

The argument, i, for the keyword MAXIT specifies the maximum number of iterations.  The 
default is i=10. 
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The argument, r1, for the keyword LIKELIHOOD specifies the value of the relative convergence 
criterion on the likelihood function.  The default is r1 = 0.0001. 

The argument, r2, for the keyword ESTIMATE specifies the value of the relative convergence 
criterion on the parameter estimates.  The default is r2 = 0.001. 

OUTPUT subcommand 
The OUTPUT subcommand is used to control the amount of output displayed for selected 
statistics.  Control is achieved in a two stage procedure.  First, a basic LEVEL of output (default 
NORMAL) is designated.  Output may then be increased (decreased) from this     level by use of 
PRINT (NOPRINT). 

The keywords for LEVEL and output displayed are: 

BRIEF:  display information for the estimates and their t-statistics 
NORMAL:    same as BRIEF 
DETAILED:  ALLESTIM 
 
where the keywords on the right denote: 
 
ALLESTIM:   the parameter and covariance estimates for each iteration 
CORR:       the correlation matrix for the parameter estimates. It also activates the display 
    of detailed estimation information. 

HOLD subcommand 
The HOLD subcommand is used to specify those values computed for particular functions to be 
retained in the workspace until the end of the session.  Only those statistics desired to be retained 
need be named.  Values are placed in the variable named in parentheses.  The default is that none 
of the values of the above statistics will be retained after the command is used.  The values that 
may be retained are: 

 VARIANCE:  the estimated variance in each data window 
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UROOT 

The UROOT command is used to test a time series for the presence of a unit root based on the 
methods of Dickey-Fuller or Phillips-Perron. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +---------------------------------------------------------------+ 
    |                                                               | 
    |      UROOT VARIABLE IS v1.                               @    | 
    |            ORDERS ARE i1,i2,---.                         @    | 
    |            METHOD IS w.                                       | 
    |                                                               | 
    |                                                               | 
    |   ** Complete list of available subcommands:                  | 
    |                                                               | 
    |      UROOT VARIABLE IS v1.                               @    | 
    |            ORDERS ARE i1, i2,---.                        @    | 
    |            METHOD IS w.                                  @    | 
    |            SIGNIFICANCE-LEVEL IS v1.                     @    | 
    |            SPAN IS i1,i2.                                     | 
    |                                                               | 
    |      Required subcommand:   VARIABLE, METHOD                  | 
    |                                                               | 
    |      Legend:  v -- variable name;  i -- integer value;        | 
    |               w -- keyword;        r -- real value            | 
    +---------------------------------------------------------------+ 

Subcommand descriptions 

VARIABLE subcommand 
The VARIABLE subcommand is used to specify the series for which a unit root test is conducted. 

ORDERS subcommand 
The ORDERS subcommand is used to specify the order(s) to be tested. The default is 0 (no 
additional lags) for the simple Dickey-Fuller and the simple Phillips-Perron tests, and 1 for the 
augmented versions of the unit root tests. 

METHOD subcommand 
The METHOD subcommand is used to specify the unit root test to be employed.  The valid 
keywords are  

DF:   Dickey-Fuller test 
DFC:  Augmented Dickey-Fuller test with constant 
DFT:  Augmented Dickey-Fuller test with constant and trend 
PP:   Phillips-Perron test 
PPC:  Augmented Phillips-Perron test with constant  
PPT:  Augmented Phillips-Perron test with constant and trend 
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SIGNIFICANCE-LEVEL subcommand 
The SIGNIFICANCE-LEVEL subcommand is used to specify the significance level for the unit 
root test. The default is set to the 0.05 level. The critical-values for the various tests are interpolated 
from the tables derived by Dickey and Fuller.  

SPAN subcommand 
The SPAN subcommand is used to specify the span of the series to be considered.  The default is 
all available data. 
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WESTIM 

The WESTIM command is used to perform weighted estimation for an ARIMA or transfer 
function model. The WESTIM command performs model estimation using conditional or exact 
maximum likelihood estimation. It can also perform joint model estimation with outlier adjustment 
if specified. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +---------------------------------------------------------------+ 
    |                                                               | 
    |      WESTIM  MODEL model-name.                           @    | 
    |              WEIGHTS IN v.                               @    | 
    |              SPAN IS i1, i2.                             @    | 
    |              HOLD RESIDUALS(v).                               | 
    |                                                               | 
    |   ** Complete list of available subcommands:                  | 
    |                                                               | 
    |      WESTIM  MODEL model-name.                           @    | 
    |              WEIGHTS IN v.                               @    | 
    |              SPAN IS i1, i2.                             @    | 
    |              METHOD IS w.                                @    | 
    |              STOP ARE MAXIT(i), LIKELIHOOD(r1),          @    | 
    |                       ESTIMATE(r2), STDEV(r3).           @    | 
    |              TYPES ARE w1, w2, - - - .                   @    | 
    |              DELTA IS r.                                 @    | 
    |              OSTOP ARE MXOUTLIERS(i1), CRITICAL(r),      @    | 
    |                        MXESTIM(i2).                      @    | 
    |              NEW-SERIES IN v1, v2, v3, v4, v5.           @    | 
    |              OADJUSTMENT IS w.                           @    | 
    |              STDEV IS w(r).                              @    | 
    |              OUTPUT IS LEVEL(w), PRINT(w1, w2, - - -),   @    | 
    |                        NOPRINT(w1, w2, - - -).           @    | 
    |              HOLD RESIDUALS(v), FITTED(v), VARIANCE(v).       | 
    |                                                               | 
    |      Required subcommand:   MODEL, WEIGHTS                    | 
    |                                                               | 
    |      Legend:  v -- variable name;  i -- integer value;        | 
    |               w -- keyword;        r -- real value            | 
    +---------------------------------------------------------------+ 

Subcommand descriptions 

MODEL subcommand 
The MODEL subcommand is used to specify the label (name) of the model to be estimated.  The 
label must be one specified in a previous TSMODEL command.  It is a required subcommand. 

WEIGHTS subcommand 
The WEIGHT  subcommand is used to specify a variable containing the weight for each 
observation in the time series to be used in estimating the univariate time series model. The 
weights variable must be a vector of length greater than or equal to the number of    observations in 
the time series.  A weight typically is specified in the range of 0 to 1, where 0 indicates that an 
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observation is to be completely discounted during estimation, and 1 indicates that  the observation 
is not discounted during estimation. 

SPAN subcommand 
The SPAN subcommand is used to specify the span of time indices,  i1 to  i2, for which data are 
analyzed.  The default is  the  maximum span available for the series. 

METHOD subcommand 
The  METHOD  subcommand  is  used to  specify  the  method  for  the computation  of the 
likelihood function used in model  estimation. The keyword may be CONDITIONAL for the 
“conditional”  likelihood or  EXACT for the “exact” likelihood function.  The  default  is 
CONDITIONAL. 

STOP subcommand 
The STOP subcommand is used to specify the stopping criterion  for the  nonlinear  estimation  of  
parameters.  Estimation is terminated when the relative change in the value  of the  likelihood  
function  of  parameter  estimates  between two successive  iterations  is less than or equal to  the  
convergence criterion, or if the maximum number of iterations is reached. 

The argument,  i,  for the keyword MAXIT  specifies  the  maximum number of iterations.  The 
default is i=10. 

The argument, r1, for the keyword LIKELIHOOD specifies the  value of the relative convergence 
criterion on the likelihood  function. The default is r1 = 0.0001. 

The argument, r2, for the keyword ESTIMATE specifies this value of the  relative  convergence 
criterion on the  parameter  estimates. The default is r2 = 0.001. 

The argument, r3, for the keyword STDEV specifies the value of the relative  convergence  
criterion on the estimate of  the  standard deviation in the iteration.  This criterion is employed by 
the SCA System if a constant term is present in the model.  The default is r3=0.001  when  a 
constant  term is present  and the criterion  is disabled otherwise.  The criterion can be disabled by 
the user  by specifying a negative value for r3.  The criterion is enabled if a    positive value  is 
specified for r3, even  if no constant term is present. 



188 Appendix B 

 

TYPES subcommand 
The TYPES subcommand is used to specify the types of outliers to  be detected.   The  valid 
keywords are IO  (innovative  outlier),  AO (additive  outlier), LS (level shift), and TC (temporary  
change). The default is IO, AO, TC, and LS. 

DELTA subcommand 
The DELTA subcommand is used to specify the delta value employed for the TC outlier.  The 
default is delta=0.7. 

OSTOP subcommand 
The OSTOP subcommand is used to  specify the stopping criterion  for outlier detection.  
Parameter estimation and outlier detection and adjustment are done iteratively.  If any outlier is 
detected after a  parameter estimation, the time series is adjusted for  outliers and  parameters  are  
re-estimated.  The iteration  stops  if  the maximum number of outliers that may be adjusted is 
reached, if the maximum  number of re-estimation of parameters is reached;  or  if all  outlier  
statistics  are smaller than  a  specified  critical value. 

The argument for the keyword MXOUTLIERS (i1) specifies the maximum number of outliers 
permitted to be detected and adjusted.   The default for i1 is equal to 10% of the number of 
observations. 

The argument for the keyword CRITICAL (r) specifies a critical value for testing the presence of 
outliers.  It is recommended r = 3.50 for low sensitivity, r = 3.00 for medium sensitivity, and r = 
2.70 for high sensitivity.  The default for r is 3.0. 

The argument for the keyword MXESTIM (i2) specifies the maximum number of re-estimation 
within each estimation of model parameter. The default for i2 is 3. 

NEW-SERIES subcommand 
The NEW-SERIES subcommand is used to specify the labels (names)  of variables  to be created 
for saving information during the outlier detection process.  Only those results desired to be 
retained need be  named.  The default is that no variables are retained after  the  command  is 
executed.  The variables that may be  retained  (and the position a label must occupy in the 
subcommand) are: 

v1:  the name used to store residuals after the outlier adjustment 
v2:  the  name  used  to store  the  adjusted  series   (i.e.,  the resultant  series after removing the 

outlier effects from  the original observations) 
v3:  the name used to store  an indicator variable associated  with the  types  of  outliers, if any, 

found during  the  outlier detection process.  The value of the t-th observation of  this variable  
is 0 if the t-th value of the time series is not an outlier;  2  if  it is an innovative outlier; 3 if  it  
is  an additive outlier; 4 if it is a temporary change; 5 if it is  a level shift, and 1 if its valu3 is 
missing. 

v4:  the name used to store the estimates of any detected outliers 
v5:  the  name used to  store the effects of detected  outliers  on  residuals 
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OADJUSTMENT subcommand 
The OADJUSTMENT subcommand is used to specify the method of  outlier estimation and 
adjustment.  The keyword may be SEQUENTIAL for the sequential  method,  JOINT for the joint 
method, and NONE  for no outlier detection and adjustment.  The default is NONE. 

STDEV subcommand 
The STDEV subcommand is used to specify a method for the estimation of the standard error.  
TRIM(r) specifies that an r*100% trimmed standard deviation is used (i.e., the top r*100% largest 
observations, according to absolute values, are excluded from the   computation).  A specification 
of TRIM(0.0) indicates that the standard error is computed at each observation (residual) using all 
data except the current observation.  TRIM(0.0) is  the default.  MAD(r) specifies that the median 
absolute deviation is used for sigma (i.e., sigma = 1.483*median absolute deviation). 

OUTPUT subcommand 
The OUTPUT subcommand is used to control the amount of output printed for computed statistics.  
Control is achieved in a two stage procedure.  First a basic LEVEL of output is specified. Output 
may then be increased from this level by use of PRINT, or decreased from this level by use of 
NOPRINT. 

The keywords for LEVEL and output printed are: 

BRIEF:  estimates and their related statistics only 
NORMAL:  RCORR 
DETAILED:  RCORR, ITERATION, and CORR 

where the reserved words on the right denote: 

RCORR:  the reduced correlation matrix for the parameter estimates 
ITERATION:  the parameter and covariance estimates for each iteration 
CORR:  the correlation matrix for the parameter estimates 

These reserved words are also keywords for PRINT and NOPRINT.  The default for LEVEL is 
NORMAL, or the level specified in the PROFILE command. 

Note:  Reduced correlation matrix refers to the display of the correlation matrix of parameter 
estimates in which all values have no more than two decimal places with those estimates within 
two standard errors of zero displayed  as dots, "." . 

HOLD subcommand 
The HOLD subcommand is used to specify those values computed for particular functions to be 
retained in the workspace until the end of the session.  Only those statistics desired to be retained 
need be named.  Values are placed in the variable named in parentheses. The default is that none of 
the values of the statistics below will be retained after the command is used.  The values that may 
be retained are: 

RESIDUALS:  the residual series without outlier adjustment 
FITTED:  the one step-ahead forecasts (fitted values) of the series 
VARIANCE:  the variance of the noise 
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WFORECAST 

The WFORECAST command is used to compute weighted forecasts based on the user specified 
models.  The specified models may include both ARIMA and transfer function models.  This 
command can be used in conjunction with the WESTIM, ESTIM, or other single-equation 
estimation command in the SCA Statistical System. 

SYNTAX in terms of subcommands and associated argument type(s) 

    +---------------------------------------------------------------+ 
    |                                                               |  
    |     WFORECAST  MODELS ARE model-name1, model-name2, ---.  @   | 
    |                WEIGHTS ARE v1, v2, ---.                       | 
    |                                                               | 
    |  ** Complete list of available subcommands:                   | 
    |                                                               | 
    |     WFORECAST  MODELS ARE model-name1, model-name2, ---.  @   | 
    |                WEIGHTS ARE v1, v2, ---.                   @   | 
    |                ORIGIN IS i.                               @   | 
    |                NOFS IS i.                                 @   | 
    |                IARIMA ARE v1(model-name),                 @   | 
    |                           v2(model-name), --- .           @   | 
    |                OUTPUT IS PRINT(w1,w2,---),                @   | 
    |                          NOPRINT(w1,w2,---),              @   | 
    |                HOLD FORECASTS(v), STD_ERRS(v).                | 
    |                                                               | 
    |     Required subcommand:  MODEL and WEIGHTS                   | 
    |                                                               | 
    |     Legend:  v -- variable name;    i -- integer value;       | 
    |              w -- keyword                                     | 
    +---------------------------------------------------------------+ 

Subcommand descriptions 

MODEL subcommand 
The MODEL subcommand is used to specify the names (labels) of the ARIMA or transfer function 
models to be used for forecasting. The models must be specified in a previous TSMODEL 
command. 

WEIGHTS subcommand 
The WEIGHTS subcommand is used to specify the weight variables for the models used for 
forecasting. The minimum length of the weight variables must be equal to the number of forecasts 
specified in the NOFS subcommand.  The values for the forecast weights are typically between 0 
and 1, where 0 receives no weight. The weighted forecasts are computed as the proportional 
contribution of each forecast based on the given weights.  For example, if two forecasting models 
are used in weighted forecasting and the weights for both models are set to 1 at a particular forecast 
period, the proportional contribution of forecasts for that period is 1/(1+1) or 50%.  This can be 
more generally stated as weight(i) divided by the sum of all weights for a particular period. 
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ORIGIN subcommand 
The ORIGIN subcommand is used to specify the time origin for forecasting.  The default is the last 
observation of the series. 

NOFS subcommand 
The NOFS subcommand is used to specify the number of forecasts to be generated.  The default is 
24 forecasts. 

IARIMA subcommand 
The IARIMA subcommand is used to specify the label associated with the ARIMA model of each 
stochastic input series.  The variable name of each stochastic input series must be entered and in 
parentheses the name (label) for its ARIMA model. 

OUTPUT subcommand 
The OUTPUT subcommand is used to control the amount of output printed or plotted for computed 
statistics.  Control is achieved by increasing or decreasing the basic level of output by use of 
PRINT or NOPRINT, respectively.  The keyword for PRINT and NOPRINT is: 

FORECAST:  forecast values for each time origin 

The default condition is PRINT(FORECAST). 

HOLD subcommand 
The HOLD subcommand is used to specify those values computed for particular functions to be 
retained in the workspace until the end of the session.  Only those statistics desired to be retained 
need be named.  Values are placed in the variable named in parenthesis.  Default is that none of the 
values of the above statistics will be retained after the command is executed.  The values that may 
be retained are: 

FORECASTS:   forecasts at the last time origin 
STD_ERRS:   standard errors of the forecasts at the last time origin 
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